| /* |
| * Copyright (c) 2018 Intel Corporation |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| #include <kernel.h> |
| #include <ksched.h> |
| #include <spinlock.h> |
| #include <sched_priq.h> |
| #include <wait_q.h> |
| #include <kswap.h> |
| #include <kernel_arch_func.h> |
| #include <syscall_handler.h> |
| |
| #if defined(CONFIG_SCHED_DUMB) |
| #define _priq_run_add _priq_dumb_add |
| #define _priq_run_remove _priq_dumb_remove |
| #define _priq_run_best _priq_dumb_best |
| #elif defined(CONFIG_SCHED_SCALABLE) |
| #define _priq_run_add _priq_rb_add |
| #define _priq_run_remove _priq_rb_remove |
| #define _priq_run_best _priq_rb_best |
| #elif defined(CONFIG_SCHED_MULTIQ) |
| #define _priq_run_add _priq_mq_add |
| #define _priq_run_remove _priq_mq_remove |
| #define _priq_run_best _priq_mq_best |
| #endif |
| |
| #if defined(CONFIG_WAITQ_SCALABLE) |
| #define _priq_wait_add _priq_rb_add |
| #define _priq_wait_remove _priq_rb_remove |
| #define _priq_wait_best _priq_rb_best |
| #elif defined(CONFIG_WAITQ_DUMB) |
| #define _priq_wait_add _priq_dumb_add |
| #define _priq_wait_remove _priq_dumb_remove |
| #define _priq_wait_best _priq_dumb_best |
| #endif |
| |
| /* the only struct _kernel instance */ |
| struct _kernel _kernel; |
| |
| static struct k_spinlock sched_lock; |
| |
| #define LOCKED(lck) for (k_spinlock_key_t __i = {}, \ |
| __key = k_spin_lock(lck); \ |
| !__i.key; \ |
| k_spin_unlock(lck, __key), __i.key = 1) |
| |
| static inline int _is_preempt(struct k_thread *thread) |
| { |
| #ifdef CONFIG_PREEMPT_ENABLED |
| /* explanation in kernel_struct.h */ |
| return thread->base.preempt <= _PREEMPT_THRESHOLD; |
| #else |
| return 0; |
| #endif |
| } |
| |
| static inline int is_metairq(struct k_thread *thread) |
| { |
| #if CONFIG_NUM_METAIRQ_PRIORITIES > 0 |
| return (thread->base.prio - K_HIGHEST_THREAD_PRIO) |
| < CONFIG_NUM_METAIRQ_PRIORITIES; |
| #else |
| return 0; |
| #endif |
| } |
| |
| #if CONFIG_ASSERT |
| static inline int _is_thread_dummy(struct k_thread *thread) |
| { |
| return !!(thread->base.thread_state & _THREAD_DUMMY); |
| } |
| #endif |
| |
| static inline int _is_idle(struct k_thread *thread) |
| { |
| #ifdef CONFIG_SMP |
| return thread->base.is_idle; |
| #else |
| extern struct k_thread * const _idle_thread; |
| |
| return thread == _idle_thread; |
| #endif |
| } |
| |
| int _is_t1_higher_prio_than_t2(struct k_thread *t1, struct k_thread *t2) |
| { |
| if (t1->base.prio < t2->base.prio) { |
| return 1; |
| } |
| |
| #ifdef CONFIG_SCHED_DEADLINE |
| /* Note that we don't care about wraparound conditions. The |
| * expectation is that the application will have arranged to |
| * block the threads, change their priorities or reset their |
| * deadlines when the job is complete. Letting the deadlines |
| * go negative is fine and in fact prevents aliasing bugs. |
| */ |
| if (t1->base.prio == t2->base.prio) { |
| int now = (int) k_cycle_get_32(); |
| int dt1 = t1->base.prio_deadline - now; |
| int dt2 = t2->base.prio_deadline - now; |
| |
| return dt1 < dt2; |
| } |
| #endif |
| |
| return 0; |
| } |
| |
| static int should_preempt(struct k_thread *th, int preempt_ok) |
| { |
| /* Preemption is OK if it's being explicitly allowed by |
