| /* |
| * Copyright (c) 2016, Wind River Systems, Inc. |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| /** |
| * @file |
| * |
| * @brief Public kernel APIs. |
| */ |
| |
| #ifndef _kernel__h_ |
| #define _kernel__h_ |
| |
| #include <stddef.h> |
| #include <stdint.h> |
| #include <toolchain.h> |
| #include <sections.h> |
| #include <atomic.h> |
| #include <errno.h> |
| #include <misc/__assert.h> |
| #include <misc/dlist.h> |
| #include <misc/slist.h> |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| #ifdef CONFIG_KERNEL_V2_DEBUG |
| #define K_DEBUG(fmt, ...) printk("[%s] " fmt, __func__, ##__VA_ARGS__) |
| #else |
| #define K_DEBUG(fmt, ...) |
| #endif |
| |
| #define K_PRIO_COOP(x) (-(CONFIG_NUM_COOP_PRIORITIES - (x))) |
| #define K_PRIO_PREEMPT(x) (x) |
| |
| #define K_FOREVER (-1) |
| #define K_NO_WAIT 0 |
| |
| #define K_ANY NULL |
| #define K_END NULL |
| |
| #if CONFIG_NUM_COOP_PRIORITIES > 0 |
| #define K_HIGHEST_THREAD_PRIO (-CONFIG_NUM_COOP_PRIORITIES) |
| #else |
| #define K_HIGHEST_THREAD_PRIO 0 |
| #endif |
| |
| #if CONFIG_NUM_PREEMPT_PRIORITIES > 0 |
| #define K_LOWEST_THREAD_PRIO CONFIG_NUM_PREEMPT_PRIORITIES |
| #else |
| #define K_LOWEST_THREAD_PRIO -1 |
| #endif |
| |
| #define K_HIGHEST_APPLICATION_THREAD_PRIO (K_HIGHEST_THREAD_PRIO) |
| #define K_LOWEST_APPLICATION_THREAD_PRIO (K_LOWEST_THREAD_PRIO - 1) |
| |
| typedef sys_dlist_t _wait_q_t; |
| |
| #ifdef CONFIG_DEBUG_TRACING_KERNEL_OBJECTS |
| #define _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(type) struct type *__next |
| #define _DEBUG_TRACING_KERNEL_OBJECTS_INIT .__next = NULL, |
| #else |
| #define _DEBUG_TRACING_KERNEL_OBJECTS_INIT |
| #define _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(type) |
| #endif |
| |
| #define k_thread tcs |
| struct tcs; |
| struct k_mutex; |
| struct k_sem; |
| struct k_event; |
| struct k_msgq; |
| struct k_mbox; |
| struct k_pipe; |
| struct k_fifo; |
| struct k_lifo; |
| struct k_stack; |
| struct k_mem_map; |
| struct k_mem_pool; |
| struct k_timer; |
| |
| typedef struct k_thread *k_tid_t; |
| |
| /* threads/scheduler/execution contexts */ |
| |
| enum execution_context_types { |
| K_ISR = 0, |
| K_COOP_THREAD, |
| K_PREEMPT_THREAD, |
| }; |
| |
| struct k_thread_config { |
| char *stack; |
| unsigned stack_size; |
| unsigned prio; |
| }; |
| |
| typedef void (*k_thread_entry_t)(void *p1, void *p2, void *p3); |
| extern k_tid_t k_thread_spawn(char *stack, unsigned stack_size, |
| void (*entry)(void *, void *, void*), |
| void *p1, void *p2, void *p3, |
| int32_t prio, uint32_t options, int32_t delay); |
| |
| extern void k_sleep(int32_t duration); |
| extern void k_busy_wait(uint32_t usec_to_wait); |
| extern void k_yield(void); |
| extern void k_wakeup(k_tid_t thread); |
| extern k_tid_t k_current_get(void); |
| extern int k_thread_cancel(k_tid_t thread); |
| |
| extern void k_thread_abort(k_tid_t thread); |
| |
| #define K_THREAD_GROUP_EXE 0x1 |
| #define K_THREAD_GROUP_SYS 0x2 |
| #define K_THREAD_GROUP_FPU 0x4 |
| |
| /* XXX - doesn't work because CONFIG_ARCH is a string */ |
| #if 0 |
| /* arch-specific groups */ |
| #if CONFIG_ARCH == "x86" |
| #define K_THREAD_GROUP_SSE 0x4 |
| #endif |
| #endif |
| |
| #ifdef CONFIG_SYS_CLOCK_EXISTS |
| #define _THREAD_TIMEOUT_INIT(obj) \ |
| (obj).nano_timeout = { \ |
| .node = { {0}, {0} }, \ |
| .thread = NULL, \ |
| .wait_q = NULL, \ |
| .delta_ticks_from_prev = -1, \ |
| }, |
| #else |
| #define _THREAD_TIMEOUT_INIT(obj) |
| #endif |
| |
| #ifdef CONFIG_ERRNO |
| #define _THREAD_ERRNO_INIT(obj) (obj).errno_var = 0, |
| #else |
| #define _THREAD_ERRNO_INIT(obj) |
| #endif |
| |
| struct _static_thread_data { |
| uint32_t init_groups; |
| int init_prio; |
| void (*init_entry)(void *, void *, void *); |
| void *init_p1; |
| void *init_p2; |
| void *init_p3; |
| void (*init_abort)(void); |
| union { |
| char *init_stack; |
| struct k_thread *thread; |
| }; |
| unsigned int init_stack_size; |
| int32_t init_delay; |
| }; |
| |
| /* |
| * Common macro used by both K_THREAD_INITIALIZER() |
| * and _MDEF_THREAD_INITIALIZER(). |
| */ |
| #define _THREAD_INITIALIZER(stack, stack_size, \ |
| entry, p1, p2, p3, \ |
| abort, prio) \ |
| .init_prio = (prio), \ |
| .init_entry = (void (*)(void *, void *, void *))entry, \ |
| .init_p1 = (void *)p1, \ |
| .init_p2 = (void *)p2, \ |
| .init_p3 = (void *)p3, \ |
| .init_abort = abort, \ |
| .init_stack = (stack), \ |
| .init_stack_size = (stack_size), |
| |
| /** |
| * @brief Thread initializer macro |
| * |
| * This macro is to only be used with statically defined threads that were not |
| * defined in the MDEF file. As such the associated threads can not belong to |
| * any thread group. |
| */ |
| #define K_THREAD_INITIALIZER(stack, stack_size, \ |
| entry, p1, p2, p3, \ |
| abort, prio, delay) \ |
| { \ |
| _THREAD_INITIALIZER(stack, stack_size, \ |
| entry, p1, p2, p3, \ |
| abort, prio) \ |
| .init_groups = 0, \ |
| .init_delay = (delay), \ |
| } |
| |
| /** |
| * @brief Thread initializer macro |
| * |
| * This macro is to only be used with statically defined threads that were |
| * defined with legacy APIs (including the MDEF file). As such the associated |
| * threads may belong to one or more thread groups. |
| */ |
| #define _MDEF_THREAD_INITIALIZER(stack, stack_size, \ |
| entry, p1, p2, p3, \ |
| abort, prio, groups) \ |
| { \ |
| _THREAD_INITIALIZER(stack, stack_size, \ |
| entry, p1, p2, p3, \ |
| abort, prio) \ |
| .init_groups = (groups), \ |
| .init_delay = K_FOREVER, \ |
| } |
| |
| /** |
| * @brief Define thread initializer and initialize it. |
| * |
| * @internal It has been observed that the x86 compiler by default aligns |
| * these _static_thread_data structures to 32-byte boundaries, thereby |
| * wasting space. To work around this, force a 4-byte alignment. |
| */ |
| #define K_THREAD_DEFINE(name, stack_size, \ |
| entry, p1, p2, p3, \ |
| abort, prio, delay) \ |
| char __noinit __stack _k_thread_obj_##name[stack_size]; \ |
| struct _static_thread_data _k_thread_data_##name __aligned(4) \ |
| __in_section(_k_task_list, private, task) = \ |
| K_THREAD_INITIALIZER(_k_thread_obj_##name, stack_size, \ |
| entry, p1, p2, p3, abort, prio, delay) |
| |
| /** |
| * @brief Define thread initializer for MDEF defined thread and initialize it. |
| * |
| * @ref K_THREAD_DEFINE |
| */ |
| #define _MDEF_THREAD_DEFINE(name, stack_size, \ |
| entry, p1, p2, p3, \ |
| abort, prio, groups) \ |
| char __noinit __stack _k_thread_obj_##name[stack_size]; \ |
| struct _static_thread_data _k_thread_data_##name __aligned(4) \ |
| __in_section(_k_task_list, private, task) = \ |
| _MDEF_THREAD_INITIALIZER(_k_thread_obj_##name, stack_size, \ |
| entry, p1, p2, p3, abort, prio, groups) |
| |
| extern int k_thread_priority_get(k_tid_t thread); |
| extern void k_thread_priority_set(k_tid_t thread, int prio); |
| |
| extern void k_thread_suspend(k_tid_t thread); |
| extern void k_thread_resume(k_tid_t thread); |
| extern void k_thread_abort_handler_set(void (*handler)(void)); |
| |
| extern void k_sched_time_slice_set(int32_t slice, int prio); |
| |
| extern int k_am_in_isr(void); |
| |
| extern void k_thread_custom_data_set(void *value); |
| extern void *k_thread_custom_data_get(void); |
| |
| /** |
| * kernel timing |
| */ |
| |
| #include <sys_clock.h> |
| |
| /* private internal time manipulation (users should never play with ticks) */ |
