blob: 3d0dd1ca84609d788bf78ab60313d7b3f9400aba [file] [log] [blame]
/*
* Copyright (c) 2016 Open-RnD Sp. z o.o.
* Copyright (c) 2016 Linaro Limited.
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @brief Driver for UART port on STM32 family processor.
* @note LPUART and U(S)ART have the same base and
* majority of operations are performed the same way.
* Please validate for newly added series.
*/
#include <kernel.h>
#include <arch/cpu.h>
#include <sys/__assert.h>
#include <soc.h>
#include <init.h>
#include <drivers/uart.h>
#include <drivers/clock_control.h>
#include <linker/sections.h>
#include <clock_control/stm32_clock_control.h>
#include "uart_stm32.h"
#include <logging/log.h>
LOG_MODULE_REGISTER(uart_stm32);
/* convenience defines */
#define DEV_CFG(dev) \
((const struct uart_stm32_config * const)(dev)->config->config_info)
#define DEV_DATA(dev) \
((struct uart_stm32_data * const)(dev)->driver_data)
#define UART_STRUCT(dev) \
((USART_TypeDef *)(DEV_CFG(dev))->uconf.base)
#define TIMEOUT 1000
static inline void uart_stm32_set_baudrate(struct device *dev, u32_t baud_rate)
{
const struct uart_stm32_config *config = DEV_CFG(dev);
struct uart_stm32_data *data = DEV_DATA(dev);
USART_TypeDef *UartInstance = UART_STRUCT(dev);
u32_t clock_rate;
/* Get clock rate */
if (clock_control_get_rate(data->clock,
(clock_control_subsys_t *)&config->pclken,
&clock_rate) < 0) {
LOG_ERR("Failed call clock_control_get_rate");
return;
}
#ifdef CONFIG_LPUART_1
if (IS_LPUART_INSTANCE(UartInstance)) {
LL_LPUART_SetBaudRate(UartInstance,
clock_rate,
#ifdef USART_PRESC_PRESCALER
LL_USART_PRESCALER_DIV1,
#endif
baud_rate);
} else {
#endif /* CONFIG_LPUART_1 */
LL_USART_SetBaudRate(UartInstance,
clock_rate,
#ifdef USART_PRESC_PRESCALER
LL_USART_PRESCALER_DIV1,
#endif
#ifdef USART_CR1_OVER8
LL_USART_OVERSAMPLING_16,
#endif
baud_rate);
#ifdef CONFIG_LPUART_1
}
#endif /* CONFIG_LPUART_1 */
}
static inline void uart_stm32_set_parity(struct device *dev, u32_t parity)
{
USART_TypeDef *UartInstance = UART_STRUCT(dev);
LL_USART_SetParity(UartInstance, parity);
}
static inline u32_t uart_stm32_get_parity(struct device *dev)
{
USART_TypeDef *UartInstance = UART_STRUCT(dev);
return LL_USART_GetParity(UartInstance);
}
static inline void uart_stm32_set_stopbits(struct device *dev, u32_t stopbits)
{
USART_TypeDef *UartInstance = UART_STRUCT(dev);
LL_USART_SetStopBitsLength(UartInstance, stopbits);
}
static inline u32_t uart_stm32_get_stopbits(struct device *dev)
{
USART_TypeDef *UartInstance = UART_STRUCT(dev);
return LL_USART_GetStopBitsLength(UartInstance);
}
static inline void uart_stm32_set_databits(struct device *dev, u32_t databits)
{
USART_TypeDef *UartInstance = UART_STRUCT(dev);
LL_USART_SetDataWidth(UartInstance, databits);
}
static inline u32_t uart_stm32_get_databits(struct device *dev)
{
USART_TypeDef *UartInstance = UART_STRUCT(dev);
return LL_USART_GetDataWidth(UartInstance);
}
static inline void uart_stm32_set_hwctrl(struct device *dev, u32_t hwctrl)
