blob: 5265b84b6aa499db6665c2c46373b46e1c061118 [file] [log] [blame]
/*
* Copyright (c) 2019 Bolt Innovation Management, LLC
* Copyright (c) 2019 Peter Bigot Consulting, LLC
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdio.h>
#include <string.h>
#include <zephyr/kernel.h>
#include <errno.h>
#include <zephyr/init.h>
#include <zephyr/fs/fs.h>
#include <zephyr/fs/fs_sys.h>
#define LFS_LOG_REGISTER
#include <lfs_util.h>
#include <lfs.h>
#include <zephyr/fs/littlefs.h>
#include <zephyr/drivers/flash.h>
#include <zephyr/storage/flash_map.h>
#include <zephyr/storage/disk_access.h>
#include "fs_impl.h"
struct lfs_file_data {
struct lfs_file file;
struct lfs_file_config config;
void *cache_block;
};
#define LFS_FILEP(fp) (&((struct lfs_file_data *)(fp->filep))->file)
/* Global memory pool for open files and dirs */
K_MEM_SLAB_DEFINE_STATIC(file_data_pool, sizeof(struct lfs_file_data),
CONFIG_FS_LITTLEFS_NUM_FILES, 4);
K_MEM_SLAB_DEFINE_STATIC(lfs_dir_pool, sizeof(struct lfs_dir),
CONFIG_FS_LITTLEFS_NUM_DIRS, 4);
/* Inferred overhead, in bytes, for each k_heap_aligned allocation for
* the filecache heap. This relates to the CHUNK_UNIT parameter in
* the heap implementation, but that value is not visible outside the
* kernel.
* FIXME: value for this macro should be rather taken from the Kernel
* internals than set by user, but we do not have a way to do so now.
*/
#define FC_HEAP_PER_ALLOC_OVERHEAD CONFIG_FS_LITTLEFS_HEAP_PER_ALLOC_OVERHEAD_SIZE
#if (CONFIG_FS_LITTLEFS_FC_HEAP_SIZE - 0) <= 0
BUILD_ASSERT((CONFIG_FS_LITTLEFS_HEAP_PER_ALLOC_OVERHEAD_SIZE % 8) == 0);
/* Auto-generate heap size from cache size and number of files */
#undef CONFIG_FS_LITTLEFS_FC_HEAP_SIZE
#define CONFIG_FS_LITTLEFS_FC_HEAP_SIZE \
((CONFIG_FS_LITTLEFS_CACHE_SIZE + FC_HEAP_PER_ALLOC_OVERHEAD) * \
CONFIG_FS_LITTLEFS_NUM_FILES)
#endif /* CONFIG_FS_LITTLEFS_FC_HEAP_SIZE */
static K_HEAP_DEFINE(file_cache_heap, CONFIG_FS_LITTLEFS_FC_HEAP_SIZE);
static inline bool littlefs_on_blkdev(int flags)
{
return IS_ENABLED(CONFIG_FS_LITTLEFS_BLK_DEV) &&
flags & FS_MOUNT_FLAG_USE_DISK_ACCESS;
}
static inline void *fc_allocate(size_t size)
{
void *ret = NULL;
ret = k_heap_alloc(&file_cache_heap, size, K_NO_WAIT);
return ret;
}
static inline void fc_release(void *buf)
{
k_heap_free(&file_cache_heap, buf);
}
static inline void fs_lock(struct fs_littlefs *fs)
{
k_mutex_lock(&fs->mutex, K_FOREVER);
}
static inline void fs_unlock(struct fs_littlefs *fs)
{
k_mutex_unlock(&fs->mutex);
}
static int lfs_to_errno(int error)
{
if (error >= 0) {
return error;
}
switch (error) {
default:
case LFS_ERR_IO: /* Error during device operation */
return -EIO;
case LFS_ERR_CORRUPT: /* Corrupted */
return -EFAULT;
case LFS_ERR_NOENT: /* No directory entry */
return -ENOENT;
case LFS_ERR_EXIST: /* Entry already exists */
return -EEXIST;
case LFS_ERR_NOTDIR: /* Entry is not a dir */
return -ENOTDIR;
case LFS_ERR_ISDIR: /* Entry is a dir */
return -EISDIR;
case LFS_ERR_NOTEMPTY: /* Dir is not empty */
return -ENOTEMPTY;
case LFS_ERR_BADF: /* Bad file number */
return -EBADF;
case LFS_ERR_FBIG: /* File too large */
return -EFBIG;
case LFS_ERR_INVAL: /* Invalid parameter */
return -EINVAL;
case LFS_ERR_NOSPC: /* No space left on device */
return -ENOSPC;
case LFS_ERR_NOMEM: /* No more memory available */
return -ENOMEM;
}
}
static int errno_to_lfs(int error)
