blob: 10bc50cfeaac06f3535a3f0c4fe7ad8c6f1383f8 [file] [log] [blame]
/*
* Copyright (c) 2018 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/kernel.h>
#include <ksched.h>
#include <zephyr/spinlock.h>
#include <wait_q.h>
#include <kthread.h>
#include <priority_q.h>
#include <kswap.h>
#include <ipi.h>
#include <kernel_arch_func.h>
#include <zephyr/internal/syscall_handler.h>
#include <zephyr/drivers/timer/system_timer.h>
#include <stdbool.h>
#include <kernel_internal.h>
#include <zephyr/logging/log.h>
#include <zephyr/sys/atomic.h>
#include <zephyr/sys/math_extras.h>
#include <zephyr/timing/timing.h>
#include <zephyr/sys/util.h>
LOG_MODULE_DECLARE(os, CONFIG_KERNEL_LOG_LEVEL);
#if defined(CONFIG_SWAP_NONATOMIC) && defined(CONFIG_TIMESLICING)
extern struct k_thread *pending_current;
#endif
struct k_spinlock _sched_spinlock;
static void update_cache(int preempt_ok);
static void halt_thread(struct k_thread *thread, uint8_t new_state);
static void add_to_waitq_locked(struct k_thread *thread, _wait_q_t *wait_q);
BUILD_ASSERT(CONFIG_NUM_COOP_PRIORITIES >= CONFIG_NUM_METAIRQ_PRIORITIES,
"You need to provide at least as many CONFIG_NUM_COOP_PRIORITIES as "
"CONFIG_NUM_METAIRQ_PRIORITIES as Meta IRQs are just a special class of cooperative "
"threads.");
/*
* Return value same as e.g. memcmp
* > 0 -> thread 1 priority > thread 2 priority
* = 0 -> thread 1 priority == thread 2 priority
* < 0 -> thread 1 priority < thread 2 priority
* Do not rely on the actual value returned aside from the above.
* (Again, like memcmp.)
*/
int32_t z_sched_prio_cmp(struct k_thread *thread_1,
struct k_thread *thread_2)
{
/* `prio` is <32b, so the below cannot overflow. */
int32_t b1 = thread_1->base.prio;
int32_t b2 = thread_2->base.prio;
if (b1 != b2) {
return b2 - b1;
}
#ifdef CONFIG_SCHED_DEADLINE
/* If we assume all deadlines live within the same "half" of
* the 32 bit modulus space (this is a documented API rule),
* then the latest deadline in the queue minus the earliest is
* guaranteed to be (2's complement) non-negative. We can
* leverage that to compare the values without having to check
* the current time.
*/
uint32_t d1 = thread_1->base.prio_deadline;
uint32_t d2 = thread_2->base.prio_deadline;
if (d1 != d2) {
/* Sooner deadline means higher effective priority.
* Doing the calculation with unsigned types and casting
* to signed isn't perfect, but at least reduces this
* from UB on overflow to impdef.
*/
return (int32_t) (d2 - d1);
}
#endif /* CONFIG_SCHED_DEADLINE */
return 0;
}
#ifdef CONFIG_SCHED_CPU_MASK
static ALWAYS_INLINE struct k_thread *_priq_dumb_mask_best(sys_dlist_t *pq)
{
/* With masks enabled we need to be prepared to walk the list
* looking for one we can run
*/
struct k_thread *thread;
SYS_DLIST_FOR_EACH_CONTAINER(pq, thread, base.qnode_dlist) {
if ((thread->base.cpu_mask & BIT(_current_cpu->id)) != 0) {
return thread;
}
}
return NULL;
}
#endif /* CONFIG_SCHED_CPU_MASK */
#if defined(CONFIG_SCHED_DUMB) || defined(CONFIG_WAITQ_DUMB)
static ALWAYS_INLINE void z_priq_dumb_add(sys_dlist_t *pq,
struct k_thread *thread)
{
struct k_thread *t;
__ASSERT_NO_MSG(!z_is_idle_thread_object(thread));
SYS_DLIST_FOR_EACH_CONTAINER(pq, t, base.qnode_dlist) {
if (z_sched_prio_cmp(thread, t) > 0) {
sys_dlist_insert(&t->base.qnode_dlist,
&thread->base.qnode_dlist);
return;
}
}
sys_dlist_append(pq, &thread->base.qnode_dlist);
}
#endif /* CONFIG_SCHED_DUMB || CONFIG_WAITQ_DUMB */
static ALWAYS_INLINE void *thread_runq(struct k_thread *thread)
{
#ifdef CONFIG_SCHED_CPU_MASK_PIN_ONLY
int cpu, m = thread->base.cpu_mask;
/* Edge case: it's legal per the API to "make runnable" a
* thread with all CPUs masked off (i.e. one that isn't
* actually runnable!). Sort of a wart in the API and maybe
* we should address this in docs/assertions instead to avoid
* the extra test.
