| /* NVS: non volatile storage in flash |
| * |
| * Copyright (c) 2018 Laczen |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| #include <zephyr/drivers/flash.h> |
| #include <string.h> |
| #include <errno.h> |
| #include <inttypes.h> |
| #include <zephyr/fs/nvs.h> |
| #include <zephyr/sys/crc.h> |
| #include "nvs_priv.h" |
| |
| #include <zephyr/logging/log.h> |
| LOG_MODULE_REGISTER(fs_nvs, CONFIG_NVS_LOG_LEVEL); |
| |
| static int nvs_prev_ate(struct nvs_fs *fs, uint32_t *addr, struct nvs_ate *ate); |
| static int nvs_ate_valid(struct nvs_fs *fs, const struct nvs_ate *entry); |
| |
| #ifdef CONFIG_NVS_LOOKUP_CACHE |
| |
| static inline size_t nvs_lookup_cache_pos(uint16_t id) |
| { |
| size_t pos; |
| |
| #if CONFIG_NVS_LOOKUP_CACHE_SIZE <= UINT8_MAX |
| /* |
| * CRC8-CCITT is used for ATE checksums and it also acts well as a hash |
| * function, so it can be a good choice from the code size perspective. |
| * However, other hash functions can be used as well if proved better |
| * performance. |
| */ |
| pos = crc8_ccitt(CRC8_CCITT_INITIAL_VALUE, &id, sizeof(id)); |
| #else |
| pos = crc16_ccitt(0xffff, (const uint8_t *)&id, sizeof(id)); |
| #endif |
| |
| return pos % CONFIG_NVS_LOOKUP_CACHE_SIZE; |
| } |
| |
| static int nvs_lookup_cache_rebuild(struct nvs_fs *fs) |
| { |
| int rc; |
| uint32_t addr, ate_addr; |
| uint32_t *cache_entry; |
| struct nvs_ate ate; |
| |
| memset(fs->lookup_cache, 0xff, sizeof(fs->lookup_cache)); |
| addr = fs->ate_wra; |
| |
| while (true) { |
| /* Make a copy of 'addr' as it will be advanced by nvs_pref_ate() */ |
| ate_addr = addr; |
| rc = nvs_prev_ate(fs, &addr, &ate); |
| |
| if (rc) { |
| return rc; |
| } |
| |
| cache_entry = &fs->lookup_cache[nvs_lookup_cache_pos(ate.id)]; |
| |
| if (ate.id != 0xFFFF && *cache_entry == NVS_LOOKUP_CACHE_NO_ADDR && |
| nvs_ate_valid(fs, &ate)) { |
| *cache_entry = ate_addr; |
| } |
| |
| if (addr == fs->ate_wra) { |
| break; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void nvs_lookup_cache_invalidate(struct nvs_fs *fs, uint32_t sector) |
| { |
| uint32_t *cache_entry = fs->lookup_cache; |
| uint32_t *const cache_end = &fs->lookup_cache[CONFIG_NVS_LOOKUP_CACHE_SIZE]; |
| |
| for (; cache_entry < cache_end; ++cache_entry) { |
| if ((*cache_entry >> ADDR_SECT_SHIFT) == sector) { |
| *cache_entry = NVS_LOOKUP_CACHE_NO_ADDR; |
| } |
| } |
| } |
| |
| #endif /* CONFIG_NVS_LOOKUP_CACHE */ |
| |
| /* basic routines */ |
| /* nvs_al_size returns size aligned to fs->write_block_size */ |
| static inline size_t nvs_al_size(struct nvs_fs *fs, size_t len) |
| { |
| uint8_t write_block_size = fs->flash_parameters->write_block_size; |
| |
| if (write_block_size <= 1U) { |
| return len; |
| } |
| return (len + (write_block_size - 1U)) & ~(write_block_size - 1U); |
| } |
| /* end basic routines */ |
| |
| /* flash routines */ |
| /* basic aligned flash write to nvs address */ |
| static int nvs_flash_al_wrt(struct nvs_fs *fs, uint32_t addr, const void *data, |
| size_t len) |
| { |
| const uint8_t *data8 = (const uint8_t *)data; |
| int rc = 0; |
| off_t offset; |
| size_t blen; |
| uint8_t buf[NVS_BLOCK_SIZE]; |
| |
| if (!len) { |
| /* Nothing to write, avoid changing the flash protection */ |
| return 0; |
| } |
| |
| offset = fs->offset; |
| offset += fs->sector_size * (addr >> ADDR_SECT_SHIFT); |
| offset += addr & ADDR_OFFS_MASK; |
| |
| blen = len & ~(fs->flash_parameters->write_block_size - 1U); |
| if (blen > 0) { |
| rc = flash_write(fs->flash_device, offset, data8, blen); |
| if (rc) { |
| /* flash write error */ |
| goto end; |
| } |
| len -= blen; |
| offset += blen; |
| data8 += blen; |
| } |
| if (len) { |
| memcpy(buf, data8, len); |
| (void)memset(buf + len, fs->flash_parameters->erase_value, |
| fs->flash_parameters->write_block_size - len); |
| |
| rc = flash_write(fs->flash_device, offset, buf, |
| fs->flash_parameters->write_block_size); |
| } |
| |
| end: |
| return rc; |
| } |
| |
| /* basic flash read from nvs address */ |
