| /* |
| * Copyright (c) 2010-2014 Wind River Systems, Inc. |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| /** |
| * @file |
| * @brief Kernel initialization module |
| * |
| * This module contains routines that are used to initialize the kernel. |
| */ |
| |
| #include <offsets_short.h> |
| #include <zephyr/kernel.h> |
| #include <zephyr/sys/printk.h> |
| #include <zephyr/debug/stack.h> |
| #include <zephyr/random/random.h> |
| #include <zephyr/linker/sections.h> |
| #include <zephyr/toolchain.h> |
| #include <zephyr/kernel_structs.h> |
| #include <zephyr/device.h> |
| #include <zephyr/init.h> |
| #include <zephyr/linker/linker-defs.h> |
| #include <ksched.h> |
| #include <kthread.h> |
| #include <string.h> |
| #include <zephyr/sys/dlist.h> |
| #include <kernel_internal.h> |
| #include <zephyr/drivers/entropy.h> |
| #include <zephyr/logging/log_ctrl.h> |
| #include <zephyr/tracing/tracing.h> |
| #include <stdbool.h> |
| #include <zephyr/debug/gcov.h> |
| #include <kswap.h> |
| #include <zephyr/timing/timing.h> |
| #include <zephyr/logging/log.h> |
| #include <zephyr/pm/device_runtime.h> |
| #include <zephyr/internal/syscall_handler.h> |
| LOG_MODULE_REGISTER(os, CONFIG_KERNEL_LOG_LEVEL); |
| |
| BUILD_ASSERT(CONFIG_MP_NUM_CPUS == CONFIG_MP_MAX_NUM_CPUS, |
| "CONFIG_MP_NUM_CPUS and CONFIG_MP_MAX_NUM_CPUS need to be set the same"); |
| |
| /* the only struct z_kernel instance */ |
| __pinned_bss |
| struct z_kernel _kernel; |
| |
| __pinned_bss |
| atomic_t _cpus_active; |
| |
| /* init/main and idle threads */ |
| K_THREAD_PINNED_STACK_DEFINE(z_main_stack, CONFIG_MAIN_STACK_SIZE); |
| struct k_thread z_main_thread; |
| |
| #ifdef CONFIG_MULTITHREADING |
| __pinned_bss |
| struct k_thread z_idle_threads[CONFIG_MP_MAX_NUM_CPUS]; |
| |
| static K_KERNEL_PINNED_STACK_ARRAY_DEFINE(z_idle_stacks, |
| CONFIG_MP_MAX_NUM_CPUS, |
| CONFIG_IDLE_STACK_SIZE); |
| |
| static void z_init_static_threads(void) |
| { |
| STRUCT_SECTION_FOREACH(_static_thread_data, thread_data) { |
| z_setup_new_thread( |
| thread_data->init_thread, |
| thread_data->init_stack, |
| thread_data->init_stack_size, |
| thread_data->init_entry, |
| thread_data->init_p1, |
| thread_data->init_p2, |
| thread_data->init_p3, |
| thread_data->init_prio, |
| thread_data->init_options, |
| thread_data->init_name); |
| |
| thread_data->init_thread->init_data = thread_data; |
| } |
| |
| #ifdef CONFIG_USERSPACE |
| STRUCT_SECTION_FOREACH(k_object_assignment, pos) { |
| for (int i = 0; pos->objects[i] != NULL; i++) { |
| k_object_access_grant(pos->objects[i], |
| pos->thread); |
| } |
| } |
| #endif /* CONFIG_USERSPACE */ |
| |
| /* |
| * Non-legacy static threads may be started immediately or |
| * after a previously specified delay. Even though the |
| * scheduler is locked, ticks can still be delivered and |
| * processed. Take a sched lock to prevent them from running |
| * until they are all started. |
| * |
| * Note that static threads defined using the legacy API have a |
| * delay of K_FOREVER. |
| */ |
| k_sched_lock(); |
| STRUCT_SECTION_FOREACH(_static_thread_data, thread_data) { |
| k_timeout_t init_delay = Z_THREAD_INIT_DELAY(thread_data); |