{
if (error >= 0) {
return LFS_ERR_OK;
}
switch (error) {
default:
case -EIO: /* Error during device operation */
return LFS_ERR_IO;
case -EFAULT: /* Corrupted */
return LFS_ERR_CORRUPT;
case -ENOENT: /* No directory entry */
return LFS_ERR_NOENT;
case -EEXIST: /* Entry already exists */
return LFS_ERR_EXIST;
case -ENOTDIR: /* Entry is not a dir */
return LFS_ERR_NOTDIR;
case -EISDIR: /* Entry is a dir */
return LFS_ERR_ISDIR;
case -ENOTEMPTY: /* Dir is not empty */
return LFS_ERR_NOTEMPTY;
case -EBADF: /* Bad file number */
return LFS_ERR_BADF;
case -EFBIG: /* File too large */
return LFS_ERR_FBIG;
case -EINVAL: /* Invalid parameter */
return LFS_ERR_INVAL;
case -ENOSPC: /* No space left on device */
return LFS_ERR_NOSPC;
case -ENOMEM: /* No more memory available */
return LFS_ERR_NOMEM;
}
}
static int lfs_api_read(const struct lfs_config *c, lfs_block_t block,
lfs_off_t off, void *buffer, lfs_size_t size)
{
const struct flash_area *fa = c->context;
size_t offset = block * c->block_size + off;
int rc = flash_area_read(fa, offset, buffer, size);
return errno_to_lfs(rc);
}
static int lfs_api_prog(const struct lfs_config *c, lfs_block_t block,
lfs_off_t off, const void *buffer, lfs_size_t size)
{
const struct flash_area *fa = c->context;
size_t offset = block * c->block_size + off;
int rc = flash_area_write(fa, offset, buffer, size);
return errno_to_lfs(rc);
}
static int lfs_api_erase(const struct lfs_config *c, lfs_block_t block)
{
const struct flash_area *fa = c->context;
size_t offset = block * c->block_size;
int rc = flash_area_erase(fa, offset, c->block_size);
return errno_to_lfs(rc);
}
#ifdef CONFIG_FS_LITTLEFS_BLK_DEV
static int lfs_api_read_blk(const struct lfs_config *c, lfs_block_t block,
lfs_off_t off, void *buffer, lfs_size_t size)
{
const char *disk = c->context;
int rc = disk_access_read(disk, buffer, block,
size / c->block_size);
return errno_to_lfs(rc);
}
static int lfs_api_prog_blk(const struct lfs_config *c, lfs_block_t block,
lfs_off_t off, const void *buffer, lfs_size_t size)
{
const char *disk = c->context;
int rc = disk_access_write(disk, buffer, block, size / c->block_size);
return errno_to_lfs(rc);
}
static int lfs_api_sync_blk(const struct lfs_config *c)
{
const char *disk = c->context;
int rc = disk_access_ioctl(disk, DISK_IOCTL_CTRL_SYNC, NULL);
return errno_to_lfs(rc);
}
#else
static int lfs_api_read_blk(const struct lfs_config *c, lfs_block_t block,
lfs_off_t off, void *buffer, lfs_size_t size)
{
return 0;
}
static int lfs_api_prog_blk(const struct lfs_config *c, lfs_block_t block,
lfs_off_t off, const void *buffer, lfs_size_t size)
{
return 0;
}
static int lfs_api_sync_blk(const struct lfs_config *c)
{
return 0;
}
#endif /* CONFIG_FS_LITTLEFS_BLK_DEV */
static int lfs_api_erase_blk(const struct lfs_config *c, lfs_block_t block)
{
return 0;
}
static int lfs_api_sync(const struct lfs_config *c)
{
return LFS_ERR_OK;
}
static void release_file_data(struct fs_file_t *fp)
{
struct lfs_file_data *fdp = fp->filep;
if (fdp->config.buffer) {
fc_release(fdp->cache_block);
}
k_mem_slab_free(&file_data_pool, &fp->filep);
fp->filep = NULL;
}
static int lfs_flags_from_zephyr(unsigned int zflags)
{
int flags = (zflags & FS_O_CREATE) ? LFS_O_CREAT : 0;
/* LFS_O_READONLY and LFS_O_WRONLY can be selected at the same time,
* this is not a mistake, together they create RDWR access.