*/
cpu = m == 0 ? 0 : u32_count_trailing_zeros(m);
return &_kernel.cpus[cpu].ready_q.runq;
#else
ARG_UNUSED(thread);
return &_kernel.ready_q.runq;
#endif /* CONFIG_SCHED_CPU_MASK_PIN_ONLY */
}
static ALWAYS_INLINE void *curr_cpu_runq(void)
{
#ifdef CONFIG_SCHED_CPU_MASK_PIN_ONLY
return &arch_curr_cpu()->ready_q.runq;
#else
return &_kernel.ready_q.runq;
#endif /* CONFIG_SCHED_CPU_MASK_PIN_ONLY */
}
static ALWAYS_INLINE void runq_add(struct k_thread *thread)
{
_priq_run_add(thread_runq(thread), thread);
}
static ALWAYS_INLINE void runq_remove(struct k_thread *thread)
{
_priq_run_remove(thread_runq(thread), thread);
}
static ALWAYS_INLINE struct k_thread *runq_best(void)
{
return _priq_run_best(curr_cpu_runq());
}
/* _current is never in the run queue until context switch on
* SMP configurations, see z_requeue_current()
*/
static inline bool should_queue_thread(struct k_thread *thread)
{
return !IS_ENABLED(CONFIG_SMP) || thread != _current;
}
static ALWAYS_INLINE void queue_thread(struct k_thread *thread)
{
thread->base.thread_state |= _THREAD_QUEUED;
if (should_queue_thread(thread)) {
runq_add(thread);
}
#ifdef CONFIG_SMP
if (thread == _current) {
/* add current to end of queue means "yield" */
_current_cpu->swap_ok = true;
}
#endif /* CONFIG_SMP */
}
static ALWAYS_INLINE void dequeue_thread(struct k_thread *thread)
{
thread->base.thread_state &= ~_THREAD_QUEUED;
if (should_queue_thread(thread)) {
runq_remove(thread);
}
}
#ifdef CONFIG_SMP
/* Called out of z_swap() when CONFIG_SMP. The current thread can
* never live in the run queue until we are inexorably on the context
* switch path on SMP, otherwise there is a deadlock condition where a
* set of CPUs pick a cycle of threads to run and wait for them all to
* context switch forever.
*/
void z_requeue_current(struct k_thread *thread)
{
if (z_is_thread_queued(thread)) {
runq_add(thread);
}
signal_pending_ipi();
}
/* Return true if the thread is aborting, else false */
static inline bool is_aborting(struct k_thread *thread)
{
return (thread->base.thread_state & _THREAD_ABORTING) != 0U;
}
/* Return true if the thread is aborting or suspending, else false */
static inline bool is_halting(struct k_thread *thread)
{
return (thread->base.thread_state &
(_THREAD_ABORTING | _THREAD_SUSPENDING)) != 0U;
}
#endif /* CONFIG_SMP */
/* Clear the halting bits (_THREAD_ABORTING and _THREAD_SUSPENDING) */
static inline void clear_halting(struct k_thread *thread)
{
thread->base.thread_state &= ~(_THREAD_ABORTING | _THREAD_SUSPENDING);
}
static ALWAYS_INLINE struct k_thread *next_up(void)
{
#ifdef CONFIG_SMP
if (is_halting(_current)) {
halt_thread(_current, is_aborting(_current) ?
_THREAD_DEAD : _THREAD_SUSPENDED);
}
#endif /* CONFIG_SMP */
struct k_thread *thread = runq_best();
#if (CONFIG_NUM_METAIRQ_PRIORITIES > 0) && \
(CONFIG_NUM_COOP_PRIORITIES > CONFIG_NUM_METAIRQ_PRIORITIES)
/* MetaIRQs must always attempt to return back to a
* cooperative thread they preempted and not whatever happens
* to be highest priority now. The cooperative thread was
* promised it wouldn't be preempted (by non-metairq threads)!