| |
| if (!K_TIMEOUT_EQ(init_delay, K_FOREVER)) { |
| thread_schedule_new(thread_data->init_thread, |
| init_delay); |
| } |
| } |
| k_sched_unlock(); |
| } |
| #else |
| #define z_init_static_threads() do { } while (false) |
| #endif /* CONFIG_MULTITHREADING */ |
| |
| extern const struct init_entry __init_start[]; |
| extern const struct init_entry __init_EARLY_start[]; |
| extern const struct init_entry __init_PRE_KERNEL_1_start[]; |
| extern const struct init_entry __init_PRE_KERNEL_2_start[]; |
| extern const struct init_entry __init_POST_KERNEL_start[]; |
| extern const struct init_entry __init_APPLICATION_start[]; |
| extern const struct init_entry __init_end[]; |
| |
| enum init_level { |
| INIT_LEVEL_EARLY = 0, |
| INIT_LEVEL_PRE_KERNEL_1, |
| INIT_LEVEL_PRE_KERNEL_2, |
| INIT_LEVEL_POST_KERNEL, |
| INIT_LEVEL_APPLICATION, |
| #ifdef CONFIG_SMP |
| INIT_LEVEL_SMP, |
| #endif /* CONFIG_SMP */ |
| }; |
| |
| #ifdef CONFIG_SMP |
| extern const struct init_entry __init_SMP_start[]; |
| #endif /* CONFIG_SMP */ |
| |
| /* |
| * storage space for the interrupt stack |
| * |
| * Note: This area is used as the system stack during kernel initialization, |
| * since the kernel hasn't yet set up its own stack areas. The dual purposing |
| * of this area is safe since interrupts are disabled until the kernel context |
| * switches to the init thread. |
| */ |
| K_KERNEL_PINNED_STACK_ARRAY_DEFINE(z_interrupt_stacks, |
| CONFIG_MP_MAX_NUM_CPUS, |
| CONFIG_ISR_STACK_SIZE); |
| |
| extern void idle(void *unused1, void *unused2, void *unused3); |
| |
| #ifdef CONFIG_OBJ_CORE_SYSTEM |
| static struct k_obj_type obj_type_cpu; |
| static struct k_obj_type obj_type_kernel; |
| |
| #ifdef CONFIG_OBJ_CORE_STATS_SYSTEM |
| static struct k_obj_core_stats_desc cpu_stats_desc = { |
| .raw_size = sizeof(struct k_cycle_stats), |
| .query_size = sizeof(struct k_thread_runtime_stats), |
| .raw = z_cpu_stats_raw, |
| .query = z_cpu_stats_query, |
| .reset = NULL, |
| .disable = NULL, |
| .enable = NULL, |
| }; |
| |
| static struct k_obj_core_stats_desc kernel_stats_desc = { |
| .raw_size = sizeof(struct k_cycle_stats) * CONFIG_MP_MAX_NUM_CPUS, |
| .query_size = sizeof(struct k_thread_runtime_stats), |
| .raw = z_kernel_stats_raw, |
| .query = z_kernel_stats_query, |
| .reset = NULL, |
| .disable = NULL, |
| .enable = NULL, |
| }; |
| #endif /* CONFIG_OBJ_CORE_STATS_SYSTEM */ |
| #endif /* CONFIG_OBJ_CORE_SYSTEM */ |
| |
| /* LCOV_EXCL_START |
| * |
| * This code is called so early in the boot process that code coverage |
| * doesn't work properly. In addition, not all arches call this code, |
| * some like x86 do this with optimized assembly |
| */ |
| |
| /** |
| * @brief equivalent of memset() for early boot usage |
| * |
| * Architectures that can't safely use the regular (optimized) memset very |
| * early during boot because e.g. hardware isn't yet sufficiently initialized |
| * may override this with their own safe implementation. |
| */ |
| __boot_func |
| void __weak z_early_memset(void *dst, int c, size_t n) |
| { |
| (void) memset(dst, c, n); |
| } |
| |
| /** |
| * @brief equivalent of memcpy() for early boot usage |