| static int nvs_flash_rd(struct nvs_fs *fs, uint32_t addr, void *data, |
| size_t len) |
| { |
| int rc; |
| off_t offset; |
| |
| offset = fs->offset; |
| offset += fs->sector_size * (addr >> ADDR_SECT_SHIFT); |
| offset += addr & ADDR_OFFS_MASK; |
| |
| rc = flash_read(fs->flash_device, offset, data, len); |
| return rc; |
| } |
| |
| /* allocation entry write */ |
| static int nvs_flash_ate_wrt(struct nvs_fs *fs, const struct nvs_ate *entry) |
| { |
| int rc; |
| |
| rc = nvs_flash_al_wrt(fs, fs->ate_wra, entry, |
| sizeof(struct nvs_ate)); |
| #ifdef CONFIG_NVS_LOOKUP_CACHE |
| /* 0xFFFF is a special-purpose identifier. Exclude it from the cache */ |
| if (entry->id != 0xFFFF) { |
| fs->lookup_cache[nvs_lookup_cache_pos(entry->id)] = fs->ate_wra; |
| } |
| #endif |
| fs->ate_wra -= nvs_al_size(fs, sizeof(struct nvs_ate)); |
| |
| return rc; |
| } |
| |
| /* data write */ |
| static int nvs_flash_data_wrt(struct nvs_fs *fs, const void *data, size_t len) |
| { |
| int rc; |
| |
| rc = nvs_flash_al_wrt(fs, fs->data_wra, data, len); |
| fs->data_wra += nvs_al_size(fs, len); |
| |
| return rc; |
| } |
| |
| /* flash ate read */ |
| static int nvs_flash_ate_rd(struct nvs_fs *fs, uint32_t addr, |
| struct nvs_ate *entry) |
| { |
| return nvs_flash_rd(fs, addr, entry, sizeof(struct nvs_ate)); |
| } |
| |
| /* end of basic flash routines */ |
| |
| /* advanced flash routines */ |
| |
| /* nvs_flash_block_cmp compares the data in flash at addr to data |
| * in blocks of size NVS_BLOCK_SIZE aligned to fs->write_block_size |
| * returns 0 if equal, 1 if not equal, errcode if error |
| */ |
| static int nvs_flash_block_cmp(struct nvs_fs *fs, uint32_t addr, const void *data, |
| size_t len) |
| { |
| const uint8_t *data8 = (const uint8_t *)data; |
| int rc; |
| size_t bytes_to_cmp, block_size; |
| uint8_t buf[NVS_BLOCK_SIZE]; |
| |
| block_size = |
| NVS_BLOCK_SIZE & ~(fs->flash_parameters->write_block_size - 1U); |
| |
| while (len) { |
| bytes_to_cmp = MIN(block_size, len); |
| rc = nvs_flash_rd(fs, addr, buf, bytes_to_cmp); |
| if (rc) { |
| return rc; |
| } |
| rc = memcmp(data8, buf, bytes_to_cmp); |
| if (rc) { |
| return 1; |
| } |
| len -= bytes_to_cmp; |
| addr += bytes_to_cmp; |
| data8 += bytes_to_cmp; |
| } |
| return 0; |
| } |
| |
| /* nvs_flash_cmp_const compares the data in flash at addr to a constant |
| * value. returns 0 if all data in flash is equal to value, 1 if not equal, |
| * errcode if error |
| */ |
| static int nvs_flash_cmp_const(struct nvs_fs *fs, uint32_t addr, uint8_t value, |
| size_t len) |
| { |
| int rc; |
| size_t bytes_to_cmp, block_size; |
| uint8_t cmp[NVS_BLOCK_SIZE]; |
| |
| block_size = |
| NVS_BLOCK_SIZE & ~(fs->flash_parameters->write_block_size - 1U); |
| |
| (void)memset(cmp, value, block_size); |
| while (len) { |
| bytes_to_cmp = MIN(block_size, len); |
| rc = nvs_flash_block_cmp(fs, addr, cmp, bytes_to_cmp); |
| if (rc) { |
| return rc; |
| } |
| len -= bytes_to_cmp; |
| addr += bytes_to_cmp; |
| } |
| return 0; |
| } |
| |
| /* flash block move: move a block at addr to the current data write location |
| * and updates the data write location. |
| */ |
| static int nvs_flash_block_move(struct nvs_fs *fs, uint32_t addr, size_t len) |
| { |
| int rc; |
| size_t bytes_to_copy, block_size; |
| uint8_t buf[NVS_BLOCK_SIZE]; |
| |
| block_size = |
| NVS_BLOCK_SIZE & ~(fs->flash_parameters->write_block_size - 1U); |
| |
| while (len) { |
| bytes_to_copy = MIN(block_size, len); |
| rc = nvs_flash_rd(fs, addr, buf, bytes_to_copy); |
| if (rc) { |
| return rc; |
| } |
| rc = nvs_flash_data_wrt(fs, buf, bytes_to_copy); |
| if (rc) { |
| return rc; |
| } |
| len -= bytes_to_copy; |
| addr += bytes_to_copy; |
| } |
| return 0; |
| } |
| |
| /* erase a sector and verify erase was OK. |
| * return 0 if OK, errorcode on error. |
| */ |
| static int nvs_flash_erase_sector(struct nvs_fs *fs, uint32_t addr) |
| { |
| int rc; |
| off_t offset; |
| |
| addr &= ADDR_SECT_MASK; |
| |
