blob: 5a9f9a0443dea5d41cc8b01db90d02dd5b84235c [file] [log] [blame]
/* ieee802154_kw41z.c - NXP KW41Z driver */
/*
* Copyright (c) 2017 Linaro Limited
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT nxp_kw41z_ieee802154
#define LOG_MODULE_NAME ieee802154_kw41z
#define LOG_LEVEL CONFIG_IEEE802154_DRIVER_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(LOG_MODULE_NAME);
#include <zephyr/kernel.h>
#include <zephyr/device.h>
#include <zephyr/init.h>
#include <zephyr/irq.h>
#include <zephyr/net/ieee802154_radio.h>
#include <zephyr/net/net_if.h>
#include <zephyr/net/net_pkt.h>
#include <zephyr/sys/byteorder.h>
#include <zephyr/random/rand32.h>
#include "fsl_xcvr.h"
#if defined(CONFIG_NET_L2_OPENTHREAD)
#include <zephyr/net/openthread.h>
#endif
/*
* For non-invasive tracing of IRQ events. Sometimes the print logs
* will shift the timings around so this trace buffer can be used to
* post inspect conditions to see what sequence of events occurred.
*/
#define KW41_DBG_TRACE_WTRM 0
#define KW41_DBG_TRACE_RX 1
#define KW41_DBG_TRACE_TX 2
#define KW41_DBG_TRACE_CCA 3
#define KW41_DBG_TRACE_TMR3 0xFF
#if defined(CONFIG_KW41_DBG_TRACE)
#define KW41_DBG_TRACE_SIZE 30
struct kw41_dbg_trace {
uint8_t type;
uint32_t time;
uint32_t irqsts;
uint32_t phy_ctrl;
uint32_t seq_state;
};
struct kw41_dbg_trace kw41_dbg[KW41_DBG_TRACE_SIZE];
int kw41_dbg_idx;
#define KW_DBG_TRACE(_type, _irqsts, _phy_ctrl, _seq_state) \
do { \
kw41_dbg[kw41_dbg_idx].type = (_type); \
kw41_dbg[kw41_dbg_idx].time = \
ZLL->EVENT_TMR >> ZLL_EVENT_TMR_EVENT_TMR_SHIFT; \
kw41_dbg[kw41_dbg_idx].irqsts = (_irqsts); \
kw41_dbg[kw41_dbg_idx].phy_ctrl = (_phy_ctrl); \
kw41_dbg[kw41_dbg_idx].seq_state = (_seq_state); \
if (++kw41_dbg_idx == KW41_DBG_TRACE_SIZE) { \
kw41_dbg_idx = 0; \
} \
} while (false)
#else
#define KW_DBG_TRACE(_type, _irqsts, _phy_ctrl, _seq_state)
#endif
#define KW41Z_DEFAULT_CHANNEL 26
#define KW41Z_CCA_TIME 8
#define KW41Z_SHR_PHY_TIME 12
#define KW41Z_PER_BYTE_TIME 2
#define KW41Z_ACK_WAIT_TIME 54
#define KW41Z_PRE_RX_WAIT_TIME 1
#define KW40Z_POST_SEQ_WAIT_TIME 1
#define RADIO_0_IRQ_PRIO 0x0
#define KW41Z_FCS_LENGTH 2
#define KW41Z_PSDU_LENGTH 125
#define KW41Z_OUTPUT_POWER_MAX 4
#define KW41Z_OUTPUT_POWER_MIN (-31)
#define IEEE802154_ACK_LENGTH 5
#define BM_ZLL_IRQSTS_TMRxMSK (ZLL_IRQSTS_TMR1MSK_MASK | \
ZLL_IRQSTS_TMR2MSK_MASK | \
ZLL_IRQSTS_TMR3MSK_MASK | \
ZLL_IRQSTS_TMR4MSK_MASK)
/*
* Clear channel assessment types. Note that there is an extra one when
* bit 26 is included for "No CCA before transmit" if we are handling
* ACK frames but we will let the hardware handle that automatically.
*/
enum {
KW41Z_CCA_ED, /* Energy detect */
KW41Z_CCA_MODE1, /* Energy above threshold */
KW41Z_CCA_MODE2, /* Carrier sense only */
KW41Z_CCA_MODE3 /* Mode 1 + Mode 2 */
};
/*
* KW41Z has a sequencer that can run in any of the following states.