| |
| static int64_t __ticks_to_ms(int64_t ticks) |
| { |
| #if CONFIG_SYS_CLOCK_EXISTS |
| return (MSEC_PER_SEC * (uint64_t)ticks) / sys_clock_ticks_per_sec; |
| #else |
| __ASSERT(ticks == 0, ""); |
| return 0; |
| #endif |
| } |
| |
| |
| /* timeouts */ |
| |
| struct _timeout; |
| typedef void (*_timeout_func_t)(struct _timeout *t); |
| |
| struct _timeout { |
| sys_dlist_t node; |
| struct k_thread *thread; |
| sys_dlist_t *wait_q; |
| int32_t delta_ticks_from_prev; |
| _timeout_func_t func; |
| }; |
| |
| |
| /* timers */ |
| |
| struct k_timer { |
| /* |
| * _timeout structure must be first here if we want to use |
| * dynamic timer allocation. timeout.node is used in the double-linked |
| * list of free timers |
| */ |
| struct _timeout timeout; |
| |
| /* wait queue for the (single) thread waiting on this timer */ |
| _wait_q_t wait_q; |
| |
| /* runs in ISR context */ |
| void (*expiry_fn)(struct k_timer *); |
| |
| /* runs in the context of the thread that calls k_timer_stop() */ |
| void (*stop_fn)(struct k_timer *); |
| |
| /* timer period */ |
| int32_t period; |
| |
| /* timer status */ |
| uint32_t status; |
| |
| /* used to support legacy timer APIs */ |
| void *_legacy_data; |
| |
| _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_timer); |
| }; |
| |
| #define K_TIMER_INITIALIZER(obj) \ |
| { \ |
| .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \ |
| _DEBUG_TRACING_KERNEL_OBJECTS_INIT \ |
| } |
| |
| #define K_TIMER_DEFINE(name) \ |
| struct k_timer name = K_TIMER_INITIALIZER(name) |
| |
| /** |
| * @brief Initialize a timer. |
| * |
| * This routine must be called before the timer is used. |
| * |
| * @param timer Address of timer. |
| * @param expiry_fn Function to invoke each time timer expires. |
| * @param stop_fn Function to invoke if timer is stopped while running. |
| * |
| * @return N/A |
| */ |
| extern void k_timer_init(struct k_timer *timer, |
| void (*expiry_fn)(struct k_timer *), |
| void (*stop_fn)(struct k_timer *)); |
| |
| /** |
| * @brief Start a timer. |
| * |
| * This routine starts a timer, and resets its status to zero. The timer |
| * begins counting down using the specified duration and period values. |
| * |
| * Attempting to start a timer that is already running is permitted. |
| * The timer's status is reset to zero and the timer begins counting down |
| * using the new duration and period values. |
| * |
| * @param timer Address of timer. |
| * @param duration Initial timer duration (in milliseconds). |
| * @param period Timer period (in milliseconds). |
| * |
| * @return N/A |
| */ |
| extern void k_timer_start(struct k_timer *timer, |
| int32_t duration, int32_t period); |
| |
| /** |
| * @brief Stop a timer. |
| * |
| * This routine stops a running timer prematurely. The timer's stop function, |
| * if one exists, is invoked by the caller. |
| * |
| * Attempting to stop a timer that is not running is permitted, but has no |
| * effect on the timer since it is already stopped. |
| * |
| * @param timer Address of timer. |
| * |
| * @return N/A |
| */ |
| extern void k_timer_stop(struct k_timer *timer); |
| |
| /** |
| * @brief Read timer status. |
| * |
| * This routine reads the timer's status, which indicates the number of times |
| * it has expired since its status was last read. |
| * |
| * Calling this routine resets the timer's status to zero. |
| * |
| * @param timer Address of timer. |
| * |
| * @return Timer status. |
| */ |
| extern uint32_t k_timer_status_get(struct k_timer *timer); |
| |
| /** |
| * @brief Synchronize thread to timer expiration. |
| * |
| * This routine blocks the calling thread until the timer's status is non-zero |
| * (indicating that it has expired at least once since it was last examined) |
| * or the timer is stopped. If the timer status is already non-zero, |
| * or the timer is already stopped, the caller continues without waiting. |
| * |
| * Calling this routine resets the timer's status to zero. |
| * |
| * This routine must not be used by interrupt handlers, since they are not |
| * allowed to block. |
| * |
| * @param timer Address of timer. |
| * |
| * @return Timer status. |
| */ |
| extern uint32_t k_timer_status_sync(struct k_timer *timer); |
| |
| /** |
| * @brief Get timer remaining before next timer expiration. |
| * |
| * This routine computes the (approximate) time remaining before a running |
| * timer next expires. If the timer is not running, it returns zero. |
| * |
| * @param timer Address of timer. |
| * |
| * @return Remaining time (in milliseconds). |
| */ |
| |
| extern int32_t k_timer_remaining_get(struct k_timer *timer); |
| |
| |
| /* kernel clocks */ |
| |
| /** |
| * @brief Get the time elapsed since the system booted (uptime) |
| * |
| * @return The current uptime of the system in ms |
| */ |
| |
| extern int64_t k_uptime_get(void); |
| |
| /** |
| * @brief Get the lower 32-bit of time elapsed since the system booted (uptime) |
| * |
| * This function is potentially less onerous in both the time it takes to |
| * execute, the interrupt latency it introduces and the amount of 64-bit math |
| * it requires than k_uptime_get(), but it only provides an uptime value of |
| * 32-bits. The user must handle possible rollovers/spillovers. |
| * |
| * At a rate of increment of 1000 per second, it rolls over approximately every |
| * 50 days. |
| * |
| * @return The current uptime of the system in ms |
| */ |
| |
| extern uint32_t k_uptime_get_32(void); |
| |
| /** |
| * @brief Get the difference between a reference time and the current uptime |
| * |
| * @param reftime A pointer to a reference time. It is updated with the current |
| * uptime upon return. |
| * |
| * @return The delta between the reference time and the current uptime. |
| */ |
| |
| extern int64_t k_uptime_delta(int64_t *reftime); |
| |
| /** |
| * @brief Get the difference between a reference time and the current uptime |
| * |
| * The 32-bit version of k_uptime_delta(). It has the same perks and issues as |
| * k_uptime_get_32(). |
| * |
| * @param reftime A pointer to a reference time. It is updated with the current |
| * uptime upon return. |
| * |
| * @return The delta between the reference time and the current uptime. |
| */ |
| |
| extern uint32_t k_uptime_delta_32(int64_t *reftime); |
| |
| extern uint32_t k_cycle_get_32(void); |
| |
| /** |
| * data transfers (basic) |
| */ |
| |
| /* fifos */ |
| |
| struct k_fifo { |
| _wait_q_t wait_q; |
| sys_slist_t data_q; |
| |
| _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_fifo); |
| }; |
| |
| extern void k_fifo_init(struct k_fifo *fifo); |
| extern void k_fifo_put(struct k_fifo *fifo, void *data); |
| extern void k_fifo_put_list(struct k_fifo *fifo, void *head, void *tail); |
| extern void k_fifo_put_slist(struct k_fifo *fifo, sys_slist_t *list); |
| extern void *k_fifo_get(struct k_fifo *fifo, int32_t timeout); |
| |
| #define K_FIFO_INITIALIZER(obj) \ |
| { \ |
| .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \ |
| .data_q = SYS_SLIST_STATIC_INIT(&obj.data_q), \ |
| _DEBUG_TRACING_KERNEL_OBJECTS_INIT \ |
| } |
| |
| #define K_FIFO_DEFINE(name) \ |
| struct k_fifo name = K_FIFO_INITIALIZER(name) |
| |
| /* lifos */ |
| |
| struct k_lifo { |
| _wait_q_t wait_q; |
| void *list; |
| |
| _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_lifo); |