| * software state (e.g. the thread called k_yield()) |
| */ |
| if (preempt_ok) { |
| return 1; |
| } |
| |
| /* Or if we're pended/suspended/dummy (duh) */ |
| if (!_current || !_is_thread_ready(_current)) { |
| return 1; |
| } |
| |
| /* Otherwise we have to be running a preemptible thread or |
| * switching to a metairq |
| */ |
| if (_is_preempt(_current) || is_metairq(th)) { |
| return 1; |
| } |
| |
| /* The idle threads can look "cooperative" if there are no |
| * preemptible priorities (this is sort of an API glitch). |
| * They must always be preemptible. |
| */ |
| if (_is_idle(_current)) { |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static struct k_thread *next_up(void) |
| { |
| #ifndef CONFIG_SMP |
| /* In uniprocessor mode, we can leave the current thread in |
| * the queue (actually we have to, otherwise the assembly |
| * context switch code for all architectures would be |
| * responsible for putting it back in _Swap and ISR return!), |
| * which makes this choice simple. |
| */ |
| struct k_thread *th = _priq_run_best(&_kernel.ready_q.runq); |
| |
| return th ? th : _current_cpu->idle_thread; |
| #else |
| |
| /* Under SMP, the "cache" mechanism for selecting the next |
| * thread doesn't work, so we have more work to do to test |
| * _current against the best choice from the queue. |
| * |
| * Subtle note on "queued": in SMP mode, _current does not |
| * live in the queue, so this isn't exactly the same thing as |
| * "ready", it means "is _current already added back to the |
| * queue such that we don't want to re-add it". |
| */ |
| int queued = _is_thread_queued(_current); |
| int active = !_is_thread_prevented_from_running(_current); |
| |
| /* Choose the best thread that is not current */ |
| struct k_thread *th = _priq_run_best(&_kernel.ready_q.runq); |
| if (!th) { |
| th = _current_cpu->idle_thread; |
| } |
| |
| if (active) { |
| if (!queued && |
| !_is_t1_higher_prio_than_t2(th, _current)) { |
| th = _current; |
| } |
| |
| if (!should_preempt(th, _current_cpu->swap_ok)) { |
| th = _current; |
| } |
| } |
| |
| /* Put _current back into the queue */ |
| if (th != _current && active && !_is_idle(_current) && !queued) { |
| _priq_run_add(&_kernel.ready_q.runq, _current); |
| _mark_thread_as_queued(_current); |
| } |
| |
| /* Take the new _current out of the queue */ |
| if (_is_thread_queued(th)) { |
| _priq_run_remove(&_kernel.ready_q.runq, th); |
| } |
| _mark_thread_as_not_queued(th); |
| |
| return th; |
| #endif |
| } |
| |
| static void update_cache(int preempt_ok) |
| { |
| #ifndef CONFIG_SMP |
| struct k_thread *th = next_up(); |
| |
| if (should_preempt(th, preempt_ok)) { |
| _kernel.ready_q.cache = th; |
| } else { |
| _kernel.ready_q.cache = _current; |
| } |
| |
| #else |
| /* The way this works is that the CPU record keeps its |
| * "cooperative swapping is OK" flag until the next reschedule |
| * call or context switch. It doesn't need to be tracked per |
| * thread because if the thread gets preempted for whatever |
| * reason the scheduler will make the same decision anyway. |
| */ |
| _current_cpu->swap_ok = preempt_ok; |
| #endif |
| } |
| |
| void _add_thread_to_ready_q(struct k_thread *thread) |
| { |
| LOCKED(&sched_lock) { |