*/
enum {
KW41Z_STATE_IDLE,
KW41Z_STATE_RX,
KW41Z_STATE_TX,
KW41Z_STATE_CCA,
KW41Z_STATE_TXRX,
KW41Z_STATE_CCCA
};
/* Lookup table for PA_PWR register */
static const uint8_t pa_pwr_lt[] = {
1, /* -31.1 dBm: -31 */
2, 2, 2, 2, 2, 2, 2, /* -25.0 dBm: -30, -29, -28, -27, -26, -25 */
4, 4, 4, 4, 4, /* -19.0 dBm: -24, -23, -22, -21, -20, -19 */
6, 6, 6, /* -15.6 dBm: -18, -17, -16 */
8, 8, /* -13.1 dBm: -15, -14 */
10, 10, /* -11.2 dBm: -13, -12 */
12, 12, /* - 9.6 dBm: -11, -10 */
14, /* - 8.3 dBm: -9 */
16, /* - 7.2 dBm: -8 */
18, /* - 6.2 dBm: -7 */
20, /* - 5.3 dBm: -6 */
22, /* - 4.5 dBm: -5 */
24, /* - 3.8 dBm: -4 */
28, /* - 2.5 dBm: -3 */
30, /* - 1.9 dBm: -2 */
34, /* - 1.0 dBm: -1 */
40, /* + 0.3 dBm: 0 */
44, /* + 1.1 dBm: +1 */
50, /* + 2.1 dBm: +2 */
58, /* + 3.1 dBm: +3 */
62 /* + 3.5 dBm: +4 */
};
struct kw41z_context {
struct net_if *iface;
uint8_t mac_addr[8];
struct k_sem seq_sync;
atomic_t seq_retval;
uint32_t rx_warmup_time;
uint32_t tx_warmup_time;
bool frame_pending; /* FP bit state from the most recent ACK frame. */
};
static struct kw41z_context kw41z_context_data;
static inline uint8_t kw41z_get_instant_state(void)
{
return (ZLL->SEQ_STATE & ZLL_SEQ_STATE_SEQ_STATE_MASK) >>
ZLL_SEQ_STATE_SEQ_STATE_SHIFT;
}
static inline uint8_t kw41z_get_seq_state(void)
{
return (ZLL->PHY_CTRL & ZLL_PHY_CTRL_XCVSEQ_MASK) >>
ZLL_PHY_CTRL_XCVSEQ_SHIFT;
}
static inline void kw41z_set_seq_state(uint8_t state)
{
#if CONFIG_SOC_MKW40Z4
/*
* KW40Z seems to require a small delay when switching to IDLE state
* after a programmed sequence is complete.
*/
if (state == KW41Z_STATE_IDLE) {
k_busy_wait(KW40Z_POST_SEQ_WAIT_TIME);
}
#endif
ZLL->PHY_CTRL = (ZLL->PHY_CTRL & ~ZLL_PHY_CTRL_XCVSEQ_MASK) |
ZLL_PHY_CTRL_XCVSEQ(state);
}
static inline void kw41z_wait_for_idle(void)
{
uint8_t state = kw41z_get_instant_state();
while (state != KW41Z_STATE_IDLE) {
state = kw41z_get_instant_state();
}
if (state != KW41Z_STATE_IDLE) {
LOG_ERR("Error waiting for idle state");
}
}
static void kw41z_phy_abort(void)
{
unsigned int key;
key = irq_lock();
/* Mask SEQ interrupt */
ZLL->PHY_CTRL |= ZLL_PHY_CTRL_SEQMSK_MASK;
/* Disable timer trigger (for scheduled XCVSEQ) */
if (ZLL->PHY_CTRL & ZLL_PHY_CTRL_TMRTRIGEN_MASK) {
ZLL->PHY_CTRL &= ~ZLL_PHY_CTRL_TMRTRIGEN_MASK;
/* give the FSM enough time to start if it was triggered */
while ((XCVR_MISC->XCVR_CTRL &
XCVR_CTRL_XCVR_STATUS_TSM_COUNT_MASK) == 0) {
}
}
/* If XCVR is not idle, abort current SEQ */
if (ZLL->PHY_CTRL & ZLL_PHY_CTRL_XCVSEQ_MASK) {
ZLL->PHY_CTRL &= ~ZLL_PHY_CTRL_XCVSEQ_MASK;
/* wait for Sequence Idle (if not already) */
while (ZLL->SEQ_STATE & ZLL_SEQ_STATE_SEQ_STATE_MASK) {
}
}
/* Stop timers */
ZLL->PHY_CTRL &= ~(ZLL_PHY_CTRL_TMR1CMP_EN_MASK |
ZLL_PHY_CTRL_TMR2CMP_EN_MASK |
ZLL_PHY_CTRL_TMR3CMP_EN_MASK |
ZLL_PHY_CTRL_TC3TMOUT_MASK);
/*
* Clear all IRQ bits to avoid unexpected interrupts.
*
* For Coverity, this is a pointer to a register bank and the IRQSTS
* register bits get cleared when a 1 is written to them so doing a
* reg=reg may generate a warning but it is needed to clear the bits.
*/
ZLL->IRQSTS = ZLL->IRQSTS;
irq_unlock(key);
}
static void kw41z_isr_timeout_cleanup(void)
{
uint32_t irqsts;
/*
* Set the PHY sequencer back to IDLE and disable TMR3 comparator
* and timeout
*/
ZLL->PHY_CTRL &= ~(ZLL_PHY_CTRL_TMR3CMP_EN_MASK |
ZLL_PHY_CTRL_TC3TMOUT_MASK |
ZLL_PHY_CTRL_XCVSEQ_MASK);
/* Mask SEQ, RX, TX and CCA interrupts */
ZLL->PHY_CTRL |= ZLL_PHY_CTRL_CCAMSK_MASK |
ZLL_PHY_CTRL_RXMSK_MASK |
ZLL_PHY_CTRL_TXMSK_MASK |
ZLL_PHY_CTRL_SEQMSK_MASK;
while (ZLL->SEQ_STATE & ZLL_SEQ_STATE_SEQ_STATE_MASK) {
}
irqsts = ZLL->IRQSTS;
/* Mask TMR3 interrupt */
irqsts |= ZLL_IRQSTS_TMR3MSK_MASK;
ZLL->IRQSTS = irqsts;
}
static void kw41z_isr_seq_cleanup(void)
{
uint32_t irqsts;
/* Set the PHY sequencer back to IDLE */
ZLL->PHY_CTRL &= ~ZLL_PHY_CTRL_XCVSEQ_MASK;
/* Mask SEQ, RX, TX and CCA interrupts */
ZLL->PHY_CTRL |= ZLL_PHY_CTRL_CCAMSK_MASK |
ZLL_PHY_CTRL_RXMSK_MASK |
ZLL_PHY_CTRL_TXMSK_MASK |
ZLL_PHY_CTRL_SEQMSK_MASK;
while (ZLL->SEQ_STATE & ZLL_SEQ_STATE_SEQ_STATE_MASK) {
}
irqsts = ZLL->IRQSTS;
/* Mask TMR3 interrupt */
irqsts |= ZLL_IRQSTS_TMR3MSK_MASK;
/* Clear transceiver interrupts except TMRxIRQ */
irqsts &= ~(ZLL_IRQSTS_TMR1IRQ_MASK |
ZLL_IRQSTS_TMR2IRQ_MASK |
ZLL_IRQSTS_TMR3IRQ_MASK |
ZLL_IRQSTS_TMR4IRQ_MASK);
ZLL->IRQSTS = irqsts;
}
static inline void kw41z_enable_seq_irq(void)
{
ZLL->PHY_CTRL &= ~ZLL_PHY_CTRL_SEQMSK_MASK;
}
static inline void kw41z_disable_seq_irq(void)
{
ZLL->PHY_CTRL |= ZLL_PHY_CTRL_SEQMSK_MASK;
}
/*
* Set the T3CMP timer comparator. The 'timeout' value is an offset from
* now.