*/
flags |= (zflags & FS_O_READ) ? LFS_O_RDONLY : 0;
flags |= (zflags & FS_O_WRITE) ? LFS_O_WRONLY : 0;
flags |= (zflags & FS_O_APPEND) ? LFS_O_APPEND : 0;
return flags;
}
static int littlefs_open(struct fs_file_t *fp, const char *path,
fs_mode_t zflags)
{
struct fs_littlefs *fs = fp->mp->fs_data;
struct lfs *lfs = &fs->lfs;
int flags = lfs_flags_from_zephyr(zflags);
int ret = k_mem_slab_alloc(&file_data_pool, &fp->filep, K_NO_WAIT);
if (ret != 0) {
return ret;
}
struct lfs_file_data *fdp = fp->filep;
memset(fdp, 0, sizeof(*fdp));
fdp->cache_block = fc_allocate(lfs->cfg->cache_size);
if (fdp->cache_block == NULL) {
ret = -ENOMEM;
goto out;
}
fdp->config.buffer = fdp->cache_block;
path = fs_impl_strip_prefix(path, fp->mp);
fs_lock(fs);
ret = lfs_file_opencfg(&fs->lfs, &fdp->file,
path, flags, &fdp->config);
fs_unlock(fs);
out:
if (ret < 0) {
release_file_data(fp);
}
return lfs_to_errno(ret);
}
static int littlefs_close(struct fs_file_t *fp)
{
struct fs_littlefs *fs = fp->mp->fs_data;
fs_lock(fs);
int ret = lfs_file_close(&fs->lfs, LFS_FILEP(fp));
fs_unlock(fs);
release_file_data(fp);
return lfs_to_errno(ret);
}
static int littlefs_unlink(struct fs_mount_t *mountp, const char *path)
{
struct fs_littlefs *fs = mountp->fs_data;
path = fs_impl_strip_prefix(path, mountp);
fs_lock(fs);
int ret = lfs_remove(&fs->lfs, path);
fs_unlock(fs);
return lfs_to_errno(ret);
}
static int littlefs_rename(struct fs_mount_t *mountp, const char *from,
const char *to)
{
struct fs_littlefs *fs = mountp->fs_data;
from = fs_impl_strip_prefix(from, mountp);
to = fs_impl_strip_prefix(to, mountp);
fs_lock(fs);
int ret = lfs_rename(&fs->lfs, from, to);
fs_unlock(fs);
return lfs_to_errno(ret);
}
static ssize_t littlefs_read(struct fs_file_t *fp, void *ptr, size_t len)
{
struct fs_littlefs *fs = fp->mp->fs_data;
fs_lock(fs);
ssize_t ret = lfs_file_read(&fs->lfs, LFS_FILEP(fp), ptr, len);
fs_unlock(fs);
return lfs_to_errno(ret);
}
static ssize_t littlefs_write(struct fs_file_t *fp, const void *ptr, size_t len)
{
struct fs_littlefs *fs = fp->mp->fs_data;
fs_lock(fs);
ssize_t ret = lfs_file_write(&fs->lfs, LFS_FILEP(fp), ptr, len);
fs_unlock(fs);
return lfs_to_errno(ret);
}
BUILD_ASSERT((FS_SEEK_SET == LFS_SEEK_SET)
&& (FS_SEEK_CUR == LFS_SEEK_CUR)
&& (FS_SEEK_END == LFS_SEEK_END));
static int littlefs_seek(struct fs_file_t *fp, off_t off, int whence)
{
struct fs_littlefs *fs = fp->mp->fs_data;
fs_lock(fs);
off_t ret = lfs_file_seek(&fs->lfs, LFS_FILEP(fp), off, whence);
fs_unlock(fs);
if (ret >= 0) {
ret = 0;
}
return lfs_to_errno(ret);
}
static off_t littlefs_tell(struct fs_file_t *fp)
{
struct fs_littlefs *fs = fp->mp->fs_data;
fs_lock(fs);
off_t ret = lfs_file_tell(&fs->lfs, LFS_FILEP(fp));
fs_unlock(fs);
return ret;
}
static int littlefs_truncate(struct fs_file_t *fp, off_t length)
{
struct fs_littlefs *fs = fp->mp->fs_data;