| }; |
| |
| extern void k_lifo_init(struct k_lifo *lifo); |
| extern void k_lifo_put(struct k_lifo *lifo, void *data); |
| extern void *k_lifo_get(struct k_lifo *lifo, int32_t timeout); |
| |
| #define K_LIFO_INITIALIZER(obj) \ |
| { \ |
| .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \ |
| .list = NULL, \ |
| _DEBUG_TRACING_KERNEL_OBJECTS_INIT \ |
| } |
| |
| #define K_LIFO_DEFINE(name) \ |
| struct k_lifo name = K_LIFO_INITIALIZER(name) |
| |
| /* stacks */ |
| |
| struct k_stack { |
| _wait_q_t wait_q; |
| uint32_t *base, *next, *top; |
| |
| _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_stack); |
| }; |
| |
| extern void k_stack_init(struct k_stack *stack, |
| uint32_t *buffer, int num_entries); |
| extern void k_stack_push(struct k_stack *stack, uint32_t data); |
| extern int k_stack_pop(struct k_stack *stack, uint32_t *data, int32_t timeout); |
| |
| #define K_STACK_INITIALIZER(obj, stack_num_entries, stack_buffer) \ |
| { \ |
| .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \ |
| .base = stack_buffer, \ |
| .next = stack_buffer, \ |
| .top = stack_buffer + stack_num_entries, \ |
| _DEBUG_TRACING_KERNEL_OBJECTS_INIT \ |
| } |
| |
| #define K_STACK_DEFINE(name, stack_num_entries) \ |
| uint32_t __noinit _k_stack_buf_##name[stack_num_entries]; \ |
| struct k_stack name = \ |
| K_STACK_INITIALIZER(name, stack_num_entries, \ |
| _k_stack_buf_##name); \ |
| |
| #define K_STACK_SIZE(stack_num_entries) \ |
| (sizeof(struct k_stack) + (stack_num_entries * sizeof(uint32_t))) |
| |
| /** |
| * workqueues |
| */ |
| |
| struct k_work; |
| |
| typedef void (*k_work_handler_t)(struct k_work *); |
| |
| /** |
| * A workqueue is a fiber that executes @ref k_work items that are |
| * queued to it. This is useful for drivers which need to schedule |
| * execution of code which might sleep from ISR context. The actual |
| * fiber identifier is not stored in the structure in order to save |
| * space. |
| */ |
| struct k_work_q { |
| struct k_fifo fifo; |
| }; |
| |
| /** |
| * @brief Work flags. |
| */ |
| enum { |
| K_WORK_STATE_PENDING, /* Work item pending state */ |
| }; |
| |
| /** |
| * @brief An item which can be scheduled on a @ref k_work_q. |
| */ |
| struct k_work { |
| void *_reserved; /* Used by k_fifo implementation. */ |
| k_work_handler_t handler; |
| atomic_t flags[1]; |
| }; |
| |
| /** |
| * @brief Statically initialize work item |
| */ |
| #define K_WORK_INITIALIZER(work_handler) \ |
| { \ |
| ._reserved = NULL, \ |
| .handler = work_handler, \ |
| .flags = { 0 } \ |
| } |
| |
| /** |
| * @brief Dynamically initialize work item |
| */ |
| static inline void k_work_init(struct k_work *work, k_work_handler_t handler) |
| { |
| atomic_clear_bit(work->flags, K_WORK_STATE_PENDING); |
| work->handler = handler; |
| } |
| |
| /** |
| * @brief Submit a work item to a workqueue. |
| * |
| * This procedure schedules a work item to be processed. |
| * In the case where the work item has already been submitted and is pending |
| * execution, calling this function will result in a no-op. In this case, the |
| * work item must not be modified externally (e.g. by the caller of this |
| * function), since that could cause the work item to be processed in a |
| * corrupted state. |
| * |
| * @param work_q to schedule the work item |
| * @param work work item |
| * |
| * @return N/A |
| */ |
| static inline void k_work_submit_to_queue(struct k_work_q *work_q, |
| struct k_work *work) |
| { |
| if (!atomic_test_and_set_bit(work->flags, K_WORK_STATE_PENDING)) { |
| k_fifo_put(&work_q->fifo, work); |
| } |
| } |
| |
| /** |
| * @brief Check if work item is pending. |
| */ |
| static inline int k_work_pending(struct k_work *work) |
| { |
| return atomic_test_bit(work->flags, K_WORK_STATE_PENDING); |
| } |
| |
| /** |
| * @brief Start a new workqueue. This routine can be called from either |
| * fiber or task context. |
| */ |
| extern void k_work_q_start(struct k_work_q *work_q, |
| const struct k_thread_config *config); |
| |
| #if defined(CONFIG_SYS_CLOCK_EXISTS) |
| |
| /* |
| * @brief An item which can be scheduled on a @ref k_work_q with a |
| * delay. |
| */ |
| struct k_delayed_work { |
| struct k_work work; |
| struct _timeout timeout; |
| struct k_work_q *work_q; |
| }; |
| |
| /** |
| * @brief Initialize delayed work |
| */ |
| extern void k_delayed_work_init(struct k_delayed_work *work, |
| k_work_handler_t handler); |
| |
| /** |
| * @brief Submit a delayed work item to a workqueue. |
| * |
| * This procedure schedules a work item to be processed after a delay. |
| * Once the delay has passed, the work item is submitted to the work queue: |
| * at this point, it is no longer possible to cancel it. Once the work item's |
| * handler is about to be executed, the work is considered complete and can be |
| * resubmitted. |
| * |
| * Care must be taken if the handler blocks or yield as there is no implicit |
| * mutual exclusion mechanism. Such usage is not recommended and if necessary, |
| * it should be explicitly done between the submitter and the handler. |
| * |
| * @param work_q to schedule the work item |
| * @param work Delayed work item |
| * @param ticks Ticks to wait before scheduling the work item |
| * |
| * @return 0 in case of success or negative value in case of error. |
| */ |
| extern int k_delayed_work_submit_to_queue(struct k_work_q *work_q, |
| struct k_delayed_work *work, |
| int32_t ticks); |
| |
| /** |
| * @brief Cancel a delayed work item |
| * |
| * This procedure cancels a scheduled work item. If the work has been completed |
| * or is idle, this will do nothing. The only case where this can fail is when |
| * the work has been submitted to the work queue, but the handler has not run |
| * yet. |
| * |
| * @param work Delayed work item to be canceled |
| * |
| * @return 0 in case of success or negative value in case of error. |
| */ |
| extern int k_delayed_work_cancel(struct k_delayed_work *work); |
| |
| #endif /* CONFIG_SYS_CLOCK_EXISTS */ |
| |
| #if defined(CONFIG_SYSTEM_WORKQUEUE) |
| |
| extern struct k_work_q k_sys_work_q; |
| |
| /* |
| * @brief Submit a work item to the system workqueue. |
| * |
| * @ref k_work_submit_to_queue |
| * |
| * When using the system workqueue it is not recommended to block or yield |
| * on the handler since its fiber is shared system wide it may cause |
| * unexpected behavior. |
| */ |
| static inline void k_work_submit(struct k_work *work) |
| { |
| k_work_submit_to_queue(&k_sys_work_q, work); |
| } |
| |
| #if defined(CONFIG_SYS_CLOCK_EXISTS) |
| /* |
| * @brief Submit a delayed work item to the system workqueue. |
| * |
| * @ref k_delayed_work_submit_to_queue |
| * |
| * When using the system workqueue it is not recommended to block or yield |
| * on the handler since its fiber is shared system wide it may cause |
| * unexpected behavior. |
| */ |
| static inline int k_delayed_work_submit(struct k_delayed_work *work, |
| int ticks) |
| { |
| return k_delayed_work_submit_to_queue(&k_sys_work_q, work, ticks); |
| } |
| |
| #endif /* CONFIG_SYS_CLOCK_EXISTS */ |
| #endif /* CONFIG_SYSTEM_WORKQUEUE */ |
| |
| /** |
| * synchronization |
| */ |
| |
| /* mutexes */ |
| |
| struct k_mutex { |
| _wait_q_t wait_q; |
| struct k_thread *owner; |
| uint32_t lock_count; |
| int owner_orig_prio; |
| #ifdef CONFIG_OBJECT_MONITOR |