| _priq_run_add(&_kernel.ready_q.runq, thread); |
| _mark_thread_as_queued(thread); |
| update_cache(0); |
| } |
| } |
| |
| void _move_thread_to_end_of_prio_q(struct k_thread *thread) |
| { |
| LOCKED(&sched_lock) { |
| _priq_run_remove(&_kernel.ready_q.runq, thread); |
| _priq_run_add(&_kernel.ready_q.runq, thread); |
| _mark_thread_as_queued(thread); |
| update_cache(0); |
| } |
| } |
| |
| void _remove_thread_from_ready_q(struct k_thread *thread) |
| { |
| LOCKED(&sched_lock) { |
| if (_is_thread_queued(thread)) { |
| _priq_run_remove(&_kernel.ready_q.runq, thread); |
| _mark_thread_as_not_queued(thread); |
| update_cache(thread == _current); |
| } |
| } |
| } |
| |
| static void pend(struct k_thread *thread, _wait_q_t *wait_q, s32_t timeout) |
| { |
| _remove_thread_from_ready_q(thread); |
| _mark_thread_as_pending(thread); |
| |
| /* The timeout handling is currently synchronized external to |
| * the scheduler using the legacy global lock. Should fix |
| * that. |
| */ |
| if (timeout != K_FOREVER) { |
| s32_t ticks = _TICK_ALIGN + _ms_to_ticks(timeout); |
| unsigned int key = irq_lock(); |
| |
| _add_thread_timeout(thread, wait_q, ticks); |
| irq_unlock(key); |
| } |
| |
| if (wait_q) { |
| #ifdef CONFIG_WAITQ_SCALABLE |
| thread->base.pended_on = wait_q; |
| #endif |
| _priq_wait_add(&wait_q->waitq, thread); |
| } |
| |
| sys_trace_thread_pend(thread); |
| } |
| |
| void _pend_thread(struct k_thread *thread, _wait_q_t *wait_q, s32_t timeout) |
| { |
| __ASSERT_NO_MSG(thread == _current || _is_thread_dummy(thread)); |
| pend(thread, wait_q, timeout); |
| } |
| |
| static _wait_q_t *pended_on(struct k_thread *thread) |
| { |
| #ifdef CONFIG_WAITQ_SCALABLE |
| __ASSERT_NO_MSG(thread->base.pended_on); |
| |
| return thread->base.pended_on; |
| #else |
| ARG_UNUSED(thread); |
| return NULL; |
| #endif |
| } |
| |
| struct k_thread *_find_first_thread_to_unpend(_wait_q_t *wait_q, |
| struct k_thread *from) |
| { |
| ARG_UNUSED(from); |
| |
| struct k_thread *ret = NULL; |
| |
| LOCKED(&sched_lock) { |
| ret = _priq_wait_best(&wait_q->waitq); |
| } |
| |
| return ret; |
| } |
| |
| void _unpend_thread_no_timeout(struct k_thread *thread) |
| { |
| LOCKED(&sched_lock) { |
| _priq_wait_remove(&pended_on(thread)->waitq, thread); |
| _mark_thread_as_not_pending(thread); |
| } |
| |
| #if defined(CONFIG_ASSERT) && defined(CONFIG_WAITQ_SCALABLE) |
| thread->base.pended_on = NULL; |
| #endif |
| } |
| |
| int _pend_current_thread(int key, _wait_q_t *wait_q, s32_t timeout) |
| { |
| pend(_current, wait_q, timeout); |
| return _Swap(key); |
| } |
| |
| struct k_thread *_unpend_first_thread(_wait_q_t *wait_q) |
| { |
| struct k_thread *t = _unpend1_no_timeout(wait_q); |
| |
| if (t) { |
| _abort_thread_timeout(t); |
| } |
| |
| return t; |
| } |
| |
| void _unpend_thread(struct k_thread *thread) |
| { |
| _unpend_thread_no_timeout(thread); |
| _abort_thread_timeout(thread); |
| } |
| |
| /* FIXME: this API is glitchy when used in SMP. If the thread is |
| * currently scheduled on the other CPU, it will silently set it's |
| * priority but nothing will cause a reschedule until the next |
| * interrupt. An audit seems to show that all current usage is to set |