| * |
| * Architectures that can't safely use the regular (optimized) memcpy very |
| * early during boot because e.g. hardware isn't yet sufficiently initialized |
| * may override this with their own safe implementation. |
| */ |
| __boot_func |
| void __weak z_early_memcpy(void *dst, const void *src, size_t n) |
| { |
| (void) memcpy(dst, src, n); |
| } |
| |
| /** |
| * @brief Clear BSS |
| * |
| * This routine clears the BSS region, so all bytes are 0. |
| */ |
| __boot_func |
| void z_bss_zero(void) |
| { |
| if (IS_ENABLED(CONFIG_SKIP_BSS_CLEAR)) { |
| return; |
| } |
| |
| z_early_memset(__bss_start, 0, __bss_end - __bss_start); |
| #if DT_NODE_HAS_STATUS(DT_CHOSEN(zephyr_ccm), okay) |
| z_early_memset(&__ccm_bss_start, 0, |
| (uintptr_t) &__ccm_bss_end |
| - (uintptr_t) &__ccm_bss_start); |
| #endif |
| #if DT_NODE_HAS_STATUS(DT_CHOSEN(zephyr_dtcm), okay) |
| z_early_memset(&__dtcm_bss_start, 0, |
| (uintptr_t) &__dtcm_bss_end |
| - (uintptr_t) &__dtcm_bss_start); |
| #endif |
| #if DT_NODE_HAS_STATUS(DT_CHOSEN(zephyr_ocm), okay) |
| z_early_memset(&__ocm_bss_start, 0, |
| (uintptr_t) &__ocm_bss_end |
| - (uintptr_t) &__ocm_bss_start); |
| #endif |
| #ifdef CONFIG_CODE_DATA_RELOCATION |
| extern void bss_zeroing_relocation(void); |
| |
| bss_zeroing_relocation(); |
| #endif /* CONFIG_CODE_DATA_RELOCATION */ |
| #ifdef CONFIG_COVERAGE_GCOV |
| z_early_memset(&__gcov_bss_start, 0, |
| ((uintptr_t) &__gcov_bss_end - (uintptr_t) &__gcov_bss_start)); |
| #endif /* CONFIG_COVERAGE_GCOV */ |
| } |
| |
| #ifdef CONFIG_LINKER_USE_BOOT_SECTION |
| /** |
| * @brief Clear BSS within the bot region |
| * |
| * This routine clears the BSS within the boot region. |
| * This is separate from z_bss_zero() as boot region may |
| * contain symbols required for the boot process before |
| * paging is initialized. |
| */ |
| __boot_func |
| void z_bss_zero_boot(void) |
| { |
| z_early_memset(&lnkr_boot_bss_start, 0, |
| (uintptr_t)&lnkr_boot_bss_end |
| - (uintptr_t)&lnkr_boot_bss_start); |
| } |
| #endif /* CONFIG_LINKER_USE_BOOT_SECTION */ |
| |
| #ifdef CONFIG_LINKER_USE_PINNED_SECTION |
| /** |
| * @brief Clear BSS within the pinned region |
| * |
| * This routine clears the BSS within the pinned region. |
| * This is separate from z_bss_zero() as pinned region may |
| * contain symbols required for the boot process before |
| * paging is initialized. |
| */ |
| #ifdef CONFIG_LINKER_USE_BOOT_SECTION |
| __boot_func |
| #else |
| __pinned_func |
| #endif /* CONFIG_LINKER_USE_BOOT_SECTION */ |
| void z_bss_zero_pinned(void) |
| { |
| z_early_memset(&lnkr_pinned_bss_start, 0, |
| (uintptr_t)&lnkr_pinned_bss_end |
| - (uintptr_t)&lnkr_pinned_bss_start); |
| } |
| #endif /* CONFIG_LINKER_USE_PINNED_SECTION */ |
| |
| #ifdef CONFIG_STACK_CANARIES |
| #ifdef CONFIG_STACK_CANARIES_TLS |
| extern __thread volatile uintptr_t __stack_chk_guard; |
| #else |
| extern volatile uintptr_t __stack_chk_guard; |
| #endif /* CONFIG_STACK_CANARIES_TLS */ |
| #endif /* CONFIG_STACK_CANARIES */ |
| |
| /* LCOV_EXCL_STOP */ |
| |
| __pinned_bss |
| bool z_sys_post_kernel; |
| |
| static int do_device_init(const struct init_entry *entry) |