*/
static void kw41z_tmr3_set_timeout(uint32_t timeout)
{
uint32_t irqsts;
/* Add in the current time so that we can get the comparator to
* match appropriately to our offset time.
*/
timeout += ZLL->EVENT_TMR >> ZLL_EVENT_TMR_EVENT_TMR_SHIFT;
/* disable TMR3 compare */
ZLL->PHY_CTRL &= ~ZLL_PHY_CTRL_TMR3CMP_EN_MASK;
ZLL->T3CMP = timeout & ZLL_T3CMP_T3CMP_MASK;
/* acknowledge TMR3 IRQ */
irqsts = ZLL->IRQSTS & BM_ZLL_IRQSTS_TMRxMSK;
irqsts |= ZLL_IRQSTS_TMR3IRQ_MASK;
ZLL->IRQSTS = irqsts;
/* enable TMR3 compare and autosequence stop by TC3 match */
ZLL->PHY_CTRL |=
(ZLL_PHY_CTRL_TMR3CMP_EN_MASK | ZLL_PHY_CTRL_TC3TMOUT_MASK);
}
static void kw41z_tmr3_disable(void)
{
uint32_t irqsts;
/*
* disable TMR3 compare and disable autosequence stop by TC3
* match
*/
ZLL->PHY_CTRL &= ~(ZLL_PHY_CTRL_TMR3CMP_EN_MASK |
ZLL_PHY_CTRL_TC3TMOUT_MASK);
/* mask TMR3 interrupt (do not change other IRQ status) */
irqsts = ZLL->IRQSTS & BM_ZLL_IRQSTS_TMRxMSK;
irqsts |= ZLL_IRQSTS_TMR3MSK_MASK;
/* acknowledge TMR3 IRQ */
irqsts |= ZLL_IRQSTS_TMR3IRQ_MASK;
ZLL->IRQSTS = irqsts;
}
static enum ieee802154_hw_caps kw41z_get_capabilities(const struct device *dev)
{
return IEEE802154_HW_FCS |
IEEE802154_HW_2_4_GHZ |
IEEE802154_HW_FILTER |
IEEE802154_HW_TX_RX_ACK;
}
static int kw41z_cca(const struct device *dev)
{
struct kw41z_context *kw41z = dev->data;
kw41z_phy_abort();
k_sem_init(&kw41z->seq_sync, 0, 1);
kw41z_enable_seq_irq();
ZLL->PHY_CTRL = (ZLL->PHY_CTRL & ~ZLL_PHY_CTRL_CCATYPE_MASK) |
ZLL_PHY_CTRL_CCATYPE(KW41Z_CCA_MODE1);
kw41z_set_seq_state(KW41Z_STATE_CCA);
k_sem_take(&kw41z->seq_sync, K_FOREVER);
return kw41z->seq_retval;
}
static int kw41z_set_channel(const struct device *dev, uint16_t channel)
{
if (channel < 11 || channel > 26) {
return -EINVAL;
}
ZLL->CHANNEL_NUM0 = channel;
return 0;
}
static int kw41z_set_pan_id(const struct device *dev, uint16_t pan_id)
{
ZLL->MACSHORTADDRS0 = (ZLL->MACSHORTADDRS0 &
~ZLL_MACSHORTADDRS0_MACPANID0_MASK) |
ZLL_MACSHORTADDRS0_MACPANID0(pan_id);
return 0;
}
static int kw41z_set_short_addr(const struct device *dev, uint16_t short_addr)
{
ZLL->MACSHORTADDRS0 = (ZLL->MACSHORTADDRS0 &
~ZLL_MACSHORTADDRS0_MACSHORTADDRS0_MASK) |
ZLL_MACSHORTADDRS0_MACSHORTADDRS0(short_addr);
return 0;
}
static int kw41z_set_ieee_addr(const struct device *dev,
const uint8_t *ieee_addr)
{
uint32_t val;
memcpy(&val, ieee_addr, sizeof(val));
ZLL->MACLONGADDRS0_LSB = val;
memcpy(&val, ieee_addr + sizeof(val), sizeof(val));
ZLL->MACLONGADDRS0_MSB = val;
return 0;
}
static int kw41z_filter(const struct device *dev,
bool set,
enum ieee802154_filter_type type,
const struct ieee802154_filter *filter)
{
LOG_DBG("Applying filter %u", type);
if (!set) {
return -ENOTSUP;
}
if (type == IEEE802154_FILTER_TYPE_IEEE_ADDR) {
return kw41z_set_ieee_addr(dev, filter->ieee_addr);
} else if (type == IEEE802154_FILTER_TYPE_SHORT_ADDR) {
return kw41z_set_short_addr(dev, filter->short_addr);
} else if (type == IEEE802154_FILTER_TYPE_PAN_ID) {
return kw41z_set_pan_id(dev, filter->pan_id);
}