fs_lock(fs);
int ret = lfs_file_truncate(&fs->lfs, LFS_FILEP(fp), length);
fs_unlock(fs);
return lfs_to_errno(ret);
}
static int littlefs_sync(struct fs_file_t *fp)
{
struct fs_littlefs *fs = fp->mp->fs_data;
fs_lock(fs);
int ret = lfs_file_sync(&fs->lfs, LFS_FILEP(fp));
fs_unlock(fs);
return lfs_to_errno(ret);
}
static int littlefs_mkdir(struct fs_mount_t *mountp, const char *path)
{
struct fs_littlefs *fs = mountp->fs_data;
path = fs_impl_strip_prefix(path, mountp);
fs_lock(fs);
int ret = lfs_mkdir(&fs->lfs, path);
fs_unlock(fs);
return lfs_to_errno(ret);
}
static int littlefs_opendir(struct fs_dir_t *dp, const char *path)
{
struct fs_littlefs *fs = dp->mp->fs_data;
if (k_mem_slab_alloc(&lfs_dir_pool, &dp->dirp, K_NO_WAIT) != 0) {
return -ENOMEM;
}
memset(dp->dirp, 0, sizeof(struct lfs_dir));
path = fs_impl_strip_prefix(path, dp->mp);
fs_lock(fs);
int ret = lfs_dir_open(&fs->lfs, dp->dirp, path);
fs_unlock(fs);
if (ret < 0) {
k_mem_slab_free(&lfs_dir_pool, &dp->dirp);
}
return lfs_to_errno(ret);
}
static void info_to_dirent(const struct lfs_info *info, struct fs_dirent *entry)
{
entry->type = ((info->type == LFS_TYPE_DIR) ?
FS_DIR_ENTRY_DIR : FS_DIR_ENTRY_FILE);
entry->size = info->size;
strncpy(entry->name, info->name, sizeof(entry->name));
entry->name[sizeof(entry->name) - 1] = '\0';
}
static int littlefs_readdir(struct fs_dir_t *dp, struct fs_dirent *entry)
{
struct fs_littlefs *fs = dp->mp->fs_data;
fs_lock(fs);
struct lfs_info info;
int ret = lfs_dir_read(&fs->lfs, dp->dirp, &info);
fs_unlock(fs);
if (ret > 0) {
info_to_dirent(&info, entry);
ret = 0;
} else if (ret == 0) {
entry->name[0] = 0;
}
return lfs_to_errno(ret);
}
static int littlefs_closedir(struct fs_dir_t *dp)
{
struct fs_littlefs *fs = dp->mp->fs_data;
fs_lock(fs);
int ret = lfs_dir_close(&fs->lfs, dp->dirp);
fs_unlock(fs);
k_mem_slab_free(&lfs_dir_pool, &dp->dirp);
return lfs_to_errno(ret);
}
static int littlefs_stat(struct fs_mount_t *mountp,
const char *path, struct fs_dirent *entry)
{
struct fs_littlefs *fs = mountp->fs_data;
path = fs_impl_strip_prefix(path, mountp);
fs_lock(fs);
struct lfs_info info;
int ret = lfs_stat(&fs->lfs, path, &info);
fs_unlock(fs);
if (ret >= 0) {
info_to_dirent(&info, entry);
ret = 0;
}
return lfs_to_errno(ret);
}
static int littlefs_statvfs(struct fs_mount_t *mountp,
const char *path, struct fs_statvfs *stat)
{
struct fs_littlefs *fs = mountp->fs_data;
struct lfs *lfs = &fs->lfs;
stat->f_bsize = lfs->cfg->prog_size;
stat->f_frsize = lfs->cfg->block_size;
stat->f_blocks = lfs->cfg->block_count;
path = fs_impl_strip_prefix(path, mountp);
fs_lock(fs);
ssize_t ret = lfs_fs_size(lfs);
fs_unlock(fs);
if (ret >= 0) {
stat->f_bfree = stat->f_blocks - ret;
ret = 0;
}
return lfs_to_errno(ret);
}
/* Return maximum page size in a flash area. There's no flash_area
* API to implement this, so we have to make one here.