| int num_lock_state_changes; |
| int num_conflicts; |
| #endif |
| |
| _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_mutex); |
| }; |
| |
| #ifdef CONFIG_OBJECT_MONITOR |
| #define _MUTEX_INIT_OBJECT_MONITOR \ |
| .num_lock_state_changes = 0, .num_conflicts = 0, |
| #else |
| #define _MUTEX_INIT_OBJECT_MONITOR |
| #endif |
| |
| #define K_MUTEX_INITIALIZER(obj) \ |
| { \ |
| .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \ |
| .owner = NULL, \ |
| .lock_count = 0, \ |
| .owner_orig_prio = K_LOWEST_THREAD_PRIO, \ |
| _MUTEX_INIT_OBJECT_MONITOR \ |
| _DEBUG_TRACING_KERNEL_OBJECTS_INIT \ |
| } |
| |
| #define K_MUTEX_DEFINE(name) \ |
| struct k_mutex name = K_MUTEX_INITIALIZER(name) |
| |
| extern void k_mutex_init(struct k_mutex *mutex); |
| extern int k_mutex_lock(struct k_mutex *mutex, int32_t timeout); |
| extern void k_mutex_unlock(struct k_mutex *mutex); |
| |
| /* semaphores */ |
| |
| struct k_sem { |
| _wait_q_t wait_q; |
| unsigned int count; |
| unsigned int limit; |
| |
| _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_sem); |
| }; |
| |
| /** |
| * @brief Initialize a semaphore object. |
| * |
| * An initial count and a count limit can be specified. The count will never go |
| * over the count limit if the semaphore is given multiple times without being |
| * taken. |
| * |
| * Cannot be called from ISR. |
| * |
| * @param sem Pointer to a semaphore object. |
| * @param initial_count Initial count. |
| * @param limit Highest value the count can take during operation. |
| * |
| * @return N/A |
| */ |
| extern void k_sem_init(struct k_sem *sem, unsigned int initial_count, |
| unsigned int limit); |
| |
| /** |
| * @brief Take a semaphore, possibly pending if not available. |
| * |
| * The current execution context tries to obtain the semaphore. If the |
| * semaphore is unavailable and a timeout other than K_NO_WAIT is specified, |
| * the context will pend. |
| * |
| * @param sem Pointer to a semaphore object. |
| * @param timeout Number of milliseconds to wait if semaphore is unavailable, |
| * or one of the special values K_NO_WAIT and K_FOREVER. |
| * |
| * @warning If it is called from the context of an ISR, then the only legal |
| * value for @a timeout is K_NO_WAIT. |
| * |
| * @retval 0 When semaphore is obtained successfully. |
| * @retval -EAGAIN When timeout expires. |
| * @retval -EBUSY When unavailable and the timeout is K_NO_WAIT. |
| * |
| * @sa K_NO_WAIT, K_FOREVER |
| */ |
| extern int k_sem_take(struct k_sem *sem, int32_t timeout); |
| |
| /** |
| * @brief Give a semaphore. |
| * |
| * Increase the semaphore's internal count by 1, up to its limit, if no thread |
| * is waiting on the semaphore; otherwise, wake up the first thread in the |
| * semaphore's waiting queue. |
| * |
| * If the latter case, and if the current context is preemptible, the thread |
| * that is taken off the wait queue will be scheduled in and will preempt the |
| * current thread. |
| * |
| * @param sem Pointer to a semaphore object. |
| * |
| * @return N/A |
| */ |
| extern void k_sem_give(struct k_sem *sem); |
| |
| /** |
| * @brief Reset a semaphore's count to zero. |
| * |
| * The only effect is that the count is set to zero. There is no other |
| * side-effect to calling this function. |
| * |
| * @param sem Pointer to a semaphore object. |
| * |
| * @return N/A |
| */ |
| static inline void k_sem_reset(struct k_sem *sem) |
| { |
| sem->count = 0; |
| } |
| |
| /** |
| * @brief Get a semaphore's count. |
| * |
| * Note there is no guarantee the count has not changed by the time this |
| * function returns. |
| * |
| * @param sem Pointer to a semaphore object. |
| * |
| * @return The current semaphore count. |
| */ |
| static inline unsigned int k_sem_count_get(struct k_sem *sem) |
| { |
| return sem->count; |
| } |
| |
| #ifdef CONFIG_SEMAPHORE_GROUPS |
| /** |
| * @brief Take the first available semaphore |
| * |
| * Given a list of semaphore pointers, this routine will attempt to take one |
| * of them, waiting up to a maximum of @a timeout ms to do so. The taken |
| * semaphore is identified by @a sem (set to NULL on error). |
| * |
| * Be aware that the more semaphores specified in the group, the more stack |
| * space is required by the waiting thread. |
| * |
| * @param sem_array Array of semaphore pointers terminated by a K_END entry |
| * @param sem Identifies the semaphore that was taken |
| * @param timeout Number of milliseconds to wait if semaphores are unavailable, |
| * or one of the special values K_NO_WAIT and K_FOREVER. |
| * |
| * @retval 0 A semaphore was successfully taken |
| * @retval -EBUSY No semaphore was available (@a timeout = K_NO_WAIT) |
| * @retval -EAGAIN Time out occurred while waiting for semaphore |
| * |
| * @sa K_NO_WAIT, K_FOREVER |
| */ |
| |
| extern int k_sem_group_take(struct k_sem *sem_array[], struct k_sem **sem, |
| int32_t timeout); |
| |
| /** |
| * @brief Give all the semaphores in the group |
| * |
| * This routine will give each semaphore in the array of semaphore pointers. |
| * |
| * @param sem_array Array of semaphore pointers terminated by a K_END entry |
| * |
| * @return N/A |
| */ |
| extern void k_sem_group_give(struct k_sem *sem_array[]); |
| |
| /** |
| * @brief Reset the count to zero on each semaphore in the array |
| * |
| * This routine resets the count of each semaphore in the group to zero. |
| * Note that it does NOT have any impact on any thread that might have |
| * been previously pending on any of the semaphores. |
| * |
| * @param sem_array Array of semaphore pointers terminated by a K_END entry |
| * |
| * @return N/A |
| */ |
| extern void k_sem_group_reset(struct k_sem *sem_array[]); |
| #endif |
| |
| #define K_SEM_INITIALIZER(obj, initial_count, count_limit) \ |
| { \ |
| .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \ |
| .count = initial_count, \ |
| .limit = count_limit, \ |
| _DEBUG_TRACING_KERNEL_OBJECTS_INIT \ |
| } |
| |
| /** |
| * @def K_SEM_DEFINE |
| * |
| * @brief Statically define and initialize a global semaphore. |
| * |
| * Create a global semaphore named @name. It is initialized as if k_sem_init() |
| * was called on it. If the semaphore is to be accessed outside the module |
| * where it is defined, it can be declared via |
| * |
| * extern struct k_sem @name; |
| * |
| * @param name Name of the semaphore variable. |
| * @param initial_count Initial count. |
| * @param count_limit Highest value the count can take during operation. |
| */ |
| #define K_SEM_DEFINE(name, initial_count, count_limit) \ |
| struct k_sem name = \ |
| K_SEM_INITIALIZER(name, initial_count, count_limit) |
| |
| /* events */ |
| |
| #define K_EVT_DEFAULT NULL |
| #define K_EVT_IGNORE ((void *)(-1)) |
| |
| typedef int (*k_event_handler_t)(struct k_event *); |
| |
| struct k_event { |
| k_event_handler_t handler; |
| atomic_t send_count; |
| struct k_work work_item; |
| struct k_sem sem; |
| |
| _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_event); |
| }; |
| |
| extern void _k_event_deliver(struct k_work *work); |
| |
| #define K_EVENT_INITIALIZER(obj, event_handler) \ |
| { \ |
| .handler = (k_event_handler_t)event_handler, \ |
| .send_count = ATOMIC_INIT(0), \ |
| .work_item = K_WORK_INITIALIZER(_k_event_deliver), \ |
| .sem = K_SEM_INITIALIZER(obj.sem, 0, 1), \ |
| _DEBUG_TRACING_KERNEL_OBJECTS_INIT \ |
| } |
| |