| offset = fs->offset; |
| offset += fs->sector_size * (addr >> ADDR_SECT_SHIFT); |
| |
| LOG_DBG("Erasing flash at %lx, len %d", (long int) offset, |
| fs->sector_size); |
| |
| #ifdef CONFIG_NVS_LOOKUP_CACHE |
| nvs_lookup_cache_invalidate(fs, addr >> ADDR_SECT_SHIFT); |
| #endif |
| rc = flash_erase(fs->flash_device, offset, fs->sector_size); |
| |
| if (rc) { |
| return rc; |
| } |
| |
| if (nvs_flash_cmp_const(fs, addr, fs->flash_parameters->erase_value, |
| fs->sector_size)) { |
| rc = -ENXIO; |
| } |
| |
| return rc; |
| } |
| |
| /* crc update on allocation entry */ |
| static void nvs_ate_crc8_update(struct nvs_ate *entry) |
| { |
| uint8_t crc8; |
| |
| crc8 = crc8_ccitt(0xff, entry, offsetof(struct nvs_ate, crc8)); |
| entry->crc8 = crc8; |
| } |
| |
| /* crc check on allocation entry |
| * returns 0 if OK, 1 on crc fail |
| */ |
| static int nvs_ate_crc8_check(const struct nvs_ate *entry) |
| { |
| uint8_t crc8; |
| |
| crc8 = crc8_ccitt(0xff, entry, offsetof(struct nvs_ate, crc8)); |
| if (crc8 == entry->crc8) { |
| return 0; |
| } |
| return 1; |
| } |
| |
| /* nvs_ate_cmp_const compares an ATE to a constant value. returns 0 if |
| * the whole ATE is equal to value, 1 if not equal. |
| */ |
| |
| static int nvs_ate_cmp_const(const struct nvs_ate *entry, uint8_t value) |
| { |
| const uint8_t *data8 = (const uint8_t *)entry; |
| int i; |
| |
| for (i = 0; i < sizeof(struct nvs_ate); i++) { |
| if (data8[i] != value) { |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* nvs_ate_valid validates an ate: |
| * return 1 if crc8 and offset valid, |
| * 0 otherwise |
| */ |
| static int nvs_ate_valid(struct nvs_fs *fs, const struct nvs_ate *entry) |
| { |
| size_t ate_size; |
| |
| ate_size = nvs_al_size(fs, sizeof(struct nvs_ate)); |
| |
| if ((nvs_ate_crc8_check(entry)) || |
| (entry->offset >= (fs->sector_size - ate_size))) { |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| /* nvs_close_ate_valid validates an sector close ate: a valid sector close ate: |
| * - valid ate |
| * - len = 0 and id = 0xFFFF |
| * - offset points to location at ate multiple from sector size |
| * return 1 if valid, 0 otherwise |
| */ |
| static int nvs_close_ate_valid(struct nvs_fs *fs, const struct nvs_ate *entry) |
| { |
| size_t ate_size; |
| |
| if ((!nvs_ate_valid(fs, entry)) || (entry->len != 0U) || |
| (entry->id != 0xFFFF)) { |
| return 0; |
| } |
| |
| ate_size = nvs_al_size(fs, sizeof(struct nvs_ate)); |
| if ((fs->sector_size - entry->offset) % ate_size) { |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| /* store an entry in flash */ |
| static int nvs_flash_wrt_entry(struct nvs_fs *fs, uint16_t id, const void *data, |
| size_t len) |
| { |
| int rc; |
| struct nvs_ate entry; |
| |
| entry.id = id; |
| entry.offset = (uint16_t)(fs->data_wra & ADDR_OFFS_MASK); |
| entry.len = (uint16_t)len; |
| entry.part = 0xff; |
| |
| nvs_ate_crc8_update(&entry); |
| |
| rc = nvs_flash_data_wrt(fs, data, len); |
| if (rc) { |
| return rc; |
| } |
| rc = nvs_flash_ate_wrt(fs, &entry); |
| if (rc) { |
| return rc; |
| } |
| |
| return 0; |
| } |
| /* end of flash routines */ |
| |
| /* If the closing ate is invalid, its offset cannot be trusted and |
| * the last valid ate of the sector should instead try to be recovered by going |
| * through all ate's. |
| * |
| * addr should point to the faulty closing ate and will be updated to the last |
| * valid ate. If no valid ate is found it will be left untouched. |
| */ |
| static int nvs_recover_last_ate(struct nvs_fs *fs, uint32_t *addr) |
| { |
| uint32_t data_end_addr, ate_end_addr; |
| struct nvs_ate end_ate; |
| size_t ate_size; |
| int rc; |
| |
| LOG_DBG("Recovering last ate from sector %d", |
| (*addr >> ADDR_SECT_SHIFT)); |
| |
| ate_size = nvs_al_size(fs, sizeof(struct nvs_ate)); |
| |
| *addr -= ate_size; |
| ate_end_addr = *addr; |
| data_end_addr = *addr & ADDR_SECT_MASK; |
| while (ate_end_addr > data_end_addr) { |
| rc = nvs_flash_ate_rd(fs, ate_end_addr, &end_ate); |