{
USART_TypeDef *UartInstance = UART_STRUCT(dev);
LL_USART_SetHWFlowCtrl(UartInstance, hwctrl);
}
static inline u32_t uart_stm32_get_hwctrl(struct device *dev)
{
USART_TypeDef *UartInstance = UART_STRUCT(dev);
return LL_USART_GetHWFlowCtrl(UartInstance);
}
static inline u32_t uart_stm32_cfg2ll_parity(enum uart_config_parity parity)
{
switch (parity) {
case UART_CFG_PARITY_ODD:
return LL_USART_PARITY_ODD;
case UART_CFG_PARITY_EVEN:
return LL_USART_PARITY_EVEN;
case UART_CFG_PARITY_NONE:
default:
return LL_USART_PARITY_NONE;
}
}
static inline enum uart_config_parity uart_stm32_ll2cfg_parity(u32_t parity)
{
switch (parity) {
case LL_USART_PARITY_ODD:
return UART_CFG_PARITY_ODD;
case LL_USART_PARITY_EVEN:
return UART_CFG_PARITY_EVEN;
case LL_USART_PARITY_NONE:
default:
return UART_CFG_PARITY_NONE;
}
}
static inline u32_t uart_stm32_cfg2ll_stopbits(enum uart_config_stop_bits sb)
{
switch (sb) {
/* Some MCU's don't support 0.5 stop bits */
#ifdef LL_USART_STOPBITS_0_5
case UART_CFG_STOP_BITS_0_5:
return LL_USART_STOPBITS_0_5;
#endif /* LL_USART_STOPBITS_0_5 */
case UART_CFG_STOP_BITS_1:
return LL_USART_STOPBITS_1;
/* Some MCU's don't support 1.5 stop bits */
#ifdef LL_USART_STOPBITS_1_5
case UART_CFG_STOP_BITS_1_5:
return LL_USART_STOPBITS_1_5;
#endif /* LL_USART_STOPBITS_1_5 */
case UART_CFG_STOP_BITS_2:
default:
return LL_USART_STOPBITS_2;
}
}
static inline enum uart_config_stop_bits uart_stm32_ll2cfg_stopbits(u32_t sb)
{
switch (sb) {
/* Some MCU's don't support 0.5 stop bits */
#ifdef LL_USART_STOPBITS_0_5
case LL_USART_STOPBITS_0_5:
return UART_CFG_STOP_BITS_0_5;
#endif /* LL_USART_STOPBITS_0_5 */
case LL_USART_STOPBITS_1:
return UART_CFG_STOP_BITS_1;
/* Some MCU's don't support 1.5 stop bits */
#ifdef LL_USART_STOPBITS_1_5
case LL_USART_STOPBITS_1_5:
return UART_CFG_STOP_BITS_1_5;
#endif /* LL_USART_STOPBITS_1_5 */
case LL_USART_STOPBITS_2:
default:
return UART_CFG_STOP_BITS_2;
}
}
static inline u32_t uart_stm32_cfg2ll_databits(enum uart_config_data_bits db)
{
switch (db) {
/* Some MCU's don't support 7B or 9B datawidth */
#ifdef LL_USART_DATAWIDTH_7B
case UART_CFG_DATA_BITS_7:
return LL_USART_DATAWIDTH_7B;
#endif /* LL_USART_DATAWIDTH_7B */
#ifdef LL_USART_DATAWIDTH_9B
case UART_CFG_DATA_BITS_9:
return LL_USART_DATAWIDTH_9B;
#endif /* LL_USART_DATAWIDTH_9B */
case UART_CFG_DATA_BITS_8:
default:
return LL_USART_DATAWIDTH_8B;
}
}
static inline enum uart_config_data_bits uart_stm32_ll2cfg_databits(u32_t db)
{
switch (db) {
/* Some MCU's don't support 7B or 9B datawidth */
#ifdef LL_USART_DATAWIDTH_7B
case LL_USART_DATAWIDTH_7B:
return UART_CFG_DATA_BITS_7;
#endif /* LL_USART_DATAWIDTH_7B */
#ifdef LL_USART_DATAWIDTH_9B
case LL_USART_DATAWIDTH_9B:
return UART_CFG_DATA_BITS_9;
#endif /* LL_USART_DATAWIDTH_9B */
case LL_USART_DATAWIDTH_8B:
default:
return UART_CFG_DATA_BITS_8;
}
}
/**
* @brief Get LL hardware flow control define from
* Zephyr hardware flow control option.