| #define K_EVENT_DEFINE(name, event_handler) \ |
| struct k_event name \ |
| __in_section(_k_event_list, event, name) = \ |
| K_EVENT_INITIALIZER(name, event_handler) |
| |
| extern void k_event_init(struct k_event *event, k_event_handler_t handler); |
| extern int k_event_recv(struct k_event *event, int32_t timeout); |
| extern void k_event_send(struct k_event *event); |
| |
| /** |
| * data transfers (complex) |
| */ |
| |
| /* message queues */ |
| |
| struct k_msgq { |
| _wait_q_t wait_q; |
| size_t msg_size; |
| uint32_t max_msgs; |
| char *buffer_start; |
| char *buffer_end; |
| char *read_ptr; |
| char *write_ptr; |
| uint32_t used_msgs; |
| |
| _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_msgq); |
| }; |
| |
| #define K_MSGQ_INITIALIZER(obj, q_buffer, q_msg_size, q_max_msgs) \ |
| { \ |
| .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \ |
| .max_msgs = q_max_msgs, \ |
| .msg_size = q_msg_size, \ |
| .buffer_start = q_buffer, \ |
| .buffer_end = q_buffer + (q_max_msgs * q_msg_size), \ |
| .read_ptr = q_buffer, \ |
| .write_ptr = q_buffer, \ |
| .used_msgs = 0, \ |
| _DEBUG_TRACING_KERNEL_OBJECTS_INIT \ |
| } |
| |
| /** |
| * @brief Define a message queue |
| * |
| * This declares and initializes a message queue whose buffer is aligned to |
| * a @a q_align -byte boundary. The new message queue can be passed to the |
| * kernel's message queue functions. |
| * |
| * Note that for each of the mesages in the message queue to be aligned to |
| * @a q_align bytes, then @a q_msg_size must be a multiple of @a q_align. |
| * |
| * @param q_name Name of the message queue |
| * @param q_msg_size The size in bytes of each message |
| * @param q_max_msgs Maximum number of messages the queue can hold |
| * @param q_align Alignment of the message queue's buffer (power of 2) |
| */ |
| #define K_MSGQ_DEFINE(q_name, q_msg_size, q_max_msgs, q_align) \ |
| static char __noinit __aligned(q_align) \ |
| _k_fifo_buf_##q_name[(q_max_msgs) * (q_msg_size)]; \ |
| struct k_msgq q_name = \ |
| K_MSGQ_INITIALIZER(q_name, _k_fifo_buf_##q_name, \ |
| q_msg_size, q_max_msgs) |
| |
| /** |
| * @brief Initialize a message queue. |
| * |
| * @param q Pointer to the message queue object. |
| * @param buffer Pointer to memory area that holds queued messages. |
| * @param msg_size Message size, in bytes. |
| * @param max_msgs Maximum number of messages that can be queued. |
| * |
| * @return N/A |
| */ |
| extern void k_msgq_init(struct k_msgq *q, char *buffer, |
| size_t msg_size, uint32_t max_msgs); |
| |
| /** |
| * @brief Add a message to a message queue. |
| * |
| * This routine adds an item to the message queue. When the message queue is |
| * full, the routine will wait either for space to become available, or until |
| * the specified time limit is reached. |
| * |
| * @param q Pointer to the message queue object. |
| * @param data Pointer to message data area. |
| * @param timeout Number of milliseconds to wait until space becomes available |
| * to add the message into the message queue, or one of the |
| * special values K_NO_WAIT and K_FOREVER. |
| * |
| * @return 0 if successful, -ENOMSG if failed immediately or after queue purge, |
| * -EAGAIN if timed out |
| * |
| * @sa K_NO_WAIT, K_FOREVER |
| */ |
| extern int k_msgq_put(struct k_msgq *q, void *data, int32_t timeout); |
| |
| /** |
| * @brief Obtain a message from a message queue. |
| * |
| * This routine fetches the oldest item from the message queue. When the message |
| * queue is found empty, the routine will wait either until an item is added to |
| * the message queue or until the specified time limit is reached. |
| * |
| * @param q Pointer to the message queue object. |
| * @param data Pointer to message data area. |
| * @param timeout Number of milliseconds to wait to obtain message, or one of |
| * the special values K_NO_WAIT and K_FOREVER. |
| * |
| * @return 0 if successful, -ENOMSG if failed immediately, -EAGAIN if timed out |
| * |
| * @sa K_NO_WAIT, K_FOREVER |
| */ |
| extern int k_msgq_get(struct k_msgq *q, void *data, int32_t timeout); |
| |
| /** |
| * @brief Purge contents of a message queue. |
| * |
| * Discards all messages currently in the message queue, and cancels |
| * any "add message" operations initiated by waiting threads. |
| * |
| * @param q Pointer to the message queue object. |
| * |
| * @return N/A |
| */ |
| extern void k_msgq_purge(struct k_msgq *q); |
| |
| /** |
| * @brief Get the number of unused messages |
| * |
| * @param q Message queue to query |
| * |
| * @return Number of unused messages |
| */ |
| static inline uint32_t k_msgq_num_free_get(struct k_msgq *q) |
| { |
| return q->max_msgs - q->used_msgs; |
| } |
| |
| /** |
| * @brief Get the number of used messages |
| * |
| * @param q Message queue to query |
| * |
| * @return Number of used messages |
| */ |
| static inline uint32_t k_msgq_num_used_get(struct k_msgq *q) |
| { |
| return q->used_msgs; |
| } |
| |
| struct k_mem_block { |
| struct k_mem_pool *pool_id; |
| void *addr_in_pool; |
| void *data; |
| uint32_t req_size; |
| }; |
| |
| /* mailboxes */ |
| |
| struct k_mbox_msg { |
| /** internal use only - needed for legacy API support */ |
| uint32_t _mailbox; |
| /** size of message (in bytes) */ |
| size_t size; |
| /** application-defined information value */ |
| uint32_t info; |
| /** sender's message data buffer */ |
| void *tx_data; |
| /** internal use only - needed for legacy API support */ |
| void *_rx_data; |
| /** message data block descriptor */ |
| struct k_mem_block tx_block; |
| /** source thread id */ |
| k_tid_t rx_source_thread; |
| /** target thread id */ |
| k_tid_t tx_target_thread; |
| /** internal use only - thread waiting on send (may be a dummy) */ |
| k_tid_t _syncing_thread; |
| #if (CONFIG_NUM_MBOX_ASYNC_MSGS > 0) |
| /** internal use only - semaphore used during asynchronous send */ |
| struct k_sem *_async_sem; |
| #endif |
| }; |
| |
| struct k_mbox { |
| _wait_q_t tx_msg_queue; |
| _wait_q_t rx_msg_queue; |
| |
| _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_mbox); |
| }; |
| |
| #define K_MBOX_INITIALIZER(obj) \ |
| { \ |
| .tx_msg_queue = SYS_DLIST_STATIC_INIT(&obj.tx_msg_queue), \ |
| .rx_msg_queue = SYS_DLIST_STATIC_INIT(&obj.rx_msg_queue), \ |
| _DEBUG_TRACING_KERNEL_OBJECTS_INIT \ |
| } |
| |
| /** |
| * @brief Define a mailbox |
| * |
| * This declares and initializes a mailbox. The new mailbox can be passed to |
| * the kernel's mailbox functions. |
| * |
| * @param name Name of the mailbox |
| */ |
| #define K_MBOX_DEFINE(name) \ |
| struct k_mbox name = \ |
| K_MBOX_INITIALIZER(name) \ |
| |
| /** |
| * @brief Initialize a mailbox. |
| * |
| * @param mbox Pointer to the mailbox object |
| * |
| * @return N/A |
| */ |
| extern void k_mbox_init(struct k_mbox *mbox); |
| |
| /** |
| * @brief Send a mailbox message in a synchronous manner. |
| * |
| * Sends a message to a mailbox and waits for a receiver to process it. |
| * The message data may be in a buffer, in a memory pool block, or non-existent |
| * (i.e. empty message). |
| * |
| * @param mbox Pointer to the mailbox object. |
| * @param tx_msg Pointer to transmit message descriptor. |
| * @param timeout Maximum time (milliseconds) to wait for the message to be |
| * received (although not necessarily completely processed). |
| * Use K_NO_WAIT to return immediately, or K_FOREVER to wait as long |