| if (rc) { |
| return rc; |
| } |
| if (nvs_ate_valid(fs, &end_ate)) { |
| /* found a valid ate, update data_end_addr and *addr */ |
| data_end_addr &= ADDR_SECT_MASK; |
| data_end_addr += end_ate.offset + end_ate.len; |
| *addr = ate_end_addr; |
| } |
| ate_end_addr -= ate_size; |
| } |
| |
| return 0; |
| } |
| |
| /* walking through allocation entry list, from newest to oldest entries |
| * read ate from addr, modify addr to the previous ate |
| */ |
| static int nvs_prev_ate(struct nvs_fs *fs, uint32_t *addr, struct nvs_ate *ate) |
| { |
| int rc; |
| struct nvs_ate close_ate; |
| size_t ate_size; |
| |
| ate_size = nvs_al_size(fs, sizeof(struct nvs_ate)); |
| |
| rc = nvs_flash_ate_rd(fs, *addr, ate); |
| if (rc) { |
| return rc; |
| } |
| |
| *addr += ate_size; |
| if (((*addr) & ADDR_OFFS_MASK) != (fs->sector_size - ate_size)) { |
| return 0; |
| } |
| |
| /* last ate in sector, do jump to previous sector */ |
| if (((*addr) >> ADDR_SECT_SHIFT) == 0U) { |
| *addr += ((fs->sector_count - 1) << ADDR_SECT_SHIFT); |
| } else { |
| *addr -= (1 << ADDR_SECT_SHIFT); |
| } |
| |
| rc = nvs_flash_ate_rd(fs, *addr, &close_ate); |
| if (rc) { |
| return rc; |
| } |
| |
| rc = nvs_ate_cmp_const(&close_ate, fs->flash_parameters->erase_value); |
| /* at the end of filesystem */ |
| if (!rc) { |
| *addr = fs->ate_wra; |
| return 0; |
| } |
| |
| /* Update the address if the close ate is valid. |
| */ |
| if (nvs_close_ate_valid(fs, &close_ate)) { |
| (*addr) &= ADDR_SECT_MASK; |
| (*addr) += close_ate.offset; |
| return 0; |
| } |
| |
| /* The close_ate was invalid, `lets find out the last valid ate |
| * and point the address to this found ate. |
| * |
| * remark: if there was absolutely no valid data in the sector *addr |
| * is kept at sector_end - 2*ate_size, the next read will contain |
| * invalid data and continue with a sector jump |
| */ |
| return nvs_recover_last_ate(fs, addr); |
| } |
| |
| static void nvs_sector_advance(struct nvs_fs *fs, uint32_t *addr) |
| { |
| *addr += (1 << ADDR_SECT_SHIFT); |
| if ((*addr >> ADDR_SECT_SHIFT) == fs->sector_count) { |
| *addr -= (fs->sector_count << ADDR_SECT_SHIFT); |
| } |
| } |
| |
| /* allocation entry close (this closes the current sector) by writing offset |
| * of last ate to the sector end. |
| */ |
| static int nvs_sector_close(struct nvs_fs *fs) |
| { |
| int rc; |
| struct nvs_ate close_ate; |
| size_t ate_size; |
| |
| ate_size = nvs_al_size(fs, sizeof(struct nvs_ate)); |
| |
| close_ate.id = 0xFFFF; |
| close_ate.len = 0U; |
| close_ate.offset = (uint16_t)((fs->ate_wra + ate_size) & ADDR_OFFS_MASK); |
| |
| fs->ate_wra &= ADDR_SECT_MASK; |
| fs->ate_wra += (fs->sector_size - ate_size); |
| |
| nvs_ate_crc8_update(&close_ate); |
| |
| rc = nvs_flash_ate_wrt(fs, &close_ate); |
| |
| nvs_sector_advance(fs, &fs->ate_wra); |
| |
| fs->data_wra = fs->ate_wra & ADDR_SECT_MASK; |
| |
| return 0; |
| } |
| |
| static int nvs_add_gc_done_ate(struct nvs_fs *fs) |
| { |
| struct nvs_ate gc_done_ate; |
| |
| LOG_DBG("Adding gc done ate at %x", fs->ate_wra & ADDR_OFFS_MASK); |
| gc_done_ate.id = 0xffff; |
| gc_done_ate.len = 0U; |
| gc_done_ate.offset = (uint16_t)(fs->data_wra & ADDR_OFFS_MASK); |
| nvs_ate_crc8_update(&gc_done_ate); |
| |
| return nvs_flash_ate_wrt(fs, &gc_done_ate); |
| } |
| |
| /* garbage collection: the address ate_wra has been updated to the new sector |
| * that has just been started. The data to gc is in the sector after this new |
| * sector. |
| */ |
| static int nvs_gc(struct nvs_fs *fs) |
| { |
| int rc; |
| struct nvs_ate close_ate, gc_ate, wlk_ate; |
| uint32_t sec_addr, gc_addr, gc_prev_addr, wlk_addr, wlk_prev_addr, |
| data_addr, stop_addr; |
| size_t ate_size; |
| |
| ate_size = nvs_al_size(fs, sizeof(struct nvs_ate)); |
| |
| sec_addr = (fs->ate_wra & ADDR_SECT_MASK); |
| nvs_sector_advance(fs, &sec_addr); |
| gc_addr = sec_addr + fs->sector_size - ate_size; |
| |
| /* if the sector is not closed don't do gc */ |