| * priorities on either _current or a pended thread, though, so it's |
| * fine for now. |
| */ |
| void _thread_priority_set(struct k_thread *thread, int prio) |
| { |
| int need_sched = 0; |
| |
| LOCKED(&sched_lock) { |
| need_sched = _is_thread_ready(thread); |
| |
| if (need_sched) { |
| _priq_run_remove(&_kernel.ready_q.runq, thread); |
| thread->base.prio = prio; |
| _priq_run_add(&_kernel.ready_q.runq, thread); |
| update_cache(1); |
| } else { |
| thread->base.prio = prio; |
| } |
| } |
| sys_trace_thread_priority_set(thread); |
| |
| if (need_sched) { |
| _reschedule(irq_lock()); |
| } |
| } |
| |
| int _reschedule(int key) |
| { |
| #ifdef CONFIG_SMP |
| if (!_current_cpu->swap_ok) { |
| goto noswap; |
| } |
| |
| _current_cpu->swap_ok = 0; |
| #endif |
| |
| if (_is_in_isr()) { |
| goto noswap; |
| } |
| |
| #ifdef CONFIG_SMP |
| return _Swap(key); |
| #else |
| if (_get_next_ready_thread() != _current) { |
| return _Swap(key); |
| } |
| #endif |
| |
| noswap: |
| irq_unlock(key); |
| return 0; |
| } |
| |
| void k_sched_lock(void) |
| { |
| LOCKED(&sched_lock) { |
| _sched_lock(); |
| } |
| } |
| |
| void k_sched_unlock(void) |
| { |
| #ifdef CONFIG_PREEMPT_ENABLED |
| __ASSERT(_current->base.sched_locked != 0, ""); |
| __ASSERT(!_is_in_isr(), ""); |
| |
| LOCKED(&sched_lock) { |
| ++_current->base.sched_locked; |
| update_cache(1); |
| } |
| |
| K_DEBUG("scheduler unlocked (%p:%d)\n", |
| _current, _current->base.sched_locked); |
| |
| _reschedule(irq_lock()); |
| #endif |
| } |
| |
| #ifdef CONFIG_SMP |
| struct k_thread *_get_next_ready_thread(void) |
| { |
| struct k_thread *ret = 0; |
| |
| LOCKED(&sched_lock) { |
| ret = next_up(); |
| } |
| |
| return ret; |
| } |
| #endif |
| |
| #ifdef CONFIG_USE_SWITCH |
| void *_get_next_switch_handle(void *interrupted) |
| { |
| _current->switch_handle = interrupted; |
| |
| #ifdef CONFIG_SMP |
| LOCKED(&sched_lock) { |
| struct k_thread *th = next_up(); |
| |
| if (_current != th) { |
| _current_cpu->swap_ok = 0; |
| _current = th; |
| } |
| } |
| |
| #else |
| _current = _get_next_ready_thread(); |
| #endif |
| |
| _check_stack_sentinel(); |
| |
| return _current->switch_handle; |
| } |
| #endif |
| |
| void _priq_dumb_add(sys_dlist_t *pq, struct k_thread *thread) |
| { |
| struct k_thread *t; |
| |
| __ASSERT_NO_MSG(!_is_idle(thread)); |
| |
| SYS_DLIST_FOR_EACH_CONTAINER(pq, t, base.qnode_dlist) { |
| if (_is_t1_higher_prio_than_t2(thread, t)) { |
| sys_dlist_insert_before(pq, &t->base.qnode_dlist, |
| &thread->base.qnode_dlist); |
| return; |
| } |
| } |
| |
| sys_dlist_append(pq, &thread->base.qnode_dlist); |
| } |
| |
| void _priq_dumb_remove(sys_dlist_t *pq, struct k_thread *thread) |
| { |
| __ASSERT_NO_MSG(!_is_idle(thread)); |
| |
| sys_dlist_remove(&thread->base.qnode_dlist); |
| } |
| |
| struct k_thread *_priq_dumb_best(sys_dlist_t *pq) |
| { |
| return CONTAINER_OF(sys_dlist_peek_head(pq), |
| struct k_thread, base.qnode_dlist); |
| } |
| |
| int _priq_rb_lessthan(struct rbnode *a, struct rbnode *b) |
| { |
| struct k_thread *ta, *tb; |
| |
| ta = CONTAINER_OF(a, struct k_thread, base.qnode_rb); |
| tb = CONTAINER_OF(b, struct k_thread, base.qnode_rb); |
| |
| if (_is_t1_higher_prio_than_t2(ta, tb)) { |
| return 1; |