| * as necessary. |
| * |
| * @return 0 if successful, -ENOMSG if failed immediately, -EAGAIN if timed out |
| */ |
| extern int k_mbox_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg, |
| int32_t timeout); |
| |
| #if (CONFIG_NUM_MBOX_ASYNC_MSGS > 0) |
| /** |
| * @brief Send a mailbox message in an asynchronous manner. |
| * |
| * Sends a message to a mailbox without waiting for a receiver to process it. |
| * The message data may be in a buffer, in a memory pool block, or non-existent |
| * (i.e. an empty message). Optionally, the specified semaphore will be given |
| * by the mailbox when the message has been both received and disposed of |
| * by the receiver. |
| * |
| * @param mbox Pointer to the mailbox object. |
| * @param tx_msg Pointer to transmit message descriptor. |
| * @param sem Semaphore identifier, or NULL if none specified. |
| * |
| * @return N/A |
| */ |
| extern void k_mbox_async_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg, |
| struct k_sem *sem); |
| #endif |
| |
| /** |
| * @brief Receive a mailbox message. |
| * |
| * Receives a message from a mailbox, then optionally retrieves its data |
| * and disposes of the message. |
| * |
| * @param mbox Pointer to the mailbox object. |
| * @param rx_msg Pointer to receive message descriptor. |
| * @param buffer Pointer to buffer to receive data. |
| * (Use NULL to defer data retrieval and message disposal until later.) |
| * @param timeout Maximum time (milliseconds) to wait for a message. |
| * Use K_NO_WAIT to return immediately, or K_FOREVER to wait as long as |
| * necessary. |
| * |
| * @return 0 if successful, -ENOMSG if failed immediately, -EAGAIN if timed out |
| */ |
| extern int k_mbox_get(struct k_mbox *mbox, struct k_mbox_msg *rx_msg, |
| void *buffer, int32_t timeout); |
| |
| /** |
| * @brief Retrieve mailbox message data into a buffer. |
| * |
| * Completes the processing of a received message by retrieving its data |
| * into a buffer, then disposing of the message. |
| * |
| * Alternatively, this routine can be used to dispose of a received message |
| * without retrieving its data. |
| * |
| * @param rx_msg Pointer to receive message descriptor. |
| * @param buffer Pointer to buffer to receive data. (Use NULL to discard data.) |
| * |
| * @return N/A |
| */ |
| extern void k_mbox_data_get(struct k_mbox_msg *rx_msg, void *buffer); |
| |
| /** |
| * @brief Retrieve mailbox message data into a memory pool block. |
| * |
| * Completes the processing of a received message by retrieving its data |
| * into a memory pool block, then disposing of the message. The memory pool |
| * block that results from successful retrieval must be returned to the pool |
| * once the data has been processed, even in cases where zero bytes of data |
| * are retrieved. |
| * |
| * Alternatively, this routine can be used to dispose of a received message |
| * without retrieving its data. In this case there is no need to return a |
| * memory pool block to the pool. |
| * |
| * This routine allocates a new memory pool block for the data only if the |
| * data is not already in one. If a new block cannot be allocated, the routine |
| * returns a failure code and the received message is left unchanged. This |
| * permits the caller to reattempt data retrieval at a later time or to dispose |
| * of the received message without retrieving its data. |
| * |
| * @param rx_msg Pointer to receive message descriptor. |
| * @param pool Memory pool identifier. (Use NULL to discard data.) |
| * @param block Pointer to area to hold memory pool block info. |
| * @param timeout Maximum time (milliseconds) to wait for a memory pool block. |
| * Use K_NO_WAIT to return immediately, or K_FOREVER to wait as long as |
| * necessary. |
| * |
| * @return 0 if successful, -ENOMEM if failed immediately, -EAGAIN if timed out |
| */ |
| extern int k_mbox_data_block_get(struct k_mbox_msg *rx_msg, |
| struct k_mem_pool *pool, |
| struct k_mem_block *block, int32_t timeout); |
| |
| /* pipes */ |
| |
| struct k_pipe { |
| unsigned char *buffer; /* Pipe buffer: may be NULL */ |
| size_t size; /* Buffer size */ |
| size_t bytes_used; /* # bytes used in buffer */ |
| size_t read_index; /* Where in buffer to read from */ |
| size_t write_index; /* Where in buffer to write */ |
| |
| struct { |
| _wait_q_t readers; /* Reader wait queue */ |
| _wait_q_t writers; /* Writer wait queue */ |
| } wait_q; |
| |
| _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_pipe); |
| }; |
| |
| #define K_PIPE_INITIALIZER(obj, pipe_buffer, pipe_buffer_size) \ |
| { \ |
| .buffer = pipe_buffer, \ |
| .size = pipe_buffer_size, \ |
| .bytes_used = 0, \ |
| .read_index = 0, \ |
| .write_index = 0, \ |
| .wait_q.writers = SYS_DLIST_STATIC_INIT(&obj.wait_q.writers), \ |
| .wait_q.readers = SYS_DLIST_STATIC_INIT(&obj.wait_q.readers), \ |
| _DEBUG_TRACING_KERNEL_OBJECTS_INIT \ |
| } |
| |
| #define K_PIPE_DEFINE(name, pipe_buffer_size, pipe_align) \ |
| static unsigned char __noinit __aligned(pipe_align) \ |
| _k_pipe_buf_##name[pipe_buffer_size]; \ |
| struct k_pipe name = \ |
| K_PIPE_INITIALIZER(name, _k_pipe_buf_##name, pipe_buffer_size) |
| |
| /** |
| * @brief Runtime initialization of a pipe |
| * |
| * @param pipe Pointer to pipe to initialize |
| * @param buffer Pointer to buffer to use for pipe's ring buffer |
| * @param size Size of the pipe's ring buffer |
| * |
| * @return N/A |
| */ |
| extern void k_pipe_init(struct k_pipe *pipe, unsigned char *buffer, |
| size_t size); |
| |
| /** |
| * @brief Put a message into the specified pipe |
| * |
| * This routine synchronously adds a message into the pipe specified by |
| * @a pipe. It will wait up to @a timeout for the pipe to accept |
| * @a bytes_to_write bytes of data. If by @a timeout, the pipe could not |
| * accept @a min_xfer bytes of data, it fails. Fewer than @a min_xfer will |
| * only ever be written to the pipe if K_NO_WAIT < @a timeout < K_FOREVER. |
| * |
| * @param pipe Pointer to the pipe |
| * @param data Data to put into the pipe |
| * @param bytes_to_write Desired number of bytes to put into the pipe |
| * @param bytes_written Number of bytes the pipe accepted |
| * @param min_xfer Minimum number of bytes accepted for success |
| * @param timeout Maximum number of milliseconds to wait |
| * |
| * @retval 0 At least @a min_xfer were sent |
| * @retval -EIO Request can not be satisfied (@a timeout is K_NO_WAIT) |
| * @retval -EAGAIN Fewer than @a min_xfer were sent |
| */ |
| extern int k_pipe_put(struct k_pipe *pipe, void *data, |
| size_t bytes_to_write, size_t *bytes_written, |
| size_t min_xfer, int32_t timeout); |
| |
| /** |
| * @brief Get a message from the specified pipe |
| * |
| * This routine synchronously retrieves a message from the pipe specified by |
| * @a pipe. It will wait up to @a timeout to retrieve @a bytes_to_read |
| * bytes of data from the pipe. If by @a timeout, the pipe could not retrieve |
| * @a min_xfer bytes of data, it fails. Fewer than @a min_xfer will |
| * only ever be retrieved from the pipe if K_NO_WAIT < @a timeout < K_FOREVER. |
| * |
| * @param pipe Pointer to the pipe |
| * @param data Location to place retrieved data |
| * @param bytes_to_read Desired number of bytes to retrieve from the pipe |
| * @param bytes_read Number of bytes retrieved from the pipe |