return -ENOTSUP;
}
static int kw41z_set_txpower(const struct device *dev, int16_t dbm)
{
if (dbm < KW41Z_OUTPUT_POWER_MIN) {
LOG_INF("TX-power %d dBm below min of %d dBm, using %d dBm",
dbm,
KW41Z_OUTPUT_POWER_MIN,
KW41Z_OUTPUT_POWER_MIN);
dbm = KW41Z_OUTPUT_POWER_MIN;
} else if (dbm > KW41Z_OUTPUT_POWER_MAX) {
LOG_INF("TX-power %d dBm above max of %d dBm, using %d dBm",
dbm,
KW41Z_OUTPUT_POWER_MAX,
KW41Z_OUTPUT_POWER_MAX);
dbm = KW41Z_OUTPUT_POWER_MAX;
}
ZLL->PA_PWR = pa_pwr_lt[dbm - KW41Z_OUTPUT_POWER_MIN];
return 0;
}
static int kw41z_start(const struct device *dev)
{
irq_enable(Radio_1_IRQn);
kw41z_set_seq_state(KW41Z_STATE_RX);
kw41z_enable_seq_irq();
return 0;
}
static int kw41z_stop(const struct device *dev)
{
irq_disable(Radio_1_IRQn);
kw41z_disable_seq_irq();
kw41z_set_seq_state(KW41Z_STATE_IDLE);
return 0;
}
static uint8_t kw41z_convert_lqi(uint8_t hw_lqi)
{
if (hw_lqi >= 220U) {
return 255;
} else {
return (hw_lqi * 51U) / 44;
}
}
static inline void kw41z_rx(struct kw41z_context *kw41z, uint8_t len)
{
struct net_pkt *pkt = NULL;
struct net_buf *buf = NULL;
uint8_t pkt_len, hw_lqi;
int rslt;
LOG_DBG("ENTRY: len: %d", len);
#if defined(CONFIG_NET_L2_OPENTHREAD)
/*
* OpenThread stack expects a receive frame to include the FCS
*/
pkt_len = len;
#else
pkt_len = len - KW41Z_FCS_LENGTH;
#endif
pkt = net_pkt_rx_alloc_with_buffer(kw41z->iface, pkt_len,
AF_UNSPEC, 0, K_NO_WAIT);
if (!pkt) {
LOG_ERR("No buf available");
goto out;
}
buf = pkt->buffer;
#if CONFIG_SOC_MKW41Z4
/* PKT_BUFFER_RX needs to be accessed aligned to 16 bits */
for (uint16_t reg_val = 0, i = 0; i < pkt_len; i++) {
if (i % 2 == 0U) {
reg_val = ZLL->PKT_BUFFER_RX[i/2U];
buf->data[i] = reg_val & 0xFF;
} else {
buf->data[i] = reg_val >> 8;
}
}
#else /* CONFIG_SOC_MKW40Z4 */
/* PKT_BUFFER needs to be accessed aligned to 32 bits */
for (uint32_t reg_val = 0, i = 0; i < pkt_len; i++) {
switch (i % 4) {
case 0:
reg_val = ZLL->PKT_BUFFER[i/4U];
buf->data[i] = reg_val & 0xFF;
break;
case 1:
buf->data[i] = (reg_val >> 8) & 0xFF;
break;
case 2:
buf->data[i] = (reg_val >> 16) & 0xFF;
break;
default:
buf->data[i] = reg_val >> 24;
}
}
#endif
net_buf_add(buf, pkt_len);
hw_lqi = (ZLL->LQI_AND_RSSI & ZLL_LQI_AND_RSSI_LQI_VALUE_MASK) >>
ZLL_LQI_AND_RSSI_LQI_VALUE_SHIFT;
net_pkt_set_ieee802154_lqi(pkt, kw41z_convert_lqi(hw_lqi));
/* ToDo: get the rssi as well and use net_pkt_set_ieee802154_rssi() */
rslt = net_recv_data(kw41z->iface, pkt);
if (rslt < 0) {
LOG_ERR("RCV Packet dropped by NET stack: %d", rslt);
goto out;
}
return;
out:
if (pkt) {
net_pkt_unref(pkt);
}
}
#define ACK_FRAME_LEN 3
#define ACK_FRAME_TYPE (2 << 0)
#define ACK_FRAME_PENDING_BIT (1 << 4)
static void handle_ack(struct kw41z_context *kw41z, uint8_t seq_number)
{
struct net_pkt *ack_pkt;
uint8_t ack_psdu[ACK_FRAME_LEN];
ack_pkt = net_pkt_rx_alloc_with_buffer(kw41z->iface, ACK_FRAME_LEN,
AF_UNSPEC, 0, K_NO_WAIT);
if (!ack_pkt) {
LOG_ERR("No free packet available.");
return;
}
/* Re-create ACK frame. */
ack_psdu[0] = kw41z_context_data.frame_pending ?