| } else if (_is_t1_higher_prio_than_t2(tb, ta)) { |
| return 0; |
| } else { |
| return ta->base.order_key < tb->base.order_key ? 1 : 0; |
| } |
| } |
| |
| void _priq_rb_add(struct _priq_rb *pq, struct k_thread *thread) |
| { |
| struct k_thread *t; |
| |
| __ASSERT_NO_MSG(!_is_idle(thread)); |
| |
| thread->base.order_key = pq->next_order_key++; |
| |
| /* Renumber at wraparound. This is tiny code, and in practice |
| * will almost never be hit on real systems. BUT on very |
| * long-running systems where a priq never completely empties |
| * AND that contains very large numbers of threads, it can be |
| * a latency glitch to loop over all the threads like this. |
| */ |
| if (!pq->next_order_key) { |
| RB_FOR_EACH_CONTAINER(&pq->tree, t, base.qnode_rb) { |
| t->base.order_key = pq->next_order_key++; |
| } |
| } |
| |
| rb_insert(&pq->tree, &thread->base.qnode_rb); |
| } |
| |
| void _priq_rb_remove(struct _priq_rb *pq, struct k_thread *thread) |
| { |
| __ASSERT_NO_MSG(!_is_idle(thread)); |
| |
| rb_remove(&pq->tree, &thread->base.qnode_rb); |
| |
| if (!pq->tree.root) { |
| pq->next_order_key = 0; |
| } |
| } |
| |
| struct k_thread *_priq_rb_best(struct _priq_rb *pq) |
| { |
| struct rbnode *n = rb_get_min(&pq->tree); |
| |
| return CONTAINER_OF(n, struct k_thread, base.qnode_rb); |
| } |
| |
| #ifdef CONFIG_SCHED_MULTIQ |
| # if (K_LOWEST_THREAD_PRIO - K_HIGHEST_THREAD_PRIO) > 31 |
| # error Too many priorities for multiqueue scheduler (max 32) |
| # endif |
| #endif |
| |
| void _priq_mq_add(struct _priq_mq *pq, struct k_thread *thread) |
| { |
| int priority_bit = thread->base.prio - K_HIGHEST_THREAD_PRIO; |
| |
| sys_dlist_append(&pq->queues[priority_bit], &thread->base.qnode_dlist); |
| pq->bitmask |= (1 << priority_bit); |
| } |
| |
| void _priq_mq_remove(struct _priq_mq *pq, struct k_thread *thread) |
| { |
| int priority_bit = thread->base.prio - K_HIGHEST_THREAD_PRIO; |
| |
| sys_dlist_remove(&thread->base.qnode_dlist); |
| if (sys_dlist_is_empty(&pq->queues[priority_bit])) { |
| pq->bitmask &= ~(1 << priority_bit); |
| } |
| } |
| |
| struct k_thread *_priq_mq_best(struct _priq_mq *pq) |
| { |
| if (!pq->bitmask) { |
| return NULL; |
| } |
| |
| sys_dlist_t *l = &pq->queues[__builtin_ctz(pq->bitmask)]; |
| |
| return CONTAINER_OF(sys_dlist_peek_head(l), |
| struct k_thread, base.qnode_dlist); |
| } |
| |
| #ifdef CONFIG_TIMESLICING |
| extern s32_t _time_slice_duration; /* Measured in ticks */ |
| extern s32_t _time_slice_elapsed; /* Measured in ticks */ |
| extern int _time_slice_prio_ceiling; |
| |
| void k_sched_time_slice_set(s32_t duration_in_ms, int prio) |
| { |
| __ASSERT(duration_in_ms >= 0, ""); |
| __ASSERT((prio >= 0) && (prio < CONFIG_NUM_PREEMPT_PRIORITIES), ""); |
| |
| _time_slice_duration = _ms_to_ticks(duration_in_ms); |
| _time_slice_elapsed = 0; |
| _time_slice_prio_ceiling = prio; |
| } |
| |
| int _is_thread_time_slicing(struct k_thread *thread) |
| { |
| int ret = 0; |
| |
| /* Should fix API. Doesn't make sense for non-running threads |
| * to call this |
| */ |
| __ASSERT_NO_MSG(thread == _current); |
| |
| if (_time_slice_duration <= 0 || !_is_preempt(thread) || |
| _is_prio_higher(thread->base.prio, _time_slice_prio_ceiling)) { |
| return 0; |
| } |
| |