*/
struct k_thread *mirqp = _current_cpu->metairq_preempted;
if (mirqp != NULL && (thread == NULL || !thread_is_metairq(thread))) {
if (!z_is_thread_prevented_from_running(mirqp)) {
thread = mirqp;
} else {
_current_cpu->metairq_preempted = NULL;
}
}
#endif
/* CONFIG_NUM_METAIRQ_PRIORITIES > 0 &&
* CONFIG_NUM_COOP_PRIORITIES > CONFIG_NUM_METAIRQ_PRIORITIES
*/
#ifndef CONFIG_SMP
/* In uniprocessor mode, we can leave the current thread in
* the queue (actually we have to, otherwise the assembly
* context switch code for all architectures would be
* responsible for putting it back in z_swap and ISR return!),
* which makes this choice simple.
*/
return (thread != NULL) ? thread : _current_cpu->idle_thread;
#else
/* Under SMP, the "cache" mechanism for selecting the next
* thread doesn't work, so we have more work to do to test
* _current against the best choice from the queue. Here, the
* thread selected above represents "the best thread that is
* not current".
*
* Subtle note on "queued": in SMP mode, _current does not
* live in the queue, so this isn't exactly the same thing as
* "ready", it means "is _current already added back to the
* queue such that we don't want to re-add it".
*/
bool queued = z_is_thread_queued(_current);
bool active = !z_is_thread_prevented_from_running(_current);
if (thread == NULL) {
thread = _current_cpu->idle_thread;
}
if (active) {
int32_t cmp = z_sched_prio_cmp(_current, thread);
/* Ties only switch if state says we yielded */
if ((cmp > 0) || ((cmp == 0) && !_current_cpu->swap_ok)) {
thread = _current;
}
if (!should_preempt(thread, _current_cpu->swap_ok)) {
thread = _current;
}
}
/* Put _current back into the queue */
if (thread != _current && active &&
!z_is_idle_thread_object(_current) && !queued) {
queue_thread(_current);
}
/* Take the new _current out of the queue */
if (z_is_thread_queued(thread)) {
dequeue_thread(thread);
}
_current_cpu->swap_ok = false;
return thread;
#endif /* CONFIG_SMP */
}
void move_thread_to_end_of_prio_q(struct k_thread *thread)
{
if (z_is_thread_queued(thread)) {
dequeue_thread(thread);
}
queue_thread(thread);
update_cache(thread == _current);
}
/* Track cooperative threads preempted by metairqs so we can return to
* them specifically. Called at the moment a new thread has been
* selected to run.
*/
static void update_metairq_preempt(struct k_thread *thread)
{
#if (CONFIG_NUM_METAIRQ_PRIORITIES > 0) && \
(CONFIG_NUM_COOP_PRIORITIES > CONFIG_NUM_METAIRQ_PRIORITIES)
if (thread_is_metairq(thread) && !thread_is_metairq(_current) &&
!thread_is_preemptible(_current)) {
/* Record new preemption */
_current_cpu->metairq_preempted = _current;
} else if (!thread_is_metairq(thread) && !z_is_idle_thread_object(thread)) {
/* Returning from existing preemption */
_current_cpu->metairq_preempted = NULL;
}
#else
ARG_UNUSED(thread);
#endif
/* CONFIG_NUM_METAIRQ_PRIORITIES > 0 &&
* CONFIG_NUM_COOP_PRIORITIES > CONFIG_NUM_METAIRQ_PRIORITIES
*/
}
static void update_cache(int preempt_ok)
{
#ifndef CONFIG_SMP
struct k_thread *thread = next_up();
if (should_preempt(thread, preempt_ok)) {
#ifdef CONFIG_TIMESLICING
if (thread != _current) {
z_reset_time_slice(thread);
}
#endif /* CONFIG_TIMESLICING */
update_metairq_preempt(thread);
_kernel.ready_q.cache = thread;
} else {
_kernel.ready_q.cache = _current;
}
#else
/* The way this works is that the CPU record keeps its
* "cooperative swapping is OK" flag until the next reschedule
* call or context switch. It doesn't need to be tracked per
* thread because if the thread gets preempted for whatever
* reason the scheduler will make the same decision anyway.
*/
_current_cpu->swap_ok = preempt_ok;
#endif /* CONFIG_SMP */
}
static bool thread_active_elsewhere(struct k_thread *thread)
{
/* True if the thread is currently running on another CPU.
* There are more scalable designs to answer this question in
* constant time, but this is fine for now.