*/
struct get_page_ctx {
const struct flash_area *area;
lfs_size_t max_size;
};
static bool get_page_cb(const struct flash_pages_info *info, void *ctxp)
{
struct get_page_ctx *ctx = ctxp;
size_t info_start = info->start_offset;
size_t info_end = info_start + info->size - 1U;
size_t area_start = ctx->area->fa_off;
size_t area_end = area_start + ctx->area->fa_size - 1U;
/* Ignore pages outside the area */
if (info_end < area_start) {
return true;
}
if (info_start > area_end) {
return false;
}
if (info->size > ctx->max_size) {
ctx->max_size = info->size;
}
return true;
}
/* Iterate over all page groups in the flash area and return the
* largest page size we see. This works as long as the partition is
* aligned so that erasing with this size is supported throughout the
* partition.
*/
static lfs_size_t get_block_size(const struct flash_area *fa)
{
struct get_page_ctx ctx = {
.area = fa,
.max_size = 0,
};
const struct device *dev = flash_area_get_device(fa);
flash_page_foreach(dev, get_page_cb, &ctx);
return ctx.max_size;
}
static int littlefs_flash_init(struct fs_littlefs *fs, uintptr_t dev_id)
{
unsigned int area_id = (uintptr_t)dev_id;
const struct flash_area **fap = (const struct flash_area **)&fs->backend;
const struct device *dev;
int ret;
/* Open flash area */
ret = flash_area_open(area_id, fap);
if ((ret < 0) || (*fap == NULL)) {
LOG_ERR("can't open flash area %d", area_id);
return -ENODEV;
}
LOG_DBG("FS area %u at 0x%x for %u bytes", area_id,
(uint32_t)(*fap)->fa_off, (uint32_t)(*fap)->fa_size);
dev = flash_area_get_device(*fap);
if (dev == NULL) {
LOG_ERR("can't get flash device: %s",
(*fap)->fa_dev->name);
return -ENODEV;
}
fs->backend = (void *) *fap;
return 0;
}
static int littlefs_init_backend(struct fs_littlefs *fs, uintptr_t dev_id, int flags)
{
int ret = 0;
if (littlefs_on_blkdev(flags)) {
fs->backend = (void *) dev_id;
ret = disk_access_init((char *) fs->backend);
if (ret < 0) {
LOG_ERR("Storage init ERROR!");
return ret;
}
} else {
ret = littlefs_flash_init(fs, dev_id);
if (ret < 0) {
return ret;
}
}
return 0;
}
static int littlefs_init_cfg(struct fs_littlefs *fs, int flags)
{
int ret = 0;
BUILD_ASSERT(CONFIG_FS_LITTLEFS_READ_SIZE > 0);
BUILD_ASSERT(CONFIG_FS_LITTLEFS_PROG_SIZE > 0);
BUILD_ASSERT(CONFIG_FS_LITTLEFS_CACHE_SIZE > 0);
BUILD_ASSERT(CONFIG_FS_LITTLEFS_LOOKAHEAD_SIZE > 0);
BUILD_ASSERT((CONFIG_FS_LITTLEFS_LOOKAHEAD_SIZE % 8) == 0);
BUILD_ASSERT((CONFIG_FS_LITTLEFS_CACHE_SIZE
% CONFIG_FS_LITTLEFS_READ_SIZE) == 0);
BUILD_ASSERT((CONFIG_FS_LITTLEFS_CACHE_SIZE
% CONFIG_FS_LITTLEFS_PROG_SIZE) == 0);
struct lfs_config *lcp = &fs->cfg;
lfs_size_t read_size = lcp->read_size;
if (read_size == 0) {
read_size = CONFIG_FS_LITTLEFS_READ_SIZE;
}
lfs_size_t prog_size = lcp->prog_size;
if (prog_size == 0) {