| |
| LOCKED(&sched_lock) { |
| struct k_thread *next = _priq_run_best(&_kernel.ready_q.runq); |
| |
| if (next) { |
| ret = thread->base.prio == next->base.prio; |
| } |
| } |
| |
| return ret; |
| } |
| |
| #ifdef CONFIG_TICKLESS_KERNEL |
| void z_reset_timeslice(void) |
| { |
| if (_is_thread_time_slicing(_get_next_ready_thread())) { |
| _set_time(_time_slice_duration); |
| } |
| } |
| #endif |
| |
| /* Must be called with interrupts locked */ |
| /* Should be called only immediately before a thread switch */ |
| void _update_time_slice_before_swap(void) |
| { |
| #if defined(CONFIG_TICKLESS_KERNEL) && !defined(CONFIG_SMP) |
| if (!_is_thread_time_slicing(_get_next_ready_thread())) { |
| return; |
| } |
| |
| u32_t remaining = _get_remaining_program_time(); |
| |
| if (!remaining || (_time_slice_duration < remaining)) { |
| _set_time(_time_slice_duration); |
| } else { |
| /* Account previous elapsed time and reprogram |
| * timer with remaining time |
| */ |
| _set_time(remaining); |
| } |
| |
| #endif |
| /* Restart time slice count at new thread switch */ |
| _time_slice_elapsed = 0; |
| } |
| #endif /* CONFIG_TIMESLICING */ |
| |
| int _unpend_all(_wait_q_t *waitq) |
| { |
| int need_sched = 0; |
| struct k_thread *th; |
| |
| while ((th = _waitq_head(waitq))) { |
| _unpend_thread(th); |
| _ready_thread(th); |
| need_sched = 1; |
| } |
| |
| return need_sched; |
| } |
| |
| void _sched_init(void) |
| { |
| #ifdef CONFIG_SCHED_DUMB |
| sys_dlist_init(&_kernel.ready_q.runq); |
| #endif |
| |
| #ifdef CONFIG_SCHED_SCALABLE |
| _kernel.ready_q.runq = (struct _priq_rb) { |
| .tree = { |
| .lessthan_fn = _priq_rb_lessthan, |
| } |
| }; |
| #endif |
| |
| #ifdef CONFIG_SCHED_MULTIQ |
| for (int i = 0; i < ARRAY_SIZE(_kernel.ready_q.runq.queues); i++) { |
| sys_dlist_init(&_kernel.ready_q.runq.queues[i]); |
| } |
| #endif |
| |
| #ifdef CONFIG_TIMESLICING |
| k_sched_time_slice_set(CONFIG_TIMESLICE_SIZE, |
| CONFIG_TIMESLICE_PRIORITY); |
| #endif |
| } |
| |
| int _impl_k_thread_priority_get(k_tid_t thread) |
| { |
| return thread->base.prio; |
| } |
| |
| #ifdef CONFIG_USERSPACE |
| Z_SYSCALL_HANDLER1_SIMPLE(k_thread_priority_get, K_OBJ_THREAD, |
| struct k_thread *); |
| #endif |
| |
| void _impl_k_thread_priority_set(k_tid_t tid, int prio) |
| { |
| /* |
| * Use NULL, since we cannot know what the entry point is (we do not |
| * keep track of it) and idle cannot change its priority. |
| */ |
| _ASSERT_VALID_PRIO(prio, NULL); |
| __ASSERT(!_is_in_isr(), ""); |
| |
| struct k_thread *thread = (struct k_thread *)tid; |
| |
| _thread_priority_set(thread, prio); |
| } |
| |
| #ifdef CONFIG_USERSPACE |
| Z_SYSCALL_HANDLER(k_thread_priority_set, thread_p, prio) |
| { |
| struct k_thread *thread = (struct k_thread *)thread_p; |
| |
| Z_OOPS(Z_SYSCALL_OBJ(thread, K_OBJ_THREAD)); |
| Z_OOPS(Z_SYSCALL_VERIFY_MSG(_is_valid_prio(prio, NULL), |
| "invalid thread priority %d", (int)prio)); |
| Z_OOPS(Z_SYSCALL_VERIFY_MSG((s8_t)prio >= thread->base.prio, |
| "thread priority may only be downgraded (%d < %d)", |
| prio, thread->base.prio)); |
| |
| _impl_k_thread_priority_set((k_tid_t)thread, prio); |
| return 0; |
| } |
| #endif |
| |
| #ifdef CONFIG_SCHED_DEADLINE |