* @note Supports only UART_CFG_FLOW_CTRL_RTS_CTS.
* @param fc: Zephyr hardware flow control option.
* @retval LL_USART_HWCONTROL_RTS_CTS, or LL_USART_HWCONTROL_NONE.
*/
static inline u32_t uart_stm32_cfg2ll_hwctrl(enum uart_config_flow_control fc)
{
if (fc == UART_CFG_FLOW_CTRL_RTS_CTS) {
return LL_USART_HWCONTROL_RTS_CTS;
}
return LL_USART_HWCONTROL_NONE;
}
/**
* @brief Get Zephyr hardware frlow control option from
* LL hardware flow control define.
* @note Supports only LL_USART_HWCONTROL_RTS_CTS.
* @param fc: LL hardware frlow control definition.
* @retval UART_CFG_FLOW_CTRL_RTS_CTS, or UART_CFG_PARITY_NONE.
*/
static inline enum uart_config_flow_control uart_stm32_ll2cfg_hwctrl(u32_t fc)
{
if (fc == LL_USART_HWCONTROL_RTS_CTS) {
return UART_CFG_FLOW_CTRL_RTS_CTS;
}
return UART_CFG_PARITY_NONE;
}
static int uart_stm32_configure(struct device *dev,
const struct uart_config *cfg)
{
struct uart_stm32_data *data = DEV_DATA(dev);
USART_TypeDef *UartInstance = UART_STRUCT(dev);
const u32_t parity = uart_stm32_cfg2ll_parity(cfg->parity);
const u32_t stopbits = uart_stm32_cfg2ll_stopbits(cfg->stop_bits);
const u32_t databits = uart_stm32_cfg2ll_databits(cfg->data_bits);
const u32_t flowctrl = uart_stm32_cfg2ll_hwctrl(cfg->flow_ctrl);
/* Hardware doesn't support mark or space parity */
if ((UART_CFG_PARITY_MARK == cfg->parity) ||
(UART_CFG_PARITY_SPACE == cfg->parity)) {
return -ENOTSUP;
}
#if defined(LL_USART_STOPBITS_0_5) && defined(CONFIG_LPUART_1)
if (IS_LPUART_INSTANCE(UartInstance) &&
UART_CFG_STOP_BITS_0_5 == cfg->stop_bits) {
return -ENOTSUP;
}
#else
if (UART_CFG_STOP_BITS_0_5 == cfg->stop_bits) {
return -ENOTSUP;
}
#endif
#if defined(LL_USART_STOPBITS_1_5) && defined(CONFIG_LPUART_1)
if (IS_LPUART_INSTANCE(UartInstance) &&
UART_CFG_STOP_BITS_1_5 == cfg->stop_bits) {
return -ENOTSUP;
}
#else
if (UART_CFG_STOP_BITS_1_5 == cfg->stop_bits) {
return -ENOTSUP;
}
#endif
/* Driver doesn't support 5 or 6 databits and potentially 7 or 9 */
if ((UART_CFG_DATA_BITS_5 == cfg->data_bits) ||
(UART_CFG_DATA_BITS_6 == cfg->data_bits)
#ifndef LL_USART_DATAWIDTH_7B
|| (UART_CFG_DATA_BITS_7 == cfg->data_bits)
#endif /* LL_USART_DATAWIDTH_7B */
#ifndef LL_USART_DATAWIDTH_9B
|| (UART_CFG_DATA_BITS_9 == cfg->data_bits)
#endif /* LL_USART_DATAWIDTH_9B */
) {
return -ENOTSUP;
}
/* Driver supports only RTS CTS flow control */
if (UART_CFG_FLOW_CTRL_NONE != cfg->flow_ctrl) {
if (!IS_UART_HWFLOW_INSTANCE(UartInstance) ||
UART_CFG_FLOW_CTRL_RTS_CTS != cfg->flow_ctrl) {
return -ENOTSUP;
}
}
LL_USART_Disable(UartInstance);
if (parity != uart_stm32_get_parity(dev)) {
uart_stm32_set_parity(dev, parity);
}
if (stopbits != uart_stm32_get_stopbits(dev)) {
uart_stm32_set_stopbits(dev, stopbits);
}
if (databits != uart_stm32_get_databits(dev)) {
uart_stm32_set_databits(dev, databits);
}
if (flowctrl != uart_stm32_get_hwctrl(dev)) {
uart_stm32_set_hwctrl(dev, flowctrl);