| rc = nvs_flash_ate_rd(fs, gc_addr, &close_ate); |
| if (rc < 0) { |
| /* flash error */ |
| return rc; |
| } |
| |
| rc = nvs_ate_cmp_const(&close_ate, fs->flash_parameters->erase_value); |
| if (!rc) { |
| goto gc_done; |
| } |
| |
| stop_addr = gc_addr - ate_size; |
| |
| if (nvs_close_ate_valid(fs, &close_ate)) { |
| gc_addr &= ADDR_SECT_MASK; |
| gc_addr += close_ate.offset; |
| } else { |
| rc = nvs_recover_last_ate(fs, &gc_addr); |
| if (rc) { |
| return rc; |
| } |
| } |
| |
| do { |
| gc_prev_addr = gc_addr; |
| rc = nvs_prev_ate(fs, &gc_addr, &gc_ate); |
| if (rc) { |
| return rc; |
| } |
| |
| if (!nvs_ate_valid(fs, &gc_ate)) { |
| continue; |
| } |
| |
| wlk_addr = fs->ate_wra; |
| do { |
| wlk_prev_addr = wlk_addr; |
| rc = nvs_prev_ate(fs, &wlk_addr, &wlk_ate); |
| if (rc) { |
| return rc; |
| } |
| /* if ate with same id is reached we might need to copy. |
| * only consider valid wlk_ate's. Something wrong might |
| * have been written that has the same ate but is |
| * invalid, don't consider these as a match. |
| */ |
| if ((wlk_ate.id == gc_ate.id) && |
| (nvs_ate_valid(fs, &wlk_ate))) { |
| break; |
| } |
| } while (wlk_addr != fs->ate_wra); |
| |
| /* if walk has reached the same address as gc_addr copy is |
| * needed unless it is a deleted item. |
| */ |
| if ((wlk_prev_addr == gc_prev_addr) && gc_ate.len) { |
| /* copy needed */ |
| LOG_DBG("Moving %d, len %d", gc_ate.id, gc_ate.len); |
| |
| data_addr = (gc_prev_addr & ADDR_SECT_MASK); |
| data_addr += gc_ate.offset; |
| |
| gc_ate.offset = (uint16_t)(fs->data_wra & ADDR_OFFS_MASK); |
| nvs_ate_crc8_update(&gc_ate); |
| |
| rc = nvs_flash_block_move(fs, data_addr, gc_ate.len); |
| if (rc) { |
| return rc; |
| } |
| |
| rc = nvs_flash_ate_wrt(fs, &gc_ate); |
| if (rc) { |
| return rc; |
| } |
| } |
| } while (gc_prev_addr != stop_addr); |
| |
| gc_done: |
| |
| /* Make it possible to detect that gc has finished by writing a |
| * gc done ate to the sector. In the field we might have nvs systems |
| * that do not have sufficient space to add this ate, so for these |
| * situations avoid adding the gc done ate. |
| */ |
| |
| if (fs->ate_wra >= (fs->data_wra + ate_size)) { |
| rc = nvs_add_gc_done_ate(fs); |
| if (rc) { |
| return rc; |
| } |
| } |
| |
| /* Erase the gc'ed sector */ |
| rc = nvs_flash_erase_sector(fs, sec_addr); |
| if (rc) { |
| return rc; |
| } |
| return 0; |
| } |
| |
| static int nvs_startup(struct nvs_fs *fs) |
| { |
| int rc; |
| struct nvs_ate last_ate; |
| size_t ate_size, empty_len; |
| /* Initialize addr to 0 for the case fs->sector_count == 0. This |
| * should never happen as this is verified in nvs_mount() but both |
| * Coverity and GCC believe the contrary. |
| */ |
| uint32_t addr = 0U; |
| uint16_t i, closed_sectors = 0; |
| uint8_t erase_value = fs->flash_parameters->erase_value; |
| |
| k_mutex_lock(&fs->nvs_lock, K_FOREVER); |
| |
| ate_size = nvs_al_size(fs, sizeof(struct nvs_ate)); |
| /* step through the sectors to find a open sector following |
| * a closed sector, this is where NVS can write. |
| */ |
| for (i = 0; i < fs->sector_count; i++) { |
| addr = (i << ADDR_SECT_SHIFT) + |
| (uint16_t)(fs->sector_size - ate_size); |
| rc = nvs_flash_cmp_const(fs, addr, erase_value, |
| sizeof(struct nvs_ate)); |
| if (rc) { |
| /* closed sector */ |
| closed_sectors++; |
| nvs_sector_advance(fs, &addr); |
| rc = nvs_flash_cmp_const(fs, addr, erase_value, |
| sizeof(struct nvs_ate)); |
| if (!rc) { |
| /* open sector */ |
| break; |
| } |
| } |
| } |
| /* all sectors are closed, this is not a nvs fs */ |
| if (closed_sectors == fs->sector_count) { |
| rc = -EDEADLK; |
| goto end; |
| } |
| |
| if (i == fs->sector_count) { |
| /* none of the sectors where closed, in most cases we can set |
| * the address to the first sector, except when there are only |
| * two sectors. Then we can only set it to the first sector if |
| * the last sector contains no ate's. So we check this first |
| */ |
| rc = nvs_flash_cmp_const(fs, addr - ate_size, erase_value, |