| { |
| const struct device *dev = entry->dev; |
| int rc = 0; |
| |
| if (entry->init_fn.dev != NULL) { |
| rc = entry->init_fn.dev(dev); |
| /* Mark device initialized. If initialization |
| * failed, record the error condition. |
| */ |
| if (rc != 0) { |
| if (rc < 0) { |
| rc = -rc; |
| } |
| if (rc > UINT8_MAX) { |
| rc = UINT8_MAX; |
| } |
| dev->state->init_res = rc; |
| } |
| } |
| |
| dev->state->initialized = true; |
| |
| if (rc == 0) { |
| /* Run automatic device runtime enablement */ |
| (void)pm_device_runtime_auto_enable(dev); |
| } |
| |
| return rc; |
| } |
| |
| /** |
| * @brief Execute all the init entry initialization functions at a given level |
| * |
| * @details Invokes the initialization routine for each init entry object |
| * created by the INIT_ENTRY_DEFINE() macro using the specified level. |
| * The linker script places the init entry objects in memory in the order |
| * they need to be invoked, with symbols indicating where one level leaves |
| * off and the next one begins. |
| * |
| * @param level init level to run. |
| */ |
| static void z_sys_init_run_level(enum init_level level) |
| { |
| static const struct init_entry *levels[] = { |
| __init_EARLY_start, |
| __init_PRE_KERNEL_1_start, |
| __init_PRE_KERNEL_2_start, |
| __init_POST_KERNEL_start, |
| __init_APPLICATION_start, |
| #ifdef CONFIG_SMP |
| __init_SMP_start, |
| #endif /* CONFIG_SMP */ |
| /* End marker */ |
| __init_end, |
| }; |
| const struct init_entry *entry; |
| |
| for (entry = levels[level]; entry < levels[level+1]; entry++) { |
| const struct device *dev = entry->dev; |
| |
| if (dev != NULL) { |
| do_device_init(entry); |
| } else { |
| (void)entry->init_fn.sys(); |
| } |
| } |
| } |
| |
| |
| int z_impl_device_init(const struct device *dev) |
| { |
| if (dev == NULL) { |
| return -ENOENT; |
| } |
| |
| STRUCT_SECTION_FOREACH_ALTERNATE(_deferred_init, init_entry, entry) { |
| if (entry->dev == dev) { |
| return do_device_init(entry); |
| } |
| } |
| |
| return -ENOENT; |
| } |
| |
| #ifdef CONFIG_USERSPACE |
| static inline int z_vrfy_device_init(const struct device *dev) |
| { |
| K_OOPS(K_SYSCALL_OBJ_INIT(dev, K_OBJ_ANY)); |
| |
| return z_impl_device_init(dev); |
| } |
| #include <syscalls/device_init_mrsh.c> |
| #endif |
| |
| extern void boot_banner(void); |
| |
| |
| /** |
| * @brief Mainline for kernel's background thread |
| * |
| * This routine completes kernel initialization by invoking the remaining |
| * init functions, then invokes application's main() routine. |
| */ |
| __boot_func |
| static void bg_thread_main(void *unused1, void *unused2, void *unused3) |
| { |
| ARG_UNUSED(unused1); |
| ARG_UNUSED(unused2); |
| ARG_UNUSED(unused3); |
| |
| #ifdef CONFIG_MMU |
| /* Invoked here such that backing store or eviction algorithms may |
| * initialize kernel objects, and that all POST_KERNEL and later tasks |
| * may perform memory management tasks (except for z_phys_map() which |
| * is allowed at any time) |
| */ |
| z_mem_manage_init(); |
| #endif /* CONFIG_MMU */ |
| z_sys_post_kernel = true; |
| |
| z_sys_init_run_level(INIT_LEVEL_POST_KERNEL); |