*/
#ifdef CONFIG_SMP
int currcpu = _current_cpu->id;
unsigned int num_cpus = arch_num_cpus();
for (int i = 0; i < num_cpus; i++) {
if ((i != currcpu) &&
(_kernel.cpus[i].current == thread)) {
return true;
}
}
#endif /* CONFIG_SMP */
ARG_UNUSED(thread);
return false;
}
static void ready_thread(struct k_thread *thread)
{
#ifdef CONFIG_KERNEL_COHERENCE
__ASSERT_NO_MSG(arch_mem_coherent(thread));
#endif /* CONFIG_KERNEL_COHERENCE */
/* If thread is queued already, do not try and added it to the
* run queue again
*/
if (!z_is_thread_queued(thread) && z_is_thread_ready(thread)) {
SYS_PORT_TRACING_OBJ_FUNC(k_thread, sched_ready, thread);
queue_thread(thread);
update_cache(0);
flag_ipi();
}
}
void z_ready_thread_locked(struct k_thread *thread)
{
if (!thread_active_elsewhere(thread)) {
ready_thread(thread);
}
}
void z_ready_thread(struct k_thread *thread)
{
K_SPINLOCK(&_sched_spinlock) {
if (!thread_active_elsewhere(thread)) {
ready_thread(thread);
}
}
}
void z_move_thread_to_end_of_prio_q(struct k_thread *thread)
{
K_SPINLOCK(&_sched_spinlock) {
move_thread_to_end_of_prio_q(thread);
}
}
void z_sched_start(struct k_thread *thread)
{
k_spinlock_key_t key = k_spin_lock(&_sched_spinlock);
if (z_has_thread_started(thread)) {
k_spin_unlock(&_sched_spinlock, key);
return;
}
z_mark_thread_as_started(thread);
ready_thread(thread);
z_reschedule(&_sched_spinlock, key);
}
/**
* @brief Halt a thread
*
* If the target thread is running on another CPU, flag it as needing to
* abort and send an IPI (if supported) to force a schedule point and wait
* until the target thread is switched out (ISRs will spin to wait and threads
* will block to wait). If the target thread is not running on another CPU,
* then it is safe to act immediately.
*
* Upon entry to this routine, the scheduler lock is already held. It is
* released before this routine returns.
*
* @param thread Thread to suspend or abort
* @param key Current key for _sched_spinlock
* @param terminate True if aborting thread, false if suspending thread
*/
static void z_thread_halt(struct k_thread *thread, k_spinlock_key_t key,
bool terminate)
{
#ifdef CONFIG_SMP
if (is_halting(_current) && arch_is_in_isr()) {
/* Another CPU (in an ISR) or thread is waiting for the
* current thread to halt. Halt it now to help avoid a
* potential deadlock.
*/
halt_thread(_current,
is_aborting(_current) ? _THREAD_DEAD
: _THREAD_SUSPENDED);
}
bool active = thread_active_elsewhere(thread);
if (active) {
/* It's running somewhere else, flag and poke */
thread->base.thread_state |= (terminate ? _THREAD_ABORTING
: _THREAD_SUSPENDING);
/* We might spin to wait, so a true synchronous IPI is needed
* here, not deferred!
*/
#ifdef CONFIG_SCHED_IPI_SUPPORTED
arch_sched_ipi();
#endif /* CONFIG_SCHED_IPI_SUPPORTED */
}
if (is_halting(thread) && (thread != _current)) {
if (arch_is_in_isr()) {
/* ISRs can only spin waiting another CPU */
k_spin_unlock(&_sched_spinlock, key);
while (is_halting(thread)) {
}
/* Now we know it's halting, but not necessarily
* halted (suspended or aborted). Wait for the switch
* to happen!
*/
key = k_spin_lock(&_sched_spinlock);
z_sched_switch_spin(thread);
k_spin_unlock(&_sched_spinlock, key);
} else if (active) {
/* Threads can wait on a queue */
add_to_waitq_locked(_current, terminate ?