| sizeof(struct nvs_ate)); |
| if (!rc) { |
| /* empty ate */ |
| nvs_sector_advance(fs, &addr); |
| } |
| } |
| |
| /* addr contains address of closing ate in the most recent sector, |
| * search for the last valid ate using the recover_last_ate routine |
| */ |
| |
| rc = nvs_recover_last_ate(fs, &addr); |
| if (rc) { |
| goto end; |
| } |
| |
| /* addr contains address of the last valid ate in the most recent sector |
| * search for the first ate containing all cells erased, in the process |
| * also update fs->data_wra. |
| */ |
| fs->ate_wra = addr; |
| fs->data_wra = addr & ADDR_SECT_MASK; |
| |
| while (fs->ate_wra >= fs->data_wra) { |
| rc = nvs_flash_ate_rd(fs, fs->ate_wra, &last_ate); |
| if (rc) { |
| goto end; |
| } |
| |
| rc = nvs_ate_cmp_const(&last_ate, erase_value); |
| |
| if (!rc) { |
| /* found ff empty location */ |
| break; |
| } |
| |
| if (nvs_ate_valid(fs, &last_ate)) { |
| /* complete write of ate was performed */ |
| fs->data_wra = addr & ADDR_SECT_MASK; |
| /* Align the data write address to the current |
| * write block size so that it is possible to write to |
| * the sector even if the block size has changed after |
| * a software upgrade (unless the physical ATE size |
| * will change)." |
| */ |
| fs->data_wra += nvs_al_size(fs, last_ate.offset + last_ate.len); |
| |
| /* ate on the last position within the sector is |
| * reserved for deletion an entry |
| */ |
| if (fs->ate_wra == fs->data_wra && last_ate.len) { |
| /* not a delete ate */ |
| rc = -ESPIPE; |
| goto end; |
| } |
| } |
| |
| fs->ate_wra -= ate_size; |
| } |
| |
| /* if the sector after the write sector is not empty gc was interrupted |
| * we might need to restart gc if it has not yet finished. Otherwise |
| * just erase the sector. |
| * When gc needs to be restarted, first erase the sector otherwise the |
| * data might not fit into the sector. |
| */ |
| addr = fs->ate_wra & ADDR_SECT_MASK; |
| nvs_sector_advance(fs, &addr); |
| rc = nvs_flash_cmp_const(fs, addr, erase_value, fs->sector_size); |
| if (rc < 0) { |
| goto end; |
| } |
| if (rc) { |
| /* the sector after fs->ate_wrt is not empty, look for a marker |
| * (gc_done_ate) that indicates that gc was finished. |
| */ |
| bool gc_done_marker = false; |
| struct nvs_ate gc_done_ate; |
| |
| addr = fs->ate_wra + ate_size; |
| while ((addr & ADDR_OFFS_MASK) < (fs->sector_size - ate_size)) { |
| rc = nvs_flash_ate_rd(fs, addr, &gc_done_ate); |
| if (rc) { |
| goto end; |
| } |
| if (nvs_ate_valid(fs, &gc_done_ate) && |
| (gc_done_ate.id == 0xffff) && |
| (gc_done_ate.len == 0U)) { |
| gc_done_marker = true; |
| break; |
| } |
| addr += ate_size; |
| } |
| |
| if (gc_done_marker) { |
| /* erase the next sector */ |
| LOG_INF("GC Done marker found"); |
| addr = fs->ate_wra & ADDR_SECT_MASK; |
| nvs_sector_advance(fs, &addr); |
| rc = nvs_flash_erase_sector(fs, addr); |
| goto end; |
| } |
| LOG_INF("No GC Done marker found: restarting gc"); |
| rc = nvs_flash_erase_sector(fs, fs->ate_wra); |
| if (rc) { |
| goto end; |
| } |
| fs->ate_wra &= ADDR_SECT_MASK; |
| fs->ate_wra += (fs->sector_size - 2 * ate_size); |
| fs->data_wra = (fs->ate_wra & ADDR_SECT_MASK); |
| rc = nvs_gc(fs); |
| goto end; |
| } |
| |
| /* possible data write after last ate write, update data_wra */ |
| while (fs->ate_wra > fs->data_wra) { |
| empty_len = fs->ate_wra - fs->data_wra; |
| |
| rc = nvs_flash_cmp_const(fs, fs->data_wra, erase_value, |
| empty_len); |
| if (rc < 0) { |
| goto end; |
| } |
| if (!rc) { |
| break; |
| } |
| |
| fs->data_wra += fs->flash_parameters->write_block_size; |
| } |
| |
| /* If the ate_wra is pointing to the first ate write location in a |
| * sector and data_wra is not 0, erase the sector as it contains no |
| * valid data (this also avoids closing a sector without any data). |
| */ |
| if (((fs->ate_wra + 2 * ate_size) == fs->sector_size) && |
| (fs->data_wra != (fs->ate_wra & ADDR_SECT_MASK))) { |
| rc = nvs_flash_erase_sector(fs, fs->ate_wra); |