| #if CONFIG_STACK_POINTER_RANDOM |
| z_stack_adjust_initialized = 1; |
| #endif /* CONFIG_STACK_POINTER_RANDOM */ |
| boot_banner(); |
| |
| #if defined(CONFIG_CPP) |
| void z_cpp_init_static(void); |
| z_cpp_init_static(); |
| #endif /* CONFIG_CPP */ |
| |
| /* Final init level before app starts */ |
| z_sys_init_run_level(INIT_LEVEL_APPLICATION); |
| |
| z_init_static_threads(); |
| |
| #ifdef CONFIG_KERNEL_COHERENCE |
| __ASSERT_NO_MSG(arch_mem_coherent(&_kernel)); |
| #endif /* CONFIG_KERNEL_COHERENCE */ |
| |
| #ifdef CONFIG_SMP |
| if (!IS_ENABLED(CONFIG_SMP_BOOT_DELAY)) { |
| z_smp_init(); |
| } |
| z_sys_init_run_level(INIT_LEVEL_SMP); |
| #endif /* CONFIG_SMP */ |
| |
| #ifdef CONFIG_MMU |
| z_mem_manage_boot_finish(); |
| #endif /* CONFIG_MMU */ |
| |
| extern int main(void); |
| |
| (void)main(); |
| |
| /* Mark non-essential since main() has no more work to do */ |
| z_thread_essential_clear(&z_main_thread); |
| |
| #ifdef CONFIG_COVERAGE_DUMP |
| /* Dump coverage data once the main() has exited. */ |
| gcov_coverage_dump(); |
| #endif /* CONFIG_COVERAGE_DUMP */ |
| } /* LCOV_EXCL_LINE ... because we just dumped final coverage data */ |
| |
| #if defined(CONFIG_MULTITHREADING) |
| __boot_func |
| static void init_idle_thread(int i) |
| { |
| struct k_thread *thread = &z_idle_threads[i]; |
| k_thread_stack_t *stack = z_idle_stacks[i]; |
| |
| #ifdef CONFIG_THREAD_NAME |
| |
| #if CONFIG_MP_MAX_NUM_CPUS > 1 |
| char tname[8]; |
| snprintk(tname, 8, "idle %02d", i); |
| #else |
| char *tname = "idle"; |
| #endif /* CONFIG_MP_MAX_NUM_CPUS */ |
| |
| #else |
| char *tname = NULL; |
| #endif /* CONFIG_THREAD_NAME */ |
| |
| z_setup_new_thread(thread, stack, |
| CONFIG_IDLE_STACK_SIZE, idle, &_kernel.cpus[i], |
| NULL, NULL, K_IDLE_PRIO, K_ESSENTIAL, |
| tname); |
| z_mark_thread_as_started(thread); |
| |
| #ifdef CONFIG_SMP |
| thread->base.is_idle = 1U; |
| #endif /* CONFIG_SMP */ |
| } |
| |
| void z_init_cpu(int id) |
| { |
| init_idle_thread(id); |
| _kernel.cpus[id].idle_thread = &z_idle_threads[id]; |
| _kernel.cpus[id].id = id; |
| _kernel.cpus[id].irq_stack = |
| (K_KERNEL_STACK_BUFFER(z_interrupt_stacks[id]) + |
| K_KERNEL_STACK_SIZEOF(z_interrupt_stacks[id])); |
| #ifdef CONFIG_SCHED_THREAD_USAGE_ALL |
| _kernel.cpus[id].usage = &_kernel.usage[id]; |
| _kernel.cpus[id].usage->track_usage = |
| CONFIG_SCHED_THREAD_USAGE_AUTO_ENABLE; |
| #endif |
| |
| /* |
| * Increment number of CPUs active. The pm subsystem |
| * will keep track of this from here. |
| */ |
| atomic_inc(&_cpus_active); |
| |
| #ifdef CONFIG_OBJ_CORE_SYSTEM |
| k_obj_core_init_and_link(K_OBJ_CORE(&_kernel.cpus[id]), &obj_type_cpu); |
| #ifdef CONFIG_OBJ_CORE_STATS_SYSTEM |
| k_obj_core_stats_register(K_OBJ_CORE(&_kernel.cpus[id]), |
| _kernel.cpus[id].usage, |
| sizeof(struct k_cycle_stats)); |
| #endif |
| #endif |
| } |
| |
| /** |
| * |
| * @brief Initializes kernel data structures |
| * |
| * This routine initializes various kernel data structures, including |
| * the init and idle threads and any architecture-specific initialization. |
| * |
| * Note that all fields of "_kernel" are set to zero on entry, which may |