| * @param min_xfer Minimum number of bytes retrieved for success |
| * @param timeout Maximum number of milliseconds to wait |
| * |
| * @retval 0 At least @a min_xfer were transferred |
| * @retval -EIO Request can not be satisfied (@a timeout is K_NO_WAIT) |
| * @retval -EAGAIN Fewer than @a min_xfer were retrieved |
| */ |
| extern int k_pipe_get(struct k_pipe *pipe, void *data, |
| size_t bytes_to_read, size_t *bytes_read, |
| size_t min_xfer, int32_t timeout); |
| |
| #if (CONFIG_NUM_PIPE_ASYNC_MSGS > 0) |
| /** |
| * @brief Send a message to the specified pipe |
| * |
| * This routine asynchronously sends a message from the pipe specified by |
| * @a pipe. Once all @a size bytes have been accepted by the pipe, it will |
| * free the memory block @a block and give the semaphore @a sem (if specified). |
| * Up to CONFIG_NUM_PIPE_ASYNC_MSGS asynchronous pipe messages can be in-flight |
| * at any given time. |
| * |
| * @param pipe Pointer to the pipe |
| * @param block Memory block containing data to send |
| * @param size Number of data bytes in memory block to send |
| * @param sem Semaphore to signal upon completion (else NULL) |
| * |
| * @retval N/A |
| */ |
| extern void k_pipe_block_put(struct k_pipe *pipe, struct k_mem_block *block, |
| size_t size, struct k_sem *sem); |
| #endif |
| |
| /** |
| * memory management |
| */ |
| |
| /* memory maps */ |
| |
| struct k_mem_map { |
| _wait_q_t wait_q; |
| int num_blocks; |
| int block_size; |
| char *buffer; |
| char *free_list; |
| int num_used; |
| |
| _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_mem_map); |
| }; |
| |
| #define K_MEM_MAP_INITIALIZER(obj, map_buffer, map_block_size, map_num_blocks) \ |
| { \ |
| .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \ |
| .num_blocks = map_num_blocks, \ |
| .block_size = map_block_size, \ |
| .buffer = map_buffer, \ |
| .free_list = NULL, \ |
| .num_used = 0, \ |
| _DEBUG_TRACING_KERNEL_OBJECTS_INIT \ |
| } |
| |
| /** |
| * @brief Define a memory map |
| * |
| * This declares and initializes a memory map whose buffer is aligned to |
| * a @a map_align -byte boundary. The new memory map can be passed to the |
| * kernel's memory map functions. |
| * |
| * Note that for each of the blocks in the memory map to be aligned to |
| * @a map_align bytes, then @a map_block_size must be a multiple of |
| * @a map_align. |
| * |
| * @param name Name of the memory map |
| * @param map_block_size Size of each block in the buffer (in bytes) |
| * @param map_num_blocks Number blocks in the buffer |
| * @param map_align Alignment of the memory map's buffer (power of 2) |
| */ |
| #define K_MEM_MAP_DEFINE(name, map_block_size, map_num_blocks, map_align) \ |
| char __aligned(map_align) \ |
| _k_mem_map_buf_##name[(map_num_blocks) * (map_block_size)]; \ |
| struct k_mem_map name \ |
| __in_section(_k_mem_map_ptr, private, mem_map) = \ |
| K_MEM_MAP_INITIALIZER(name, _k_mem_map_buf_##name, \ |
| map_block_size, map_num_blocks) |
| |
| extern void k_mem_map_init(struct k_mem_map *map, void *buffer, |
| int block_size, int num_blocks); |
| extern int k_mem_map_alloc(struct k_mem_map *map, void **mem, int32_t timeout); |
| extern void k_mem_map_free(struct k_mem_map *map, void **mem); |
| |
| static inline int k_mem_map_num_used_get(struct k_mem_map *map) |
| { |
| return map->num_used; |
| } |
| |
| /** |
| * @brief Get the number of unused memory blocks |
| * |
| * This routine gets the current number of unused memory blocks in the |
| * specified pool. It should be used for stats purposes only as that value |
| * may potentially be out-of-date by the time it is used. |
| * |
| * @param map Memory map to query |
| * |
| * @return Number of unused memory blocks |
| */ |
| static inline int k_mem_map_num_free_get(struct k_mem_map *map) |
| { |
| return map->num_blocks - map->num_used; |
| } |
| |
| /* memory pools */ |
| |
| /* |
| * Memory pool requires a buffer and two arrays of structures for the |
| * memory block accounting: |
| * A set of arrays of k_mem_pool_quad_block structures where each keeps a |
| * status of four blocks of memory. |
| */ |
| struct k_mem_pool_quad_block { |
| char *mem_blocks; /* pointer to the first of four memory blocks */ |
| uint32_t mem_status; /* four bits. If bit is set, memory block is |
| allocated */ |
| }; |
| /* |
| * Memory pool mechanism uses one array of k_mem_pool_quad_block for accounting |
| * blocks of one size. Block sizes go from maximal to minimal. Next memory |
| * block size is 4 times less than the previous one and thus requires 4 times |
| * bigger array of k_mem_pool_quad_block structures to keep track of the |
| * memory blocks. |
| */ |
| |
| /* |
| * The array of k_mem_pool_block_set keeps the information of each array of |
| * k_mem_pool_quad_block structures |
| */ |
| struct k_mem_pool_block_set { |
| int block_size; /* memory block size */ |
| int nr_of_entries; /* nr of quad block structures in the array */ |
| struct k_mem_pool_quad_block *quad_block; |
| int count; |
| }; |
| |
| /* Memory pool descriptor */ |
| struct k_mem_pool { |
| int max_block_size; |
| int min_block_size; |
| int nr_of_maxblocks; |
| int nr_of_block_sets; |
| struct k_mem_pool_block_set *block_set; |
| char *bufblock; |
| _wait_q_t wait_q; |
| _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_mem_pool); |
| }; |
| |
| #ifdef CONFIG_ARM |
| #define _SECTION_TYPE_SIGN "%" |
| #else |
| #define _SECTION_TYPE_SIGN "@" |
| #endif |
| |
| /* |
| * Static memory pool initialization |
| */ |
| /* |
| * Use .altmacro to be able to recalculate values and pass them as string |
| * arguments when calling assembler macros resursively |
| */ |
| __asm__(".altmacro\n\t"); |
| |
| /* |
| * Recursively calls a macro |
| * The followig global symbols need to be initialized: |
| * __memory_pool_max_block_size - maximal size of the memory block |
| * __memory_pool_min_block_size - minimal size of the memory block |
| * Notes: |
| * Global symbols are used due the fact that assembler macro allows only |
| * one argument be passed with the % conversion |
| * Some assemblers do not get division operation ("/"). To avoid it >> 2 |
| * is used instead of / 4. |
| * n_max argument needs to go first in the invoked macro, as some |
| * assemblers concatenate \name and %(\n_max * 4) arguments |
| * if \name goes first |
| */ |
| __asm__(".macro __do_recurse macro_name, name, n_max\n\t" |
| ".ifge __memory_pool_max_block_size >> 2 -" |
| " __memory_pool_min_block_size\n\t\t" |
| "__memory_pool_max_block_size = __memory_pool_max_block_size >> 2\n\t\t" |
| "\\macro_name %(\\n_max * 4) \\name\n\t" |
| ".endif\n\t" |
| ".endm\n"); |
| |
| /* |
| * Build quad blocks |
| * Macro allocates space in memory for the array of k_mem_pool_quad_block |
| * structures and recursively calls itself for the next array, 4 times |
| * larger. |
| * The followig global symbols need to be initialized: |
| * __memory_pool_max_block_size - maximal size of the memory block |
| * __memory_pool_min_block_size - minimal size of the memory block |
| * __memory_pool_quad_block_size - sizeof(struct k_mem_pool_quad_block) |
| */ |
| __asm__(".macro _build_quad_blocks n_max, name\n\t" |
| "_mem_pool_quad_blocks_\\name\\()_\\n_max:\n\t" |
| ".skip __memory_pool_quad_block_size * \\n_max >> 2\n\t" |
| ".if \\n_max % 4\n\t\t" |
| ".skip __memory_pool_quad_block_size\n\t" |