ACK_FRAME_TYPE | ACK_FRAME_PENDING_BIT : ACK_FRAME_TYPE;
ack_psdu[1] = 0;
ack_psdu[2] = seq_number;
if (net_pkt_write(ack_pkt, ack_psdu, sizeof(ack_psdu)) < 0) {
LOG_ERR("Failed to write to a packet.");
goto out;
}
/* Use some fake values for LQI and RSSI. */
(void)net_pkt_set_ieee802154_lqi(ack_pkt, 80);
(void)net_pkt_set_ieee802154_rssi(ack_pkt, -40);
net_pkt_cursor_init(ack_pkt);
if (ieee802154_radio_handle_ack(kw41z->iface, ack_pkt) != NET_OK) {
LOG_INF("ACK packet not handled - releasing.");
}
out:
net_pkt_unref(ack_pkt);
}
static int kw41z_tx(const struct device *dev, enum ieee802154_tx_mode mode,
struct net_pkt *pkt, struct net_buf *frag)
{
struct kw41z_context *kw41z = dev->data;
uint8_t payload_len = frag->len;
uint32_t tx_timeout;
uint8_t xcvseq;
unsigned int key;
if (mode != IEEE802154_TX_MODE_DIRECT) {
NET_ERR("TX mode %d not supported", mode);
return -ENOTSUP;
}
/*
* The transmit requests are preceded by the CCA request. On
* completion of the CCA the sequencer should be in the IDLE
* state.
*/
if (kw41z_get_seq_state() != KW41Z_STATE_IDLE) {
LOG_WRN("Can't initiate new SEQ state");
return -EBUSY;
}
if (payload_len > KW41Z_PSDU_LENGTH) {
LOG_ERR("Payload too long");
return 0;
}
key = irq_lock();
/* Disable the 802.15.4 radio IRQ */
ZLL->PHY_CTRL |= ZLL_PHY_CTRL_TRCV_MSK_MASK;
kw41z_disable_seq_irq();
#if CONFIG_SOC_MKW41Z4
((uint8_t *)ZLL->PKT_BUFFER_TX)[0] = payload_len + KW41Z_FCS_LENGTH;
memcpy(((uint8_t *)ZLL->PKT_BUFFER_TX) + 1,
(void *)frag->data, payload_len);
#else /* CONFIG_SOC_MKW40Z4 */
((uint8_t *)ZLL->PKT_BUFFER)[0] = payload_len + KW41Z_FCS_LENGTH;
memcpy(((uint8_t *)ZLL->PKT_BUFFER) + 1,
(void *)frag->data, payload_len);
#endif
/* Set CCA mode */
ZLL->PHY_CTRL = (ZLL->PHY_CTRL & ~ZLL_PHY_CTRL_CCATYPE_MASK) |
ZLL_PHY_CTRL_CCATYPE(KW41Z_CCA_MODE1);
/* Clear all IRQ flags */
ZLL->IRQSTS = ZLL->IRQSTS;
/*
* Current Zephyr 802.15.4 stack doesn't support ACK offload
*/
/* Perform automatic reception of ACK frame, if required */
if (ieee802154_is_ar_flag_set(frag)) {
tx_timeout = kw41z->tx_warmup_time + KW41Z_SHR_PHY_TIME +
payload_len * KW41Z_PER_BYTE_TIME + 10 +
KW41Z_ACK_WAIT_TIME;
LOG_DBG("AUTOACK ENABLED: len: %d, timeout: %d, seq: %d",
payload_len, tx_timeout, frag->data[2]);
kw41z_tmr3_set_timeout(tx_timeout);
ZLL->PHY_CTRL |= ZLL_PHY_CTRL_RXACKRQD_MASK;
xcvseq = KW41Z_STATE_TXRX;
} else {
LOG_DBG("AUTOACK DISABLED: len: %d, seq: %d",
payload_len, frag->data[2]);
ZLL->PHY_CTRL &= ~ZLL_PHY_CTRL_RXACKRQD_MASK;
xcvseq = KW41Z_STATE_TX;
}
kw41z_enable_seq_irq();
/*
* PHY_CTRL is sensitive to multiple writes that can kick off
* the sequencer engine causing TX with AR request to send the
* TX frame multiple times.
*
* To minimize, ensure there is only one write to PHY_CTRL with
* TXRX sequence enable and the 802.15.4 radio IRQ.
*/
ZLL->PHY_CTRL = (ZLL->PHY_CTRL & ~ZLL_PHY_CTRL_TRCV_MSK_MASK) | xcvseq;
irq_unlock(key);
k_sem_take(&kw41z->seq_sync, K_FOREVER);
if ((kw41z->seq_retval == 0) && ieee802154_is_ar_flag_set(frag)) {
handle_ack(kw41z, frag->data[2]);
}
LOG_DBG("seq_retval: %ld", kw41z->seq_retval);
return kw41z->seq_retval;
}
static void kw41z_isr(int unused)
{
uint32_t irqsts = ZLL->IRQSTS;
uint8_t state = kw41z_get_seq_state();
uint8_t restart_rx = 1U;
uint32_t rx_len;
/*
* Variable is used in debug output to capture the state of the
* sequencer at interrupt.