| * be all the initialization many of them require. |
| * |
| * @return initial stack pointer for the main thread |
| */ |
| __boot_func |
| static char *prepare_multithreading(void) |
| { |
| char *stack_ptr; |
| |
| /* _kernel.ready_q is all zeroes */ |
| z_sched_init(); |
| |
| #ifndef CONFIG_SMP |
| /* |
| * prime the cache with the main thread since: |
| * |
| * - the cache can never be NULL |
| * - the main thread will be the one to run first |
| * - no other thread is initialized yet and thus their priority fields |
| * contain garbage, which would prevent the cache loading algorithm |
| * to work as intended |
| */ |
| _kernel.ready_q.cache = &z_main_thread; |
| #endif /* CONFIG_SMP */ |
| stack_ptr = z_setup_new_thread(&z_main_thread, z_main_stack, |
| CONFIG_MAIN_STACK_SIZE, bg_thread_main, |
| NULL, NULL, NULL, |
| CONFIG_MAIN_THREAD_PRIORITY, |
| K_ESSENTIAL, "main"); |
| z_mark_thread_as_started(&z_main_thread); |
| z_ready_thread(&z_main_thread); |
| |
| z_init_cpu(0); |
| |
| return stack_ptr; |
| } |
| |
| __boot_func |
| static FUNC_NORETURN void switch_to_main_thread(char *stack_ptr) |
| { |
| #ifdef CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN |
| arch_switch_to_main_thread(&z_main_thread, stack_ptr, bg_thread_main); |
| #else |
| ARG_UNUSED(stack_ptr); |
| /* |
| * Context switch to main task (entry function is _main()): the |
| * current fake thread is not on a wait queue or ready queue, so it |
| * will never be rescheduled in. |
| */ |
| z_swap_unlocked(); |
| #endif /* CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN */ |
| CODE_UNREACHABLE; /* LCOV_EXCL_LINE */ |
| } |
| #endif /* CONFIG_MULTITHREADING */ |
| |
| __boot_func |
| void __weak z_early_rand_get(uint8_t *buf, size_t length) |
| { |
| static uint64_t state = (uint64_t)CONFIG_TIMER_RANDOM_INITIAL_STATE; |
| int rc; |
| |
| #ifdef CONFIG_ENTROPY_HAS_DRIVER |
| const struct device *const entropy = DEVICE_DT_GET_OR_NULL(DT_CHOSEN(zephyr_entropy)); |
| |
| if ((entropy != NULL) && device_is_ready(entropy)) { |
| /* Try to see if driver provides an ISR-specific API */ |
| rc = entropy_get_entropy_isr(entropy, buf, length, ENTROPY_BUSYWAIT); |
| if (rc > 0) { |
| length -= rc; |
| buf += rc; |
| } |
| } |
| #endif /* CONFIG_ENTROPY_HAS_DRIVER */ |
| |
| while (length > 0) { |
| uint32_t val; |
| |
| state = state + k_cycle_get_32(); |
| state = state * 2862933555777941757ULL + 3037000493ULL; |
| val = (uint32_t)(state >> 32); |
| rc = MIN(length, sizeof(val)); |
| z_early_memcpy((void *)buf, &val, rc); |
| |
| length -= rc; |
| buf += rc; |
| } |
| } |
| |
| /** |
| * |
| * @brief Initialize kernel |
| * |
| * This routine is invoked when the system is ready to run C code. The |
| * processor must be running in 32-bit mode, and the BSS must have been |
| * cleared/zeroed. |
| * |
| * @return Does not return |
| */ |
| __boot_func |
| FUNC_NO_STACK_PROTECTOR |
| FUNC_NORETURN void z_cstart(void) |
| { |
| /* gcov hook needed to get the coverage report.*/ |
| gcov_static_init(); |
| |
| /* initialize early init calls */ |
| z_sys_init_run_level(INIT_LEVEL_EARLY); |
| |
| /* perform any architecture-specific initialization */ |