| ".endif\n\t" |
| "__do_recurse _build_quad_blocks \\name \\n_max\n\t" |
| ".endm\n"); |
| |
| /* |
| * Build block sets and initialize them |
| * Macro initializes the k_mem_pool_block_set structure and |
| * recursively calls itself for the next one. |
| * The followig global symbols need to be initialized: |
| * __memory_pool_max_block_size - maximal size of the memory block |
| * __memory_pool_min_block_size - minimal size of the memory block |
| * __memory_pool_block_set_count, the number of the elements in the |
| * block set array must be set to 0. Macro calculates it's real |
| * value. |
| * Since the macro initializes pointers to an array of k_mem_pool_quad_block |
| * structures, _build_quad_blocks must be called prior it. |
| */ |
| __asm__(".macro _build_block_set n_max, name\n\t" |
| ".int __memory_pool_max_block_size\n\t" /* block_size */ |
| ".if \\n_max % 4\n\t\t" |
| ".int \\n_max >> 2 + 1\n\t" /* nr_of_entries */ |
| ".else\n\t\t" |
| ".int \\n_max >> 2\n\t" |
| ".endif\n\t" |
| ".int _mem_pool_quad_blocks_\\name\\()_\\n_max\n\t" /* quad_block */ |
| ".int 0\n\t" /* count */ |
| "__memory_pool_block_set_count = __memory_pool_block_set_count + 1\n\t" |
| "__do_recurse _build_block_set \\name \\n_max\n\t" |
| ".endm\n"); |
| |
| /* |
| * Build a memory pool structure and initialize it |
| * Macro uses __memory_pool_block_set_count global symbol, |
| * block set addresses and buffer address, it may be called only after |
| * _build_block_set |
| */ |
| __asm__(".macro _build_mem_pool name, min_size, max_size, n_max\n\t" |
| ".pushsection ._k_memory_pool,\"aw\"," |
| _SECTION_TYPE_SIGN "progbits\n\t" |
| ".globl \\name\n\t" |
| "\\name:\n\t" |
| ".int \\max_size\n\t" /* max_block_size */ |
| ".int \\min_size\n\t" /* min_block_size */ |
| ".int \\n_max\n\t" /* nr_of_maxblocks */ |
| ".int __memory_pool_block_set_count\n\t" /* nr_of_block_sets */ |
| ".int _mem_pool_block_sets_\\name\n\t" /* block_set */ |
| ".int _mem_pool_buffer_\\name\n\t" /* bufblock */ |
| ".int 0\n\t" /* wait_q->head */ |
| ".int 0\n\t" /* wait_q->next */ |
| ".popsection\n\t" |
| ".endm\n"); |
| |
| #define _MEMORY_POOL_QUAD_BLOCK_DEFINE(name, min_size, max_size, n_max) \ |
| __asm__(".pushsection ._k_memory_pool.struct,\"aw\"," \ |
| _SECTION_TYPE_SIGN "progbits\n\t"); \ |
| __asm__("__memory_pool_min_block_size = " STRINGIFY(min_size) "\n\t"); \ |
| __asm__("__memory_pool_max_block_size = " STRINGIFY(max_size) "\n\t"); \ |
| __asm__("_build_quad_blocks " STRINGIFY(n_max) " " \ |
| STRINGIFY(name) "\n\t"); \ |
| __asm__(".popsection\n\t") |
| |
| #define _MEMORY_POOL_BLOCK_SETS_DEFINE(name, min_size, max_size, n_max) \ |
| __asm__("__memory_pool_block_set_count = 0\n\t"); \ |
| __asm__("__memory_pool_max_block_size = " STRINGIFY(max_size) "\n\t"); \ |
| __asm__(".pushsection ._k_memory_pool.struct,\"aw\"," \ |
| _SECTION_TYPE_SIGN "progbits\n\t"); \ |
| __asm__("_mem_pool_block_sets_" STRINGIFY(name) ":\n\t"); \ |
| __asm__("_build_block_set " STRINGIFY(n_max) " " \ |
| STRINGIFY(name) "\n\t"); \ |
| __asm__("_mem_pool_block_set_count_" STRINGIFY(name) ":\n\t"); \ |
| __asm__(".int __memory_pool_block_set_count\n\t"); \ |
| __asm__(".popsection\n\t"); \ |
| extern uint32_t _mem_pool_block_set_count_##name; \ |
| extern struct k_mem_pool_block_set _mem_pool_block_sets_##name[] |
| |
| #define _MEMORY_POOL_BUFFER_DEFINE(name, max_size, n_max, align) \ |
| char __noinit __aligned(align) \ |
| _mem_pool_buffer_##name[(max_size) * (n_max)] |
| |
| /** |
| * @brief Define a memory pool |
| * |
| * This declares and initializes a memory pool whose buffer is aligned to |
| * a @a align -byte boundary. The new memory pool can be passed to the |
| * kernel's memory pool functions. |
| * |
| * Note that for each of the minimum sized blocks to be aligned to @a align |
| * bytes, then @a min_size must be a multiple of @a align. |
| * |
| * @param name Name of the memory pool |
| * @param min_size Minimum block size in the pool |
| * @param max_size Maximum block size in the pool |
| * @param n_max Number of maximum sized blocks in the pool |
| * @param align Alignment of the memory pool's buffer |
| */ |
| #define K_MEM_POOL_DEFINE(name, min_size, max_size, n_max, align) \ |
| _MEMORY_POOL_QUAD_BLOCK_DEFINE(name, min_size, max_size, n_max); \ |
| _MEMORY_POOL_BLOCK_SETS_DEFINE(name, min_size, max_size, n_max); \ |
| _MEMORY_POOL_BUFFER_DEFINE(name, max_size, n_max, align); \ |
| __asm__("_build_mem_pool " STRINGIFY(name) " " STRINGIFY(min_size) " " \ |
| STRINGIFY(max_size) " " STRINGIFY(n_max) "\n\t"); \ |
| extern struct k_mem_pool name |
| |
| /* |
| * Dummy function that assigns the value of sizeof(struct k_mem_pool_quad_block) |
| * to __memory_pool_quad_block_size absolute symbol. |
| * This function does not get called, but compiler calculates the value and |
| * assigns it to the absolute symbol, that, in turn is used by assembler macros. |
| */ |
| static void __attribute__ ((used)) __k_mem_pool_quad_block_size_define(void) |
| { |
| __asm__(".globl __memory_pool_quad_block_size\n\t" |
| "__memory_pool_quad_block_size = %c0\n\t" |
| : |
| : "n"(sizeof(struct k_mem_pool_quad_block))); |
| } |
| |
| /** |
| * @brief Allocate memory from a memory pool |
| * |
| * @param pool Pointer to the memory pool object |
| * @param block Pointer to the allocated memory's block descriptor |
| * @param size Minimum number of bytes to allocate |
| * @param timeout Maximum time (milliseconds) to wait for operation to |
| * complete. Use K_NO_WAIT to return immediately, or K_FOREVER |
| * to wait as long as necessary. |
| * |
| * @return 0 on success, -ENOMEM on failure |
| */ |
| extern int k_mem_pool_alloc(struct k_mem_pool *pool, struct k_mem_block *block, |
| int size, int32_t timeout); |
| |
| /** |
| * @brief Return previously allocated memory to its memory pool |
| * |
| * @param block Pointer to allocated memory's block descriptor |
| * |
| * @return N/A |
| */ |
| extern void k_mem_pool_free(struct k_mem_block *block); |
| |
| /** |
| * @brief Defragment the specified memory pool |
| * |
| * @param pool Pointer to the memory pool object |
| * |
| * @return N/A |
| */ |
| extern void k_mem_pool_defrag(struct k_mem_pool *pool); |
| |
| /** |
| * @brief Allocate memory from heap pool |
| * |
| * This routine provides traditional malloc semantics; internally it uses |
| * the memory pool APIs on a dedicated HEAP pool |
| * |
| * @param size Size of memory requested by the caller (in bytes) |
| * |
| * @return Address of the allocated memory on success; otherwise NULL |
| */ |
| extern void *k_malloc(uint32_t size); |
| |
| /** |
| * @brief Free memory allocated through k_malloc() |
| * |
| * @param ptr Pointer to previously allocated memory |
| * |
| * @return N/A |
| */ |
| extern void k_free(void *ptr); |
| |
| /* |
| * legacy.h must be before arch/cpu.h to allow the ioapic/loapic drivers to |
| * hook into the device subsystem, which itself uses nanokernel semaphores, |
| * and thus currently requires the definition of nano_sem. |
| */ |
| #include <legacy.h> |
| #include <arch/cpu.h> |
| |
| /* |
| * private APIs that are utilized by one or more public APIs |
| */ |
| |
| extern int _is_thread_essential(void); |
| extern void _init_static_threads(void); |
| |
| #ifdef __cplusplus |
| } |
| #endif |
| |
| #endif /* _kernel__h_ */ |