}
if (cfg->baudrate != data->baud_rate) {
uart_stm32_set_baudrate(dev, cfg->baudrate);
data->baud_rate = cfg->baudrate;
}
LL_USART_Enable(UartInstance);
return 0;
};
static int uart_stm32_config_get(struct device *dev, struct uart_config *cfg)
{
struct uart_stm32_data *data = DEV_DATA(dev);
cfg->baudrate = data->baud_rate;
cfg->parity = uart_stm32_ll2cfg_parity(uart_stm32_get_parity(dev));
cfg->stop_bits = uart_stm32_ll2cfg_stopbits(
uart_stm32_get_stopbits(dev));
cfg->data_bits = uart_stm32_ll2cfg_databits(
uart_stm32_get_databits(dev));
cfg->flow_ctrl = uart_stm32_ll2cfg_hwctrl(
uart_stm32_get_hwctrl(dev));
return 0;
}
static int uart_stm32_poll_in(struct device *dev, unsigned char *c)
{
USART_TypeDef *UartInstance = UART_STRUCT(dev);
/* Clear overrun error flag */
if (LL_USART_IsActiveFlag_ORE(UartInstance)) {
LL_USART_ClearFlag_ORE(UartInstance);
}
if (!LL_USART_IsActiveFlag_RXNE(UartInstance)) {
return -1;
}
*c = (unsigned char)LL_USART_ReceiveData8(UartInstance);
return 0;
}
static void uart_stm32_poll_out(struct device *dev,
unsigned char c)
{
USART_TypeDef *UartInstance = UART_STRUCT(dev);
/* Wait for TXE flag to be raised */
while (!LL_USART_IsActiveFlag_TXE(UartInstance)) {
}
LL_USART_ClearFlag_TC(UartInstance);
LL_USART_TransmitData8(UartInstance, (u8_t)c);
}
static int uart_stm32_err_check(struct device *dev)
{
USART_TypeDef *UartInstance = UART_STRUCT(dev);
u32_t err = 0U;
/* Check for errors, but don't clear them here.
* Some SoC clear all error flags when at least
* one is cleared. (e.g. F4X, F1X, and F2X)
*/
if (LL_USART_IsActiveFlag_ORE(UartInstance)) {
err |= UART_ERROR_OVERRUN;
}
if (LL_USART_IsActiveFlag_PE(UartInstance)) {
err |= UART_ERROR_PARITY;
}
if (LL_USART_IsActiveFlag_FE(UartInstance)) {
err |= UART_ERROR_FRAMING;
}
if (err & UART_ERROR_OVERRUN) {
LL_USART_ClearFlag_ORE(UartInstance);
}
if (err & UART_ERROR_PARITY) {
LL_USART_ClearFlag_PE(UartInstance);
}
if (err & UART_ERROR_FRAMING) {
LL_USART_ClearFlag_FE(UartInstance);
}
/* Clear noise error as well,
* it is not represented by the errors enum
*/
LL_USART_ClearFlag_NE(UartInstance);
return err;
}
static inline void __uart_stm32_get_clock(struct device *dev)
{
struct uart_stm32_data *data = DEV_DATA(dev);
struct device *clk =
device_get_binding(STM32_CLOCK_CONTROL_NAME);
__ASSERT_NO_MSG(clk);
data->clock = clk;
}
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static int uart_stm32_fifo_fill(struct device *dev, const u8_t *tx_data,
int size)
{
USART_TypeDef *UartInstance = UART_STRUCT(dev);
u8_t num_tx = 0U;
while ((size - num_tx > 0) &&
LL_USART_IsActiveFlag_TXE(UartInstance)) {
/* TXE flag will be cleared with byte write to DR|RDR register */
/* Send a character (8bit , parity none) */
LL_USART_TransmitData8(UartInstance, tx_data[num_tx++]);
}
return num_tx;
}
static int uart_stm32_fifo_read(struct device *dev, u8_t *rx_data,
const int size)
{