| arch_kernel_init(); |
| |
| LOG_CORE_INIT(); |
| |
| #if defined(CONFIG_MULTITHREADING) |
| /* Note: The z_ready_thread() call in prepare_multithreading() requires |
| * a dummy thread even if CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN=y |
| */ |
| struct k_thread dummy_thread; |
| |
| z_dummy_thread_init(&dummy_thread); |
| #endif /* CONFIG_MULTITHREADING */ |
| /* do any necessary initialization of static devices */ |
| z_device_state_init(); |
| |
| /* perform basic hardware initialization */ |
| z_sys_init_run_level(INIT_LEVEL_PRE_KERNEL_1); |
| z_sys_init_run_level(INIT_LEVEL_PRE_KERNEL_2); |
| |
| #ifdef CONFIG_STACK_CANARIES |
| uintptr_t stack_guard; |
| |
| z_early_rand_get((uint8_t *)&stack_guard, sizeof(stack_guard)); |
| __stack_chk_guard = stack_guard; |
| __stack_chk_guard <<= 8; |
| #endif /* CONFIG_STACK_CANARIES */ |
| |
| #ifdef CONFIG_TIMING_FUNCTIONS_NEED_AT_BOOT |
| timing_init(); |
| timing_start(); |
| #endif /* CONFIG_TIMING_FUNCTIONS_NEED_AT_BOOT */ |
| |
| #ifdef CONFIG_MULTITHREADING |
| switch_to_main_thread(prepare_multithreading()); |
| #else |
| #ifdef ARCH_SWITCH_TO_MAIN_NO_MULTITHREADING |
| /* Custom ARCH-specific routine to switch to main() |
| * in the case of no multi-threading. |
| */ |
| ARCH_SWITCH_TO_MAIN_NO_MULTITHREADING(bg_thread_main, |
| NULL, NULL, NULL); |
| #else |
| bg_thread_main(NULL, NULL, NULL); |
| |
| /* LCOV_EXCL_START |
| * We've already dumped coverage data at this point. |
| */ |
| irq_lock(); |
| while (true) { |
| } |
| /* LCOV_EXCL_STOP */ |
| #endif /* ARCH_SWITCH_TO_MAIN_NO_MULTITHREADING */ |
| #endif /* CONFIG_MULTITHREADING */ |
| |
| /* |
| * Compiler can't tell that the above routines won't return and issues |
| * a warning unless we explicitly tell it that control never gets this |
| * far. |
| */ |
| |
| CODE_UNREACHABLE; /* LCOV_EXCL_LINE */ |
| } |
| |
| #ifdef CONFIG_OBJ_CORE_SYSTEM |
| static int init_cpu_obj_core_list(void) |
| { |
| /* Initialize CPU object type */ |
| |
| z_obj_type_init(&obj_type_cpu, K_OBJ_TYPE_CPU_ID, |
| offsetof(struct _cpu, obj_core)); |
| |
| #ifdef CONFIG_OBJ_CORE_STATS_SYSTEM |
| k_obj_type_stats_init(&obj_type_cpu, &cpu_stats_desc); |
| #endif /* CONFIG_OBJ_CORE_STATS_SYSTEM */ |
| |
| return 0; |
| } |
| |
| static int init_kernel_obj_core_list(void) |
| { |
| /* Initialize kernel object type */ |
| |
| z_obj_type_init(&obj_type_kernel, K_OBJ_TYPE_KERNEL_ID, |
| offsetof(struct z_kernel, obj_core)); |
| |
| #ifdef CONFIG_OBJ_CORE_STATS_SYSTEM |
| k_obj_type_stats_init(&obj_type_kernel, &kernel_stats_desc); |
| #endif /* CONFIG_OBJ_CORE_STATS_SYSTEM */ |
| |
| k_obj_core_init_and_link(K_OBJ_CORE(&_kernel), &obj_type_kernel); |
| #ifdef CONFIG_OBJ_CORE_STATS_SYSTEM |
| k_obj_core_stats_register(K_OBJ_CORE(&_kernel), _kernel.usage, |
| sizeof(_kernel.usage)); |
| #endif /* CONFIG_OBJ_CORE_STATS_SYSTEM */ |
| |
| return 0; |
| } |
| |
| SYS_INIT(init_cpu_obj_core_list, PRE_KERNEL_1, |
| CONFIG_KERNEL_INIT_PRIORITY_OBJECTS); |
| |
| SYS_INIT(init_kernel_obj_core_list, PRE_KERNEL_1, |
| CONFIG_KERNEL_INIT_PRIORITY_OBJECTS); |
| #endif /* CONFIG_OBJ_CORE_SYSTEM */ |