| void _impl_k_thread_deadline_set(k_tid_t tid, int deadline) |
| { |
| struct k_thread *th = tid; |
| |
| LOCKED(&sched_lock) { |
| th->base.prio_deadline = k_cycle_get_32() + deadline; |
| if (_is_thread_queued(th)) { |
| _priq_run_remove(&_kernel.ready_q.runq, th); |
| _priq_run_add(&_kernel.ready_q.runq, th); |
| } |
| } |
| } |
| |
| #ifdef CONFIG_USERSPACE |
| Z_SYSCALL_HANDLER(k_thread_deadline_set, thread_p, deadline) |
| { |
| struct k_thread *thread = (struct k_thread *)thread_p; |
| |
| Z_OOPS(Z_SYSCALL_OBJ(thread, K_OBJ_THREAD)); |
| Z_OOPS(Z_SYSCALL_VERIFY_MSG(deadline > 0, |
| "invalid thread deadline %d", |
| (int)deadline)); |
| |
| _impl_k_thread_deadline_set((k_tid_t)thread, deadline); |
| return 0; |
| } |
| #endif |
| #endif |
| |
| void _impl_k_yield(void) |
| { |
| __ASSERT(!_is_in_isr(), ""); |
| |
| if (!_is_idle(_current)) { |
| LOCKED(&sched_lock) { |
| _priq_run_remove(&_kernel.ready_q.runq, _current); |
| _priq_run_add(&_kernel.ready_q.runq, _current); |
| update_cache(1); |
| } |
| } |
| |
| #ifdef CONFIG_SMP |
| _Swap(irq_lock()); |
| #else |
| if (_get_next_ready_thread() != _current) { |
| _Swap(irq_lock()); |
| } |
| #endif |
| } |
| |
| #ifdef CONFIG_USERSPACE |
| Z_SYSCALL_HANDLER0_SIMPLE_VOID(k_yield); |
| #endif |
| |
| void _impl_k_sleep(s32_t duration) |
| { |
| #ifdef CONFIG_MULTITHREADING |
| /* volatile to guarantee that irq_lock() is executed after ticks is |
| * populated |
| */ |
| volatile s32_t ticks; |
| unsigned int key; |
| |
| __ASSERT(!_is_in_isr(), ""); |
| __ASSERT(duration != K_FOREVER, ""); |
| |
| K_DEBUG("thread %p for %d ns\n", _current, duration); |
| |
| /* wait of 0 ms is treated as a 'yield' */ |
| if (duration == 0) { |
| k_yield(); |
| return; |
| } |
| |
| ticks = _TICK_ALIGN + _ms_to_ticks(duration); |
| key = irq_lock(); |
| |
| _remove_thread_from_ready_q(_current); |
| _add_thread_timeout(_current, NULL, ticks); |
| |
| _Swap(key); |
| #endif |
| } |
| |
| #ifdef CONFIG_USERSPACE |
| Z_SYSCALL_HANDLER(k_sleep, duration) |
| { |
| /* FIXME there were some discussions recently on whether we should |
| * relax this, thread would be unscheduled until k_wakeup issued |
| */ |
| Z_OOPS(Z_SYSCALL_VERIFY_MSG(duration != K_FOREVER, |
| "sleeping forever not allowed")); |
| _impl_k_sleep(duration); |
| |
| return 0; |
| } |
| #endif |
| |
| void _impl_k_wakeup(k_tid_t thread) |
| { |
| unsigned int key = irq_lock(); |
| |
| /* verify first if thread is not waiting on an object */ |
| if (_is_thread_pending(thread)) { |
| irq_unlock(key); |
| return; |
| } |
| |
| if (_abort_thread_timeout(thread) == _INACTIVE) { |
| irq_unlock(key); |
| return; |
| } |
| |
| _ready_thread(thread); |
| |
| if (_is_in_isr()) { |
| irq_unlock(key); |
| } else { |
| _reschedule(key); |
| } |
| } |
| |
| #ifdef CONFIG_USERSPACE |
| Z_SYSCALL_HANDLER1_SIMPLE_VOID(k_wakeup, K_OBJ_THREAD, k_tid_t); |
| #endif |
| |
| k_tid_t _impl_k_current_get(void) |
| { |
| return _current; |
| } |
| |
| #ifdef CONFIG_USERSPACE |
| Z_SYSCALL_HANDLER0_SIMPLE(k_current_get); |
| #endif |
| |
| int _impl_k_is_preempt_thread(void) |
| { |
| return !_is_in_isr() && _is_preempt(_current); |
| } |
| |
| #ifdef CONFIG_USERSPACE |
| Z_SYSCALL_HANDLER0_SIMPLE(k_is_preempt_thread); |
| #endif |