&thread->join_queue :
&thread->halt_queue);
z_swap(&_sched_spinlock, key);
}
return; /* lock has been released */
}
#endif /* CONFIG_SMP */
halt_thread(thread, terminate ? _THREAD_DEAD : _THREAD_SUSPENDED);
if ((thread == _current) && !arch_is_in_isr()) {
z_swap(&_sched_spinlock, key);
__ASSERT(!terminate, "aborted _current back from dead");
} else {
k_spin_unlock(&_sched_spinlock, key);
}
}
void z_impl_k_thread_suspend(struct k_thread *thread)
{
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_thread, suspend, thread);
(void)z_abort_thread_timeout(thread);
k_spinlock_key_t key = k_spin_lock(&_sched_spinlock);
if ((thread->base.thread_state & _THREAD_SUSPENDED) != 0U) {
/* The target thread is already suspended. Nothing to do. */
k_spin_unlock(&_sched_spinlock, key);
return;
}
z_thread_halt(thread, key, false);
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_thread, suspend, thread);
}
#ifdef CONFIG_USERSPACE
static inline void z_vrfy_k_thread_suspend(struct k_thread *thread)
{
K_OOPS(K_SYSCALL_OBJ(thread, K_OBJ_THREAD));
z_impl_k_thread_suspend(thread);
}
#include <syscalls/k_thread_suspend_mrsh.c>
#endif /* CONFIG_USERSPACE */
void z_impl_k_thread_resume(struct k_thread *thread)
{
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_thread, resume, thread);
k_spinlock_key_t key = k_spin_lock(&_sched_spinlock);
/* Do not try to resume a thread that was not suspended */
if (!z_is_thread_suspended(thread)) {
k_spin_unlock(&_sched_spinlock, key);
return;
}
z_mark_thread_as_not_suspended(thread);
ready_thread(thread);
z_reschedule(&_sched_spinlock, key);
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_thread, resume, thread);
}
#ifdef CONFIG_USERSPACE
static inline void z_vrfy_k_thread_resume(struct k_thread *thread)
{
K_OOPS(K_SYSCALL_OBJ(thread, K_OBJ_THREAD));
z_impl_k_thread_resume(thread);
}
#include <syscalls/k_thread_resume_mrsh.c>
#endif /* CONFIG_USERSPACE */
static _wait_q_t *pended_on_thread(struct k_thread *thread)
{
__ASSERT_NO_MSG(thread->base.pended_on);
return thread->base.pended_on;
}
static void unready_thread(struct k_thread *thread)
{
if (z_is_thread_queued(thread)) {
dequeue_thread(thread);
}
update_cache(thread == _current);
}
/* _sched_spinlock must be held */
static void add_to_waitq_locked(struct k_thread *thread, _wait_q_t *wait_q)
{
unready_thread(thread);
z_mark_thread_as_pending(thread);
SYS_PORT_TRACING_FUNC(k_thread, sched_pend, thread);
if (wait_q != NULL) {
thread->base.pended_on = wait_q;
z_priq_wait_add(&wait_q->waitq, thread);
}
}
static void add_thread_timeout(struct k_thread *thread, k_timeout_t timeout)
{
if (!K_TIMEOUT_EQ(timeout, K_FOREVER)) {
z_add_thread_timeout(thread, timeout);
}
}
static void pend_locked(struct k_thread *thread, _wait_q_t *wait_q,
k_timeout_t timeout)
{
#ifdef CONFIG_KERNEL_COHERENCE
__ASSERT_NO_MSG(wait_q == NULL || arch_mem_coherent(wait_q));
#endif /* CONFIG_KERNEL_COHERENCE */
add_to_waitq_locked(thread, wait_q);
add_thread_timeout(thread, timeout);
}
void z_pend_thread(struct k_thread *thread, _wait_q_t *wait_q,
k_timeout_t timeout)
{
__ASSERT_NO_MSG(thread == _current || is_thread_dummy(thread));
K_SPINLOCK(&_sched_spinlock) {
pend_locked(thread, wait_q, timeout);
}
}
static inline void unpend_thread_no_timeout(struct k_thread *thread)
{
_priq_wait_remove(&pended_on_thread(thread)->waitq, thread);
z_mark_thread_as_not_pending(thread);
thread->base.pended_on = NULL;
}
ALWAYS_INLINE void z_unpend_thread_no_timeout(struct k_thread *thread)
{
K_SPINLOCK(&_sched_spinlock) {
if (thread->base.pended_on != NULL) {
unpend_thread_no_timeout(thread);
}
}
}
void z_sched_wake_thread(struct k_thread *thread, bool is_timeout)
{
K_SPINLOCK(&_sched_spinlock) {
bool killed = (thread->base.thread_state &
(_THREAD_DEAD | _THREAD_ABORTING));
#ifdef CONFIG_EVENTS
bool do_nothing = thread->no_wake_on_timeout && is_timeout;
thread->no_wake_on_timeout = false;
if (do_nothing) {
continue;
}
#endif /* CONFIG_EVENTS */
if (!killed) {
/* The thread is not being killed */
if (thread->base.pended_on != NULL) {
unpend_thread_no_timeout(thread);
}
z_mark_thread_as_started(thread);
if (is_timeout) {
z_mark_thread_as_not_suspended(thread);
}
ready_thread(thread);
}
}
}
#ifdef CONFIG_SYS_CLOCK_EXISTS
/* Timeout handler for *_thread_timeout() APIs */
void z_thread_timeout(struct _timeout *timeout)
{
struct k_thread *thread = CONTAINER_OF(timeout,
struct k_thread, base.timeout);
z_sched_wake_thread(thread, true);
}
#endif /* CONFIG_SYS_CLOCK_EXISTS */
int z_pend_curr(struct k_spinlock *lock, k_spinlock_key_t key,
_wait_q_t *wait_q, k_timeout_t timeout)
{
#if defined(CONFIG_TIMESLICING) && defined(CONFIG_SWAP_NONATOMIC)
pending_current = _current;
#endif /* CONFIG_TIMESLICING && CONFIG_SWAP_NONATOMIC */
__ASSERT_NO_MSG(sizeof(_sched_spinlock) == 0 || lock != &_sched_spinlock);
/* We do a "lock swap" prior to calling z_swap(), such that
* the caller's lock gets released as desired. But we ensure
* that we hold the scheduler lock and leave local interrupts
* masked until we reach the context swich. z_swap() itself
* has similar code; the duplication is because it's a legacy
* API that doesn't expect to be called with scheduler lock
* held.