USART_TypeDef *UartInstance = UART_STRUCT(dev);
u8_t num_rx = 0U;
while ((size - num_rx > 0) &&
LL_USART_IsActiveFlag_RXNE(UartInstance)) {
/* RXNE flag will be cleared upon read from DR|RDR register */
/* Receive a character (8bit , parity none) */
rx_data[num_rx++] = LL_USART_ReceiveData8(UartInstance);
/* Clear overrun error flag */
if (LL_USART_IsActiveFlag_ORE(UartInstance)) {
LL_USART_ClearFlag_ORE(UartInstance);
}
}
return num_rx;
}
static void uart_stm32_irq_tx_enable(struct device *dev)
{
USART_TypeDef *UartInstance = UART_STRUCT(dev);
LL_USART_EnableIT_TC(UartInstance);
}
static void uart_stm32_irq_tx_disable(struct device *dev)
{
USART_TypeDef *UartInstance = UART_STRUCT(dev);
LL_USART_DisableIT_TC(UartInstance);
}
static int uart_stm32_irq_tx_ready(struct device *dev)
{
USART_TypeDef *UartInstance = UART_STRUCT(dev);
return LL_USART_IsActiveFlag_TXE(UartInstance);
}
static int uart_stm32_irq_tx_complete(struct device *dev)
{
USART_TypeDef *UartInstance = UART_STRUCT(dev);
return LL_USART_IsActiveFlag_TC(UartInstance);
}
static void uart_stm32_irq_rx_enable(struct device *dev)
{
USART_TypeDef *UartInstance = UART_STRUCT(dev);
LL_USART_EnableIT_RXNE(UartInstance);
}
static void uart_stm32_irq_rx_disable(struct device *dev)
{
USART_TypeDef *UartInstance = UART_STRUCT(dev);
LL_USART_DisableIT_RXNE(UartInstance);
}
static int uart_stm32_irq_rx_ready(struct device *dev)
{
USART_TypeDef *UartInstance = UART_STRUCT(dev);
return LL_USART_IsActiveFlag_RXNE(UartInstance);
}
static void uart_stm32_irq_err_enable(struct device *dev)
{
USART_TypeDef *UartInstance = UART_STRUCT(dev);
/* Enable FE, ORE interruptions */
LL_USART_EnableIT_ERROR(UartInstance);
#if !defined(CONFIG_SOC_SERIES_STM32F0X) || defined(USART_LIN_SUPPORT)
/* Enable Line break detection */
if (IS_UART_LIN_INSTANCE(UartInstance)) {
LL_USART_EnableIT_LBD(UartInstance);
}
#endif
/* Enable parity error interruption */
LL_USART_EnableIT_PE(UartInstance);
}
static void uart_stm32_irq_err_disable(struct device *dev)
{
USART_TypeDef *UartInstance = UART_STRUCT(dev);
/* Disable FE, ORE interruptions */
LL_USART_DisableIT_ERROR(UartInstance);
#if !defined(CONFIG_SOC_SERIES_STM32F0X) || defined(USART_LIN_SUPPORT)
/* Disable Line break detection */
if (IS_UART_LIN_INSTANCE(UartInstance)) {
LL_USART_DisableIT_LBD(UartInstance);
}
#endif
/* Disable parity error interruption */
LL_USART_DisableIT_PE(UartInstance);
}
static int uart_stm32_irq_is_pending(struct device *dev)
{
USART_TypeDef *UartInstance = UART_STRUCT(dev);
return ((LL_USART_IsActiveFlag_RXNE(UartInstance) &&
LL_USART_IsEnabledIT_RXNE(UartInstance)) ||
(LL_USART_IsActiveFlag_TC(UartInstance) &&
LL_USART_IsEnabledIT_TC(UartInstance)));
}
static int uart_stm32_irq_update(struct device *dev)
{
return 1;
}
static void uart_stm32_irq_callback_set(struct device *dev,
uart_irq_callback_user_data_t cb,
void *cb_data)
{