*/
uint32_t seq_state = ZLL->SEQ_STATE;
LOG_DBG("ENTRY: irqsts: 0x%08X, PHY_CTRL: 0x%08X, "
"SEQ_STATE: 0x%08X, SEQ_CTRL: 0x%08X, TMR: %d, state: %d",
irqsts, (unsigned int)ZLL->PHY_CTRL,
(unsigned int)seq_state,
(unsigned int)ZLL->SEQ_CTRL_STS,
(unsigned int)(ZLL->EVENT_TMR >> ZLL_EVENT_TMR_EVENT_TMR_SHIFT),
state);
/* Clear interrupts */
ZLL->IRQSTS = irqsts;
if (irqsts & ZLL_IRQSTS_FILTERFAIL_IRQ_MASK) {
LOG_DBG("Incoming RX failed packet filtering rules: "
"CODE: 0x%08X, irqsts: 0x%08X, PHY_CTRL: 0x%08X, "
"SEQ_STATE: 0x%08X, state: %d",
(unsigned int)ZLL->FILTERFAIL_CODE,
irqsts,
(unsigned int)ZLL->PHY_CTRL,
(unsigned int)seq_state, state);
restart_rx = 0U;
} else if ((!(ZLL->PHY_CTRL & ZLL_PHY_CTRL_RX_WMRK_MSK_MASK)) &&
(irqsts & ZLL_IRQSTS_RXWTRMRKIRQ_MASK)) {
/*
* There is a bug in the KW41Z where in noisy environments
* the RX sequence can get lost. The watermark mask IRQ can
* start TMR3 to complete the rest of the read or to assert
* IRQ if the sequencer gets lost so we can reset things.
* Note that a TX from the upper layers will also reset
* things so the problem is contained a bit in normal
* operation.
*/
rx_len = (irqsts & ZLL_IRQSTS_RX_FRAME_LENGTH_MASK)
>> ZLL_IRQSTS_RX_FRAME_LENGTH_SHIFT;
KW_DBG_TRACE(KW41_DBG_TRACE_WTRM, irqsts,
(unsigned int)ZLL->PHY_CTRL, seq_state);
if (rx_len > IEEE802154_ACK_LENGTH) {
LOG_DBG("WMRK irq: seq_state: 0x%08x, rx_len: %d",
seq_state, rx_len);
/*
* Assume the RX includes an auto-ACK so set the
* timer to include the RX frame size, crc, IFS,
* and ACK length and convert to symbols.
*
* IFS is 12 symbols
*
* ACK frame is 11 bytes: 4 preamble, 1 start of
* frame, 1 frame length, 2 frame control,
* 1 sequence, 2 FCS. Times two to convert to symbols.
*/
rx_len = rx_len * 2U + 12 + 22 + 2;
kw41z_tmr3_set_timeout(rx_len);
}
restart_rx = 0U;
}
/* Sequence done IRQ */
if ((state != KW41Z_STATE_IDLE) && (irqsts & ZLL_IRQSTS_SEQIRQ_MASK)) {
/*
* PLL unlock, the autosequence has been aborted due to
* PLL unlock
*/
if (irqsts & ZLL_IRQSTS_PLL_UNLOCK_IRQ_MASK) {
LOG_ERR("PLL unlock error");
kw41z_isr_seq_cleanup();
restart_rx = 1U;
}
/*
* TMR3 timeout, the autosequence has been aborted due to
* TMR3 timeout
*/
else if ((irqsts & ZLL_IRQSTS_TMR3IRQ_MASK) &&
(!(irqsts & ZLL_IRQSTS_RXIRQ_MASK)) &&
(state != KW41Z_STATE_TX)) {
LOG_DBG("a) TMR3 timeout: irqsts: 0x%08X, "
"seq_state: 0x%08X, PHY_CTRL: 0x%08X, "
"state: %d",
irqsts, seq_state,
(unsigned int)ZLL->PHY_CTRL, state);
KW_DBG_TRACE(KW41_DBG_TRACE_TMR3, irqsts,
(unsigned int)ZLL->PHY_CTRL, seq_state);
kw41z_isr_timeout_cleanup();
restart_rx = 1U;
if (state == KW41Z_STATE_TXRX) {
/* TODO: What is the right error for no ACK? */
atomic_set(&kw41z_context_data.seq_retval,
-EBUSY);
k_sem_give(&kw41z_context_data.seq_sync);
}
} else {
kw41z_isr_seq_cleanup();
switch (state) {
case KW41Z_STATE_RX:
LOG_DBG("RX seq done: SEQ_STATE: 0x%08X",
(unsigned int)seq_state);
KW_DBG_TRACE(KW41_DBG_TRACE_RX, irqsts,
(unsigned int)ZLL->PHY_CTRL, seq_state);
kw41z_tmr3_disable();
rx_len = (ZLL->IRQSTS &
ZLL_IRQSTS_RX_FRAME_LENGTH_MASK) >>
ZLL_IRQSTS_RX_FRAME_LENGTH_SHIFT;
if (irqsts & ZLL_IRQSTS_RXIRQ_MASK) {
if (rx_len != 0U) {
kw41z_rx(&kw41z_context_data,
rx_len);
}
}
restart_rx = 1U;
break;
case KW41Z_STATE_TXRX:
LOG_DBG("TXRX seq done");
kw41z_tmr3_disable();
/* Store the frame pending bit status. */
kw41z_context_data.frame_pending =
irqsts & ZLL_IRQSTS_RX_FRM_PEND_MASK;