prog_size = CONFIG_FS_LITTLEFS_PROG_SIZE;
}
/* Yes, you can override block size. */
lfs_size_t block_size = lcp->block_size;
if (block_size == 0) {
if (littlefs_on_blkdev(flags)) {
ret = disk_access_ioctl((char *) fs->backend,
DISK_IOCTL_GET_SECTOR_SIZE,
&block_size);
if (ret < 0) {
LOG_ERR("Unable to get sector size");
return ret;
}
} else {
block_size = get_block_size((struct flash_area *)fs->backend);
}
}
if (block_size == 0) {
__ASSERT_NO_MSG(block_size != 0);
return -EINVAL;
}
int32_t block_cycles = lcp->block_cycles;
if (block_cycles == 0) {
block_cycles = CONFIG_FS_LITTLEFS_BLOCK_CYCLES;
}
if (block_cycles <= 0) {
/* Disable leveling (littlefs v2.1+ semantics) */
block_cycles = -1;
}
lfs_size_t cache_size = lcp->cache_size;
if (cache_size == 0) {
cache_size = CONFIG_FS_LITTLEFS_CACHE_SIZE;
}
lfs_size_t lookahead_size = lcp->lookahead_size;
if (lookahead_size == 0) {
lookahead_size = CONFIG_FS_LITTLEFS_LOOKAHEAD_SIZE;
}
/* No, you don't get to override this. */
lfs_size_t block_count;
if (littlefs_on_blkdev(flags)) {
ret = disk_access_ioctl((char *) fs->backend,
DISK_IOCTL_GET_SECTOR_COUNT,
&block_count);
if (ret < 0) {
LOG_ERR("Unable to get sector count!");
return -EINVAL;
}
LOG_INF("FS at %s: is %u 0x%x-byte blocks with %u cycle",
(char *) fs->backend, block_count, block_size,
block_cycles);
} else {
block_count = ((struct flash_area *)fs->backend)->fa_size
/ block_size;
const struct device *dev =
flash_area_get_device((struct flash_area *)fs->backend);
LOG_INF("FS at %s:0x%x is %u 0x%x-byte blocks with %u cycle",
dev->name,
(uint32_t)((struct flash_area *)fs->backend)->fa_off,
block_count, block_size, block_cycles);
LOG_INF("sizes: rd %u ; pr %u ; ca %u ; la %u",
read_size, prog_size, cache_size, lookahead_size);
}
__ASSERT_NO_MSG(prog_size != 0);
__ASSERT_NO_MSG(read_size != 0);
__ASSERT_NO_MSG(cache_size != 0);
__ASSERT_NO_MSG(block_size != 0);
__ASSERT((block_size % prog_size) == 0,
"erase size must be multiple of write size");
__ASSERT((block_size % cache_size) == 0,
"cache size incompatible with block size");
lcp->context = fs->backend;
/* Set the validated/defaulted values. */
if (littlefs_on_blkdev(flags)) {
lcp->read = lfs_api_read_blk;
lcp->prog = lfs_api_prog_blk;
lcp->erase = lfs_api_erase_blk;
lcp->read_size = block_size;
lcp->prog_size = block_size;
lcp->cache_size = block_size;
lcp->lookahead_size = block_size * 4;
lcp->sync = lfs_api_sync_blk;
LOG_INF("sizes: rd %u ; pr %u ; ca %u ; la %u",
lcp->read_size, lcp->prog_size, lcp->cache_size,
lcp->lookahead_size);
} else {
__ASSERT((((struct flash_area *)fs->backend)->fa_size %
block_size) == 0,
"partition size must be multiple of block size");
lcp->read = lfs_api_read;
lcp->prog = lfs_api_prog;
lcp->erase = lfs_api_erase;
lcp->read_size = read_size;