struct uart_stm32_data *data = DEV_DATA(dev);
data->user_cb = cb;
data->user_data = cb_data;
}
static void uart_stm32_isr(void *arg)
{
struct device *dev = arg;
struct uart_stm32_data *data = DEV_DATA(dev);
if (data->user_cb) {
data->user_cb(data->user_data);
}
}
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
static const struct uart_driver_api uart_stm32_driver_api = {
.poll_in = uart_stm32_poll_in,
.poll_out = uart_stm32_poll_out,
.err_check = uart_stm32_err_check,
.configure = uart_stm32_configure,
.config_get = uart_stm32_config_get,
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.fifo_fill = uart_stm32_fifo_fill,
.fifo_read = uart_stm32_fifo_read,
.irq_tx_enable = uart_stm32_irq_tx_enable,
.irq_tx_disable = uart_stm32_irq_tx_disable,
.irq_tx_ready = uart_stm32_irq_tx_ready,
.irq_tx_complete = uart_stm32_irq_tx_complete,
.irq_rx_enable = uart_stm32_irq_rx_enable,
.irq_rx_disable = uart_stm32_irq_rx_disable,
.irq_rx_ready = uart_stm32_irq_rx_ready,
.irq_err_enable = uart_stm32_irq_err_enable,
.irq_err_disable = uart_stm32_irq_err_disable,
.irq_is_pending = uart_stm32_irq_is_pending,
.irq_update = uart_stm32_irq_update,
.irq_callback_set = uart_stm32_irq_callback_set,
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
};
/**
* @brief Initialize UART channel
*
* This routine is called to reset the chip in a quiescent state.
* It is assumed that this function is called only once per UART.
*
* @param dev UART device struct
*
* @return 0
*/
static int uart_stm32_init(struct device *dev)
{
const struct uart_stm32_config *config = DEV_CFG(dev);
struct uart_stm32_data *data = DEV_DATA(dev);
USART_TypeDef *UartInstance = UART_STRUCT(dev);
__uart_stm32_get_clock(dev);
/* enable clock */
if (clock_control_on(data->clock,
(clock_control_subsys_t *)&config->pclken) != 0) {
return -EIO;
}
LL_USART_Disable(UartInstance);
/* TX/RX direction */
LL_USART_SetTransferDirection(UartInstance,
LL_USART_DIRECTION_TX_RX);
/* 8 data bit, 1 start bit, 1 stop bit, no parity */
LL_USART_ConfigCharacter(UartInstance,
LL_USART_DATAWIDTH_8B,
LL_USART_PARITY_NONE,
LL_USART_STOPBITS_1);
if (config->hw_flow_control) {
uart_stm32_set_hwctrl(dev, LL_USART_HWCONTROL_RTS_CTS);
}
/* Set the default baudrate */
uart_stm32_set_baudrate(dev, data->baud_rate);
LL_USART_Enable(UartInstance);
#ifdef USART_ISR_TEACK
/* Wait until TEACK flag is set */
while (!(LL_USART_IsActiveFlag_TEACK(UartInstance))) {
}
#endif /* !USART_ISR_TEACK */
#ifdef USART_ISR_REACK
/* Wait until REACK flag is set */
while (!(LL_USART_IsActiveFlag_REACK(UartInstance))) {
}
#endif /* !USART_ISR_REACK */
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
config->uconf.irq_config_func(dev);
#endif
return 0;
}
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
#define STM32_UART_IRQ_HANDLER_DECL(name) \
static void uart_stm32_irq_config_func_##name(struct device *dev)
#define STM32_UART_IRQ_HANDLER_FUNC(name) \