*/
(void) k_spin_lock(&_sched_spinlock);
pend_locked(_current, wait_q, timeout);
k_spin_release(lock);
return z_swap(&_sched_spinlock, key);
}
struct k_thread *z_unpend1_no_timeout(_wait_q_t *wait_q)
{
struct k_thread *thread = NULL;
K_SPINLOCK(&_sched_spinlock) {
thread = _priq_wait_best(&wait_q->waitq);
if (thread != NULL) {
unpend_thread_no_timeout(thread);
}
}
return thread;
}
struct k_thread *z_unpend_first_thread(_wait_q_t *wait_q)
{
struct k_thread *thread = NULL;
K_SPINLOCK(&_sched_spinlock) {
thread = _priq_wait_best(&wait_q->waitq);
if (thread != NULL) {
unpend_thread_no_timeout(thread);
(void)z_abort_thread_timeout(thread);
}
}
return thread;
}
void z_unpend_thread(struct k_thread *thread)
{
z_unpend_thread_no_timeout(thread);
(void)z_abort_thread_timeout(thread);
}
/* Priority set utility that does no rescheduling, it just changes the
* run queue state, returning true if a reschedule is needed later.
*/
bool z_thread_prio_set(struct k_thread *thread, int prio)
{
bool need_sched = 0;
K_SPINLOCK(&_sched_spinlock) {
need_sched = z_is_thread_ready(thread);
if (need_sched) {
/* Don't requeue on SMP if it's the running thread */
if (!IS_ENABLED(CONFIG_SMP) || z_is_thread_queued(thread)) {
dequeue_thread(thread);
thread->base.prio = prio;
queue_thread(thread);
} else {
thread->base.prio = prio;
}
update_cache(1);
} else {
thread->base.prio = prio;
}
}
SYS_PORT_TRACING_OBJ_FUNC(k_thread, sched_priority_set, thread, prio);
return need_sched;
}
static inline bool resched(uint32_t key)
{
#ifdef CONFIG_SMP
_current_cpu->swap_ok = 0;
#endif /* CONFIG_SMP */
return arch_irq_unlocked(key) && !arch_is_in_isr();
}
/*
* Check if the next ready thread is the same as the current thread
* and save the trip if true.
*/
static inline bool need_swap(void)
{
/* the SMP case will be handled in C based z_swap() */
#ifdef CONFIG_SMP
return true;
#else
struct k_thread *new_thread;
/* Check if the next ready thread is the same as the current thread */
new_thread = _kernel.ready_q.cache;
return new_thread != _current;
#endif /* CONFIG_SMP */
}
void z_reschedule(struct k_spinlock *lock, k_spinlock_key_t key)
{
if (resched(key.key) && need_swap()) {
z_swap(lock, key);
} else {
k_spin_unlock(lock, key);
signal_pending_ipi();
}
}
void z_reschedule_irqlock(uint32_t key)
{
if (resched(key) && need_swap()) {
z_swap_irqlock(key);
} else {
irq_unlock(key);
signal_pending_ipi();
}
}
void k_sched_lock(void)
{
K_SPINLOCK(&_sched_spinlock) {
SYS_PORT_TRACING_FUNC(k_thread, sched_lock);
z_sched_lock();
}
}
void k_sched_unlock(void)
{
K_SPINLOCK(&_sched_spinlock) {
__ASSERT(_current->base.sched_locked != 0U, "");
__ASSERT(!arch_is_in_isr(), "");
++_current->base.sched_locked;
update_cache(0);
}
LOG_DBG("scheduler unlocked (%p:%d)",
_current, _current->base.sched_locked);
SYS_PORT_TRACING_FUNC(k_thread, sched_unlock);
z_reschedule_unlocked();
}
struct k_thread *z_swap_next_thread(void)
{
#ifdef CONFIG_SMP
struct k_thread *ret = next_up();
if (ret == _current) {
/* When not swapping, have to signal IPIs here. In
* the context switch case it must happen later, after
* _current gets requeued.