| if (rc) { |
| goto end; |
| } |
| fs->data_wra = fs->ate_wra & ADDR_SECT_MASK; |
| } |
| |
| #ifdef CONFIG_NVS_LOOKUP_CACHE |
| rc = nvs_lookup_cache_rebuild(fs); |
| #endif |
| |
| end: |
| /* If the sector is empty add a gc done ate to avoid having insufficient |
| * space when doing gc. |
| */ |
| if ((!rc) && ((fs->ate_wra & ADDR_OFFS_MASK) == |
| (fs->sector_size - 2 * ate_size))) { |
| |
| rc = nvs_add_gc_done_ate(fs); |
| } |
| k_mutex_unlock(&fs->nvs_lock); |
| return rc; |
| } |
| |
| int nvs_clear(struct nvs_fs *fs) |
| { |
| int rc; |
| uint32_t addr; |
| |
| if (!fs->ready) { |
| LOG_ERR("NVS not initialized"); |
| return -EACCES; |
| } |
| |
| for (uint16_t i = 0; i < fs->sector_count; i++) { |
| addr = i << ADDR_SECT_SHIFT; |
| rc = nvs_flash_erase_sector(fs, addr); |
| if (rc) { |
| return rc; |
| } |
| } |
| |
| /* nvs needs to be reinitialized after clearing */ |
| fs->ready = false; |
| |
| return 0; |
| } |
| |
| int nvs_mount(struct nvs_fs *fs) |
| { |
| |
| int rc; |
| struct flash_pages_info info; |
| size_t write_block_size; |
| |
| k_mutex_init(&fs->nvs_lock); |
| |
| fs->flash_parameters = flash_get_parameters(fs->flash_device); |
| if (fs->flash_parameters == NULL) { |
| LOG_ERR("Could not obtain flash parameters"); |
| return -EINVAL; |
| } |
| |
| write_block_size = flash_get_write_block_size(fs->flash_device); |
| |
| /* check that the write block size is supported */ |
| if (write_block_size > NVS_BLOCK_SIZE || write_block_size == 0) { |
| LOG_ERR("Unsupported write block size"); |
| return -EINVAL; |
| } |
| |
| /* check that sector size is a multiple of pagesize */ |
| rc = flash_get_page_info_by_offs(fs->flash_device, fs->offset, &info); |
| if (rc) { |
| LOG_ERR("Unable to get page info"); |
| return -EINVAL; |
| } |
| if (!fs->sector_size || fs->sector_size % info.size) { |
| LOG_ERR("Invalid sector size"); |
| return -EINVAL; |
| } |
| |
| /* check the number of sectors, it should be at least 2 */ |
| if (fs->sector_count < 2) { |
| LOG_ERR("Configuration error - sector count"); |
| return -EINVAL; |
| } |
| |
| rc = nvs_startup(fs); |
| if (rc) { |
| return rc; |
| } |
| |
| /* nvs is ready for use */ |
| fs->ready = true; |
| |
| LOG_INF("%d Sectors of %d bytes", fs->sector_count, fs->sector_size); |
| LOG_INF("alloc wra: %d, %x", |
| (fs->ate_wra >> ADDR_SECT_SHIFT), |
| (fs->ate_wra & ADDR_OFFS_MASK)); |
| LOG_INF("data wra: %d, %x", |
| (fs->data_wra >> ADDR_SECT_SHIFT), |
| (fs->data_wra & ADDR_OFFS_MASK)); |
| |
| return 0; |
| } |
| |
| ssize_t nvs_write(struct nvs_fs *fs, uint16_t id, const void *data, size_t len) |
| { |
| int rc, gc_count; |
| size_t ate_size, data_size; |
| struct nvs_ate wlk_ate; |
| uint32_t wlk_addr, rd_addr; |
| uint16_t required_space = 0U; /* no space, appropriate for delete ate */ |
| bool prev_found = false; |
| |
| if (!fs->ready) { |
| LOG_ERR("NVS not initialized"); |
| return -EACCES; |
| } |
| |
| ate_size = nvs_al_size(fs, sizeof(struct nvs_ate)); |
| data_size = nvs_al_size(fs, len); |
| |
| /* The maximum data size is sector size - 4 ate |
| * where: 1 ate for data, 1 ate for sector close, 1 ate for gc done, |
| * and 1 ate to always allow a delete. |
| */ |
| if ((len > (fs->sector_size - 4 * ate_size)) || |
| ((len > 0) && (data == NULL))) { |
| return -EINVAL; |
| } |
| |
| /* find latest entry with same id */ |
| wlk_addr = fs->ate_wra; |
| rd_addr = wlk_addr; |
| |
| while (1) { |
| rd_addr = wlk_addr; |
| rc = nvs_prev_ate(fs, &wlk_addr, &wlk_ate); |
| if (rc) { |
| return rc; |
| } |
| if ((wlk_ate.id == id) && (nvs_ate_valid(fs, &wlk_ate))) { |
| prev_found = true; |
| break; |
| } |
| if (wlk_addr == fs->ate_wra) { |
| break; |
| } |
| } |
| |
| if (prev_found) { |
| /* previous entry found */ |
| rd_addr &= ADDR_SECT_MASK; |
| rd_addr += wlk_ate.offset; |
| |
| if (len == 0) { |
| /* do not try to compare with empty data */ |
| if (wlk_ate.len == 0U) { |
| /* skip delete entry as it is already the |