case KW41Z_STATE_TX:
LOG_DBG("TX seq done");
KW_DBG_TRACE(KW41_DBG_TRACE_TX, irqsts,
(unsigned int)ZLL->PHY_CTRL, seq_state);
if (irqsts & ZLL_IRQSTS_CCA_MASK) {
atomic_set(
&kw41z_context_data.seq_retval,
-EBUSY);
} else {
atomic_set(
&kw41z_context_data.seq_retval,
0);
}
k_sem_give(&kw41z_context_data.seq_sync);
restart_rx = 1U;
break;
case KW41Z_STATE_CCA:
LOG_DBG("CCA seq done");
KW_DBG_TRACE(KW41_DBG_TRACE_CCA, irqsts,
(unsigned int)ZLL->PHY_CTRL, seq_state);
if (irqsts & ZLL_IRQSTS_CCA_MASK) {
atomic_set(
&kw41z_context_data.seq_retval,
-EBUSY);
restart_rx = 1U;
} else {
atomic_set(
&kw41z_context_data.seq_retval,
0);
restart_rx = 0U;
}
k_sem_give(&kw41z_context_data.seq_sync);
break;
default:
LOG_DBG("Unhandled state: %d", state);
restart_rx = 1U;
break;
}
}
} else {
/* Timer 3 Compare Match */
if ((irqsts & ZLL_IRQSTS_TMR3IRQ_MASK) &&
(!(irqsts & ZLL_IRQSTS_TMR3MSK_MASK))) {
LOG_DBG("b) TMR3 timeout: irqsts: 0x%08X, "
"seq_state: 0x%08X, state: %d",
irqsts, seq_state, state);
kw41z_tmr3_disable();
restart_rx = 0U;
if (state != KW41Z_STATE_IDLE) {
kw41z_isr_timeout_cleanup();
restart_rx = 1U;
/* If we are not running an automated
* sequence then handle event. TMR3 can expire
* during Recv/Ack sequence where the transmit
* of the ACK is not being interrupted.
*/
}
}
}
/* Restart RX */
if (restart_rx) {
LOG_DBG("RESET RX");
kw41z_phy_abort();
kw41z_set_seq_state(KW41Z_STATE_RX);
kw41z_enable_seq_irq();
}
}
static inline uint8_t *get_mac(const struct device *dev)
{
struct kw41z_context *kw41z = dev->data;
/*
* The KW40Z has two 32-bit registers for the MAC address where
* 40 bits of the registers are factory programmed to be unique
* and the rest are to be assigned as the "company-specific" value.
* 802.15.4 defines a EUI-64 64-bit address with company specific
* being 24 or 36 bits with the unique value being 24 or 40 bits.
*
* TODO: Grab from RSIM->MAC_LSB/MAC_MSB for the unique 40 bits
* and how to allow for a OUI portion?
*/
uint32_t *ptr = (uint32_t *)(kw41z->mac_addr);
UNALIGNED_PUT(sys_rand32_get(), ptr);
ptr = (uint32_t *)(kw41z->mac_addr + 4);
UNALIGNED_PUT(sys_rand32_get(), ptr);
/*
* Clear bit 0 to ensure it isn't a multicast address and set
* bit 1 to indicate address is locally administered and may
* not be globally unique.
*/
kw41z->mac_addr[0] = (kw41z->mac_addr[0] & ~0x01) | 0x02;
return kw41z->mac_addr;
}
static int kw41z_init(const struct device *dev)
{
struct kw41z_context *kw41z = dev->data;
xcvrStatus_t xcvrStatus;
xcvrStatus = XCVR_Init(ZIGBEE_MODE, DR_500KBPS);
if (xcvrStatus != gXcvrSuccess_c) {
return -EIO;
}
/* Disable all timers, enable AUTOACK, mask all interrupts */
ZLL->PHY_CTRL = ZLL_PHY_CTRL_CCATYPE(KW41Z_CCA_MODE1) |
ZLL_PHY_CTRL_CRC_MSK_MASK |
ZLL_PHY_CTRL_PLL_UNLOCK_MSK_MASK |
/*ZLL_PHY_CTRL_FILTERFAIL_MSK_MASK |*/
ZLL_PHY_CTRL_RX_WMRK_MSK_MASK |
ZLL_PHY_CTRL_CCAMSK_MASK |
ZLL_PHY_CTRL_RXMSK_MASK |
ZLL_PHY_CTRL_TXMSK_MASK |
ZLL_PHY_CTRL_CCABFRTX_MASK |
ZLL_PHY_CTRL_SEQMSK_MASK;
#if CONFIG_SOC_MKW41Z4
ZLL->PHY_CTRL |= ZLL_IRQSTS_WAKE_IRQ_MASK;
#endif
ZLL->PHY_CTRL |= ZLL_PHY_CTRL_AUTOACK_MASK;
/*
* Clear all PP IRQ bits to avoid unexpected interrupts immediately
* after init disable all timer interrupts
*/
ZLL->IRQSTS = ZLL->IRQSTS;
/* Clear HW indirect queue */
ZLL->SAM_TABLE |= ZLL_SAM_TABLE_INVALIDATE_ALL_MASK;
/* Accept FrameVersion 0 and 1 packets, reject all others */
ZLL->PHY_CTRL &= ~ZLL_PHY_CTRL_PROMISCUOUS_MASK;