*/
signal_pending_ipi();
}
return ret;
#else
return _kernel.ready_q.cache;
#endif /* CONFIG_SMP */
}
#ifdef CONFIG_USE_SWITCH
/* Just a wrapper around _current = xxx with tracing */
static inline void set_current(struct k_thread *new_thread)
{
z_thread_mark_switched_out();
_current_cpu->current = new_thread;
}
/**
* @brief Determine next thread to execute upon completion of an interrupt
*
* Thread preemption is performed by context switching after the completion
* of a non-recursed interrupt. This function determines which thread to
* switch to if any. This function accepts as @p interrupted either:
*
* - The handle for the interrupted thread in which case the thread's context
* must already be fully saved and ready to be picked up by a different CPU.
*
* - NULL if more work is required to fully save the thread's state after
* it is known that a new thread is to be scheduled. It is up to the caller
* to store the handle resulting from the thread that is being switched out
* in that thread's "switch_handle" field after its
* context has fully been saved, following the same requirements as with
* the @ref arch_switch() function.
*
* If a new thread needs to be scheduled then its handle is returned.
* Otherwise the same value provided as @p interrupted is returned back.
* Those handles are the same opaque types used by the @ref arch_switch()
* function.
*
* @warning
* The @ref _current value may have changed after this call and not refer
* to the interrupted thread anymore. It might be necessary to make a local
* copy before calling this function.
*
* @param interrupted Handle for the thread that was interrupted or NULL.
* @retval Handle for the next thread to execute, or @p interrupted when
* no new thread is to be scheduled.
*/
void *z_get_next_switch_handle(void *interrupted)
{
z_check_stack_sentinel();
#ifdef CONFIG_SMP
void *ret = NULL;
K_SPINLOCK(&_sched_spinlock) {
struct k_thread *old_thread = _current, *new_thread;
if (IS_ENABLED(CONFIG_SMP)) {
old_thread->switch_handle = NULL;
}
new_thread = next_up();
z_sched_usage_switch(new_thread);
if (old_thread != new_thread) {
update_metairq_preempt(new_thread);
z_sched_switch_spin(new_thread);
arch_cohere_stacks(old_thread, interrupted, new_thread);
_current_cpu->swap_ok = 0;
set_current(new_thread);
#ifdef CONFIG_TIMESLICING
z_reset_time_slice(new_thread);
#endif /* CONFIG_TIMESLICING */
#ifdef CONFIG_SPIN_VALIDATE
/* Changed _current! Update the spinlock
* bookkeeping so the validation doesn't get
* confused when the "wrong" thread tries to
* release the lock.
*/
z_spin_lock_set_owner(&_sched_spinlock);
#endif /* CONFIG_SPIN_VALIDATE */
/* A queued (runnable) old/current thread
* needs to be added back to the run queue
* here, and atomically with its switch handle
* being set below. This is safe now, as we
* will not return into it.