| * last one |
| */ |
| return 0; |
| } |
| } else if (len == wlk_ate.len) { |
| /* do not try to compare if lengths are not equal */ |
| /* compare the data and if equal return 0 */ |
| rc = nvs_flash_block_cmp(fs, rd_addr, data, len); |
| if (rc <= 0) { |
| return rc; |
| } |
| } |
| } else { |
| /* skip delete entry for non-existing entry */ |
| if (len == 0) { |
| return 0; |
| } |
| } |
| |
| /* calculate required space if the entry contains data */ |
| if (data_size) { |
| /* Leave space for delete ate */ |
| required_space = data_size + ate_size; |
| } |
| |
| k_mutex_lock(&fs->nvs_lock, K_FOREVER); |
| |
| gc_count = 0; |
| while (1) { |
| if (gc_count == fs->sector_count) { |
| /* gc'ed all sectors, no extra space will be created |
| * by extra gc. |
| */ |
| rc = -ENOSPC; |
| goto end; |
| } |
| |
| if (fs->ate_wra >= (fs->data_wra + required_space)) { |
| |
| rc = nvs_flash_wrt_entry(fs, id, data, len); |
| if (rc) { |
| goto end; |
| } |
| break; |
| } |
| |
| |
| rc = nvs_sector_close(fs); |
| if (rc) { |
| goto end; |
| } |
| |
| rc = nvs_gc(fs); |
| if (rc) { |
| goto end; |
| } |
| gc_count++; |
| } |
| rc = len; |
| end: |
| k_mutex_unlock(&fs->nvs_lock); |
| return rc; |
| } |
| |
| int nvs_delete(struct nvs_fs *fs, uint16_t id) |
| { |
| return nvs_write(fs, id, NULL, 0); |
| } |
| |
| ssize_t nvs_read_hist(struct nvs_fs *fs, uint16_t id, void *data, size_t len, |
| uint16_t cnt) |
| { |
| int rc; |
| uint32_t wlk_addr, rd_addr; |
| uint16_t cnt_his; |
| struct nvs_ate wlk_ate; |
| size_t ate_size; |
| |
| if (!fs->ready) { |
| LOG_ERR("NVS not initialized"); |
| return -EACCES; |
| } |
| |
| ate_size = nvs_al_size(fs, sizeof(struct nvs_ate)); |
| |
| if (len > (fs->sector_size - 2 * ate_size)) { |
| return -EINVAL; |
| } |
| |
| cnt_his = 0U; |
| |
| #ifdef CONFIG_NVS_LOOKUP_CACHE |
| wlk_addr = fs->lookup_cache[nvs_lookup_cache_pos(id)]; |
| |
| if (wlk_addr == NVS_LOOKUP_CACHE_NO_ADDR) { |
| rc = -ENOENT; |
| goto err; |
| } |
| #else |
| wlk_addr = fs->ate_wra; |
| #endif |
| rd_addr = wlk_addr; |
| |
| while (cnt_his <= cnt) { |
| rd_addr = wlk_addr; |
| rc = nvs_prev_ate(fs, &wlk_addr, &wlk_ate); |
| if (rc) { |
| goto err; |
| } |
| if ((wlk_ate.id == id) && (nvs_ate_valid(fs, &wlk_ate))) { |
| cnt_his++; |
| } |
| if (wlk_addr == fs->ate_wra) { |
| break; |
| } |
| } |
| |
| if (((wlk_addr == fs->ate_wra) && (wlk_ate.id != id)) || |
| (wlk_ate.len == 0U) || (cnt_his < cnt)) { |
| return -ENOENT; |
| } |
| |
| rd_addr &= ADDR_SECT_MASK; |
| rd_addr += wlk_ate.offset; |
| rc = nvs_flash_rd(fs, rd_addr, data, MIN(len, wlk_ate.len)); |
| if (rc) { |
| goto err; |
| } |
| |
| return wlk_ate.len; |
| |
| err: |
| return rc; |
| } |
| |
| ssize_t nvs_read(struct nvs_fs *fs, uint16_t id, void *data, size_t len) |
| { |
| int rc; |
| |
| rc = nvs_read_hist(fs, id, data, len, 0); |
| return rc; |
| } |
| |
| ssize_t nvs_calc_free_space(struct nvs_fs *fs) |
| { |
| |
| int rc; |
| struct nvs_ate step_ate, wlk_ate; |
| uint32_t step_addr, wlk_addr; |
| size_t ate_size, free_space; |
| |
| if (!fs->ready) { |
| LOG_ERR("NVS not initialized"); |
| return -EACCES; |
| } |
| |
| ate_size = nvs_al_size(fs, sizeof(struct nvs_ate)); |
| |
| free_space = 0; |
| for (uint16_t i = 1; i < fs->sector_count; i++) { |
| free_space += (fs->sector_size - ate_size); |
| } |
| |
| step_addr = fs->ate_wra; |
| |
| while (1) { |
| rc = nvs_prev_ate(fs, &step_addr, &step_ate); |
| if (rc) { |
| return rc; |
| } |
| |
| wlk_addr = fs->ate_wra; |
| |
| while (1) { |
| rc = nvs_prev_ate(fs, &wlk_addr, &wlk_ate); |
| if (rc) { |
| return rc; |
| } |
| if ((wlk_ate.id == step_ate.id) || |
| (wlk_addr == fs->ate_wra)) { |
| break; |
| } |
| } |
| |
| if ((wlk_addr == step_addr) && step_ate.len && |
| (nvs_ate_valid(fs, &step_ate))) { |
| /* count needed */ |
| free_space -= nvs_al_size(fs, step_ate.len); |
| free_space -= ate_size; |
| } |
| |
| if (step_addr == fs->ate_wra) { |
| break; |
| } |
| } |
| return free_space; |
| } |