.irq_config_func = uart_stm32_irq_config_func_##name,
#define STM32_UART_IRQ_HANDLER(name) \
static void uart_stm32_irq_config_func_##name(struct device *dev) \
{ \
IRQ_CONNECT(DT_##name##_IRQ, \
DT_UART_STM32_##name##_IRQ_PRI, \
uart_stm32_isr, DEVICE_GET(uart_stm32_##name), \
0); \
irq_enable(DT_##name##_IRQ); \
}
#else
#define STM32_UART_IRQ_HANDLER_DECL(name)
#define STM32_UART_IRQ_HANDLER_FUNC(name)
#define STM32_UART_IRQ_HANDLER(name)
#endif
#define STM32_UART_INIT(name) \
STM32_UART_IRQ_HANDLER_DECL(name); \
\
static const struct uart_stm32_config uart_stm32_cfg_##name = { \
.uconf = { \
.base = (u8_t *)DT_UART_STM32_##name##_BASE_ADDRESS,\
STM32_UART_IRQ_HANDLER_FUNC(name) \
}, \
.pclken = { .bus = DT_UART_STM32_##name##_CLOCK_BUS, \
.enr = DT_UART_STM32_##name##_CLOCK_BITS \
}, \
.hw_flow_control = DT_UART_STM32_##name##_HW_FLOW_CONTROL \
}; \
\
static struct uart_stm32_data uart_stm32_data_##name = { \
.baud_rate = DT_UART_STM32_##name##_BAUD_RATE \
}; \
\
DEVICE_AND_API_INIT(uart_stm32_##name, DT_UART_STM32_##name##_NAME, \
&uart_stm32_init, \
&uart_stm32_data_##name, &uart_stm32_cfg_##name, \
PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_DEVICE, \
&uart_stm32_driver_api); \
\
STM32_UART_IRQ_HANDLER(name)
#ifdef CONFIG_UART_1
STM32_UART_INIT(USART_1)
#endif /* CONFIG_UART_1 */
#ifdef CONFIG_UART_2
STM32_UART_INIT(USART_2)
#endif /* CONFIG_UART_2 */
#ifdef CONFIG_UART_3
STM32_UART_INIT(USART_3)
#endif /* CONFIG_UART_3 */
#ifdef CONFIG_UART_6
STM32_UART_INIT(USART_6)
#endif /* CONFIG_UART_6 */
/*
* STM32F0 and STM32L0 series differ from other STM32 series by some
* peripheral names (UART vs USART).
*/
#if defined(CONFIG_SOC_SERIES_STM32F0X) || defined(CONFIG_SOC_SERIES_STM32L0X)
#ifdef CONFIG_UART_4
STM32_UART_INIT(USART_4)
#endif /* CONFIG_UART_4 */
#ifdef CONFIG_UART_5
STM32_UART_INIT(USART_5)
#endif /* CONFIG_UART_5 */
/* Following devices are not available in L0 series (for now)
* But keeping them simplifies ifdefery and won't harm
*/
#ifdef CONFIG_UART_7
STM32_UART_INIT(USART_7)
#endif /* CONFIG_UART_7 */
#ifdef CONFIG_UART_8
STM32_UART_INIT(USART_8)
#endif /* CONFIG_UART_8 */
#else
#ifdef CONFIG_UART_4
STM32_UART_INIT(UART_4)
#endif /* CONFIG_UART_4 */
#ifdef CONFIG_UART_5
STM32_UART_INIT(UART_5)
#endif /* CONFIG_UART_5 */
#ifdef CONFIG_UART_7
STM32_UART_INIT(UART_7)
#endif /* CONFIG_UART_7 */
#ifdef CONFIG_UART_8
STM32_UART_INIT(UART_8)
#endif /* CONFIG_UART_8 */
#ifdef CONFIG_UART_9
STM32_UART_INIT(UART_9)
#endif /* CONFIG_UART_9 */
#ifdef CONFIG_UART_10
STM32_UART_INIT(UART_10)
#endif /* CONFIG_UART_10 */
#endif
#if defined(CONFIG_SOC_SERIES_STM32H7X) || \
defined(CONFIG_SOC_SERIES_STM32L4X) || \
defined(CONFIG_SOC_SERIES_STM32L0X) || \
defined(CONFIG_SOC_SERIES_STM32WBX) || \
defined(CONFIG_SOC_SERIES_STM32G4X)
#ifdef CONFIG_LPUART_1
STM32_UART_INIT(LPUART_1)
#endif /* CONFIG_LPUART_1 */
#endif