ZLL->RX_FRAME_FILTER &= ~ZLL_RX_FRAME_FILTER_FRM_VER_FILTER_MASK;
ZLL->RX_FRAME_FILTER = ZLL_RX_FRAME_FILTER_FRM_VER_FILTER(3) |
ZLL_RX_FRAME_FILTER_CMD_FT_MASK |
ZLL_RX_FRAME_FILTER_DATA_FT_MASK |
ZLL_RX_FRAME_FILTER_ACK_FT_MASK |
ZLL_RX_FRAME_FILTER_BEACON_FT_MASK;
/* Set prescaler to obtain 1 symbol (16us) timebase */
ZLL->TMR_PRESCALE = 0x05;
kw41z_tmr3_disable();
/* Compute warmup times (scaled to 16us) */
kw41z->rx_warmup_time = (XCVR_TSM->END_OF_SEQ &
XCVR_TSM_END_OF_SEQ_END_OF_RX_WU_MASK) >>
XCVR_TSM_END_OF_SEQ_END_OF_RX_WU_SHIFT;
kw41z->tx_warmup_time = (XCVR_TSM->END_OF_SEQ &
XCVR_TSM_END_OF_SEQ_END_OF_TX_WU_MASK) >>
XCVR_TSM_END_OF_SEQ_END_OF_TX_WU_SHIFT;
if (kw41z->rx_warmup_time & 0x0F) {
kw41z->rx_warmup_time = 1 + (kw41z->rx_warmup_time >> 4);
} else {
kw41z->rx_warmup_time = kw41z->rx_warmup_time >> 4;
}
if (kw41z->tx_warmup_time & 0x0F) {
kw41z->tx_warmup_time = 1 + (kw41z->tx_warmup_time >> 4);
} else {
kw41z->tx_warmup_time = kw41z->tx_warmup_time >> 4;
}
/* Set CCA threshold to -75 dBm */
ZLL->CCA_LQI_CTRL &= ~ZLL_CCA_LQI_CTRL_CCA1_THRESH_MASK;
ZLL->CCA_LQI_CTRL |= ZLL_CCA_LQI_CTRL_CCA1_THRESH(0xB5);
/* Set the default power level */
kw41z_set_txpower(dev, 0);
/* Adjust ACK delay to fulfill the 802.15.4 turnaround requirements */
ZLL->ACKDELAY &= ~ZLL_ACKDELAY_ACKDELAY_MASK;
ZLL->ACKDELAY |= ZLL_ACKDELAY_ACKDELAY(-8);
/* Adjust LQI compensation */
ZLL->CCA_LQI_CTRL &= ~ZLL_CCA_LQI_CTRL_LQI_OFFSET_COMP_MASK;
ZLL->CCA_LQI_CTRL |= ZLL_CCA_LQI_CTRL_LQI_OFFSET_COMP(96);
/* Enable the RxWatermark IRQ */
ZLL->PHY_CTRL &= ~(ZLL_PHY_CTRL_RX_WMRK_MSK_MASK);
/* Set Rx watermark level */
ZLL->RX_WTR_MARK = 0;
/* Set default channel to 2405 MHZ */
kw41z_set_channel(dev, KW41Z_DEFAULT_CHANNEL);
/* Unmask Transceiver Global Interrupts */
ZLL->PHY_CTRL &= ~ZLL_PHY_CTRL_TRCV_MSK_MASK;
/* Configure Radio IRQ */
NVIC_ClearPendingIRQ(Radio_1_IRQn);
IRQ_CONNECT(Radio_1_IRQn, RADIO_0_IRQ_PRIO, kw41z_isr, 0, 0);
return 0;
}
static void kw41z_iface_init(struct net_if *iface)
{
const struct device *dev = net_if_get_device(iface);
struct kw41z_context *kw41z = dev->data;
uint8_t *mac = get_mac(dev);
#if defined(CONFIG_KW41_DBG_TRACE)
kw41_dbg_idx = 0;
#endif
net_if_set_link_addr(iface, mac, 8, NET_LINK_IEEE802154);
kw41z->iface = iface;
ieee802154_init(iface);
}
static int kw41z_configure(const struct device *dev,
enum ieee802154_config_type type,
const struct ieee802154_config *config)
{
return 0;
}
static struct ieee802154_radio_api kw41z_radio_api = {
.iface_api.init = kw41z_iface_init,
.get_capabilities = kw41z_get_capabilities,
.cca = kw41z_cca,
.set_channel = kw41z_set_channel,
.filter = kw41z_filter,
.set_txpower = kw41z_set_txpower,
.start = kw41z_start,
.stop = kw41z_stop,
.tx = kw41z_tx,
.configure = kw41z_configure,
};
#if defined(CONFIG_NET_L2_IEEE802154)
#define L2 IEEE802154_L2
#define L2_CTX_TYPE NET_L2_GET_CTX_TYPE(IEEE802154_L2)
#define MTU KW41Z_PSDU_LENGTH
#elif defined(CONFIG_NET_L2_OPENTHREAD)
#define L2 OPENTHREAD_L2
#define L2_CTX_TYPE NET_L2_GET_CTX_TYPE(OPENTHREAD_L2)
#define MTU 1280
#endif
NET_DEVICE_DT_INST_DEFINE(
0,
kw41z_init, /* Initialization Function */
NULL, /* No PM API support */
&kw41z_context_data, /* Context data */
NULL, /* Configuration info */
CONFIG_IEEE802154_KW41Z_INIT_PRIO, /* Initial priority */
&kw41z_radio_api, /* API interface functions */
L2, /* L2 */
L2_CTX_TYPE, /* L2 context type */
MTU); /* MTU size */