lcp->prog_size = prog_size;
lcp->cache_size = cache_size;
lcp->lookahead_size = lookahead_size;
lcp->sync = lfs_api_sync;
}
lcp->block_size = block_size;
lcp->block_count = block_count;
lcp->block_cycles = block_cycles;
return 0;
}
static int littlefs_init_fs(struct fs_littlefs *fs, int dev_id, int flags)
{
int ret = 0;
LOG_INF("LittleFS version %u.%u, disk version %u.%u",
LFS_VERSION_MAJOR, LFS_VERSION_MINOR,
LFS_DISK_VERSION_MAJOR, LFS_DISK_VERSION_MINOR);
if (fs->backend) {
return -EBUSY;
}
ret = littlefs_init_backend(fs, dev_id, flags);
if (ret < 0) {
return ret;
}
ret = littlefs_init_cfg(fs, flags);
if (ret < 0) {
return ret;
}
return 0;
}
static int littlefs_mount(struct fs_mount_t *mountp)
{
int ret = 0;
struct fs_littlefs *fs = mountp->fs_data;
/* Create and take mutex. */
k_mutex_init(&fs->mutex);
fs_lock(fs);
ret = littlefs_init_fs(fs, (uintptr_t)mountp->storage_dev, mountp->flags);
if (ret < 0) {
goto out;
}
/* Mount it, formatting if needed. */
ret = lfs_mount(&fs->lfs, &fs->cfg);
if (ret < 0 &&
(mountp->flags & FS_MOUNT_FLAG_NO_FORMAT) == 0) {
LOG_WRN("can't mount (LFS %d); formatting", ret);
if ((mountp->flags & FS_MOUNT_FLAG_READ_ONLY) == 0) {
ret = lfs_format(&fs->lfs, &fs->cfg);
if (ret < 0) {
LOG_ERR("format failed (LFS %d)", ret);
ret = lfs_to_errno(ret);
goto out;
}
} else {
LOG_ERR("can not format read-only system");
ret = -EROFS;
goto out;
}
ret = lfs_mount(&fs->lfs, &fs->cfg);
if (ret < 0) {
LOG_ERR("remount after format failed (LFS %d)", ret);
ret = lfs_to_errno(ret);
goto out;
}
}
LOG_INF("%s mounted", mountp->mnt_point);
out:
if (ret < 0) {
fs->backend = NULL;
}
fs_unlock(fs);
return ret;
}
#if defined(CONFIG_FILE_SYSTEM_MKFS)
FS_LITTLEFS_DECLARE_DEFAULT_CONFIG(fs_cfg);
static int littlefs_mkfs(uintptr_t dev_id, void *cfg, int flags)
{
int ret = 0;
struct fs_littlefs *fs = &fs_cfg;
if (cfg != NULL) {
fs = (struct fs_littlefs *)cfg;
}
fs->backend = NULL;
/* Create and take mutex. */
k_mutex_init(&fs->mutex);
fs_lock(fs);
ret = littlefs_init_fs(fs, dev_id, flags);
if (ret < 0) {
goto out;
}
ret = lfs_format(&fs->lfs, &fs->cfg);
if (ret < 0) {
LOG_ERR("format failed (LFS %d)", ret);
ret = lfs_to_errno(ret);
goto out;
}
out:
fs->backend = NULL;
fs_unlock(fs);
return ret;
}
#endif /* CONFIG_FILE_SYSTEM_MKFS */
static int littlefs_unmount(struct fs_mount_t *mountp)
{
struct fs_littlefs *fs = mountp->fs_data;
fs_lock(fs);
lfs_unmount(&fs->lfs);
if (!littlefs_on_blkdev(mountp->flags)) {
flash_area_close(fs->backend);
}
fs->backend = NULL;
fs_unlock(fs);
LOG_INF("%s unmounted", mountp->mnt_point);
return 0;
}
/* File system interface */
static const struct fs_file_system_t littlefs_fs = {
.open = littlefs_open,
.close = littlefs_close,
.read = littlefs_read,
.write = littlefs_write,
.lseek = littlefs_seek,
.tell = littlefs_tell,
.truncate = littlefs_truncate,
.sync = littlefs_sync,
.opendir = littlefs_opendir,
.readdir = littlefs_readdir,
.closedir = littlefs_closedir,
.mount = littlefs_mount,
.unmount = littlefs_unmount,
.unlink = littlefs_unlink,
.rename = littlefs_rename,
.mkdir = littlefs_mkdir,
.stat = littlefs_stat,
.statvfs = littlefs_statvfs,
#if defined(CONFIG_FILE_SYSTEM_MKFS)
.mkfs = littlefs_mkfs,
#endif
};
#define DT_DRV_COMPAT zephyr_fstab_littlefs
#define FS_PARTITION(inst) DT_PHANDLE_BY_IDX(DT_DRV_INST(inst), partition, 0)
#define DEFINE_FS(inst) \
static uint8_t __aligned(4) \
read_buffer_##inst[DT_INST_PROP(inst, cache_size)]; \
static uint8_t __aligned(4) \
prog_buffer_##inst[DT_INST_PROP(inst, cache_size)]; \
static uint32_t lookahead_buffer_##inst[DT_INST_PROP(inst, lookahead_size) \
/ sizeof(uint32_t)]; \
BUILD_ASSERT(DT_INST_PROP(inst, read_size) > 0); \
BUILD_ASSERT(DT_INST_PROP(inst, prog_size) > 0); \
BUILD_ASSERT(DT_INST_PROP(inst, cache_size) > 0); \
BUILD_ASSERT(DT_INST_PROP(inst, lookahead_size) > 0); \
BUILD_ASSERT((DT_INST_PROP(inst, lookahead_size) % 8) == 0); \
BUILD_ASSERT((DT_INST_PROP(inst, cache_size) \
% DT_INST_PROP(inst, read_size)) == 0); \
BUILD_ASSERT((DT_INST_PROP(inst, cache_size) \
% DT_INST_PROP(inst, prog_size)) == 0); \
static struct fs_littlefs fs_data_##inst = { \
.cfg = { \
.read_size = DT_INST_PROP(inst, read_size), \
.prog_size = DT_INST_PROP(inst, prog_size), \
.cache_size = DT_INST_PROP(inst, cache_size), \
.lookahead_size = DT_INST_PROP(inst, lookahead_size), \
.read_buffer = read_buffer_##inst, \
.prog_buffer = prog_buffer_##inst, \
.lookahead_buffer = lookahead_buffer_##inst, \
}, \
}; \
struct fs_mount_t FS_FSTAB_ENTRY(DT_DRV_INST(inst)) = { \
.type = FS_LITTLEFS, \
.mnt_point = DT_INST_PROP(inst, mount_point), \
.fs_data = &fs_data_##inst, \
.storage_dev = (void *)DT_FIXED_PARTITION_ID(FS_PARTITION(inst)), \
.flags = FSTAB_ENTRY_DT_MOUNT_FLAGS(DT_DRV_INST(inst)), \
};
DT_INST_FOREACH_STATUS_OKAY(DEFINE_FS)
#define REFERENCE_MOUNT(inst) (&FS_FSTAB_ENTRY(DT_DRV_INST(inst))),
static void mount_init(struct fs_mount_t *mp)
{
LOG_INF("littlefs partition at %s", mp->mnt_point);
if ((mp->flags & FS_MOUNT_FLAG_AUTOMOUNT) != 0) {
int rc = fs_mount(mp);
if (rc < 0) {
LOG_ERR("Automount %s failed: %d",
mp->mnt_point, rc);
} else {
LOG_INF("Automount %s succeeded",
mp->mnt_point);
}
}
}
static int littlefs_init(const struct device *dev)
{
ARG_UNUSED(dev);
static struct fs_mount_t *partitions[] = {
DT_INST_FOREACH_STATUS_OKAY(REFERENCE_MOUNT)
};
int rc = fs_register(FS_LITTLEFS, &littlefs_fs);
if (rc == 0) {
struct fs_mount_t **mpi = partitions;
while (mpi < (partitions + ARRAY_SIZE(partitions))) {
mount_init(*mpi++);
}
}
return rc;
}
SYS_INIT(littlefs_init, POST_KERNEL, 99);