*/
if (z_is_thread_queued(old_thread)) {
runq_add(old_thread);
}
}
old_thread->switch_handle = interrupted;
ret = new_thread->switch_handle;
if (IS_ENABLED(CONFIG_SMP)) {
/* Active threads MUST have a null here */
new_thread->switch_handle = NULL;
}
}
signal_pending_ipi();
return ret;
#else
z_sched_usage_switch(_kernel.ready_q.cache);
_current->switch_handle = interrupted;
set_current(_kernel.ready_q.cache);
return _current->switch_handle;
#endif /* CONFIG_SMP */
}
#endif /* CONFIG_USE_SWITCH */
int z_unpend_all(_wait_q_t *wait_q)
{
int need_sched = 0;
struct k_thread *thread;
while ((thread = z_waitq_head(wait_q)) != NULL) {
z_unpend_thread(thread);
z_ready_thread(thread);
need_sched = 1;
}
return need_sched;
}
void init_ready_q(struct _ready_q *ready_q)
{
#if defined(CONFIG_SCHED_SCALABLE)
ready_q->runq = (struct _priq_rb) {
.tree = {
.lessthan_fn = z_priq_rb_lessthan,
}
};
#elif defined(CONFIG_SCHED_MULTIQ)
for (int i = 0; i < ARRAY_SIZE(_kernel.ready_q.runq.queues); i++) {
sys_dlist_init(&ready_q->runq.queues[i]);
}
#else
sys_dlist_init(&ready_q->runq);
#endif
}
void z_sched_init(void)
{
#ifdef CONFIG_SCHED_CPU_MASK_PIN_ONLY
for (int i = 0; i < CONFIG_MP_MAX_NUM_CPUS; i++) {
init_ready_q(&_kernel.cpus[i].ready_q);
}
#else
init_ready_q(&_kernel.ready_q);
#endif /* CONFIG_SCHED_CPU_MASK_PIN_ONLY */
}
void z_impl_k_thread_priority_set(k_tid_t thread, int prio)
{
/*
* Use NULL, since we cannot know what the entry point is (we do not
* keep track of it) and idle cannot change its priority.
*/
Z_ASSERT_VALID_PRIO(prio, NULL);
__ASSERT(!arch_is_in_isr(), "");
bool need_sched = z_thread_prio_set((struct k_thread *)thread, prio);
flag_ipi();
if (need_sched && _current->base.sched_locked == 0U) {
z_reschedule_unlocked();
}
}
#ifdef CONFIG_USERSPACE
static inline void z_vrfy_k_thread_priority_set(k_tid_t thread, int prio)
{
K_OOPS(K_SYSCALL_OBJ(thread, K_OBJ_THREAD));
K_OOPS(K_SYSCALL_VERIFY_MSG(_is_valid_prio(prio, NULL),
"invalid thread priority %d", prio));
#ifndef CONFIG_USERSPACE_THREAD_MAY_RAISE_PRIORITY
K_OOPS(K_SYSCALL_VERIFY_MSG((int8_t)prio >= thread->base.prio,
"thread priority may only be downgraded (%d < %d)",
prio, thread->base.prio));
#endif /* CONFIG_USERSPACE_THREAD_MAY_RAISE_PRIORITY */
z_impl_k_thread_priority_set(thread, prio);
}
#include <syscalls/k_thread_priority_set_mrsh.c>
#endif /* CONFIG_USERSPACE */
#ifdef CONFIG_SCHED_DEADLINE
void z_impl_k_thread_deadline_set(k_tid_t tid, int deadline)
{
struct k_thread *thread = tid;
int32_t newdl = k_cycle_get_32() + deadline;
/* The prio_deadline field changes the sorting order, so can't
* change it while the thread is in the run queue (dlists
* actually are benign as long as we requeue it before we
* release the lock, but an rbtree will blow up if we break
* sorting!)
*/
K_SPINLOCK(&_sched_spinlock) {
if (z_is_thread_queued(thread)) {
dequeue_thread(thread);
thread->base.prio_deadline = newdl;
queue_thread(thread);
} else {
thread->base.prio_deadline = newdl;
}
}
}
#ifdef CONFIG_USERSPACE
static inline void z_vrfy_k_thread_deadline_set(k_tid_t tid, int deadline)
{
struct k_thread *thread = tid;
K_OOPS(K_SYSCALL_OBJ(thread, K_OBJ_THREAD));
K_OOPS(K_SYSCALL_VERIFY_MSG(deadline > 0,
"invalid thread deadline %d",
(int)deadline));
z_impl_k_thread_deadline_set((k_tid_t)thread, deadline);
}
#include <syscalls/k_thread_deadline_set_mrsh.c>
#endif /* CONFIG_USERSPACE */
#endif /* CONFIG_SCHED_DEADLINE */
bool k_can_yield(void)
{
return !(k_is_pre_kernel() || k_is_in_isr() ||
z_is_idle_thread_object(_current));
}
void z_impl_k_yield(void)
{
__ASSERT(!arch_is_in_isr(), "");
SYS_PORT_TRACING_FUNC(k_thread, yield);
k_spinlock_key_t key = k_spin_lock(&_sched_spinlock);
if (!IS_ENABLED(CONFIG_SMP) ||
z_is_thread_queued(_current)) {
dequeue_thread(_current);
}
queue_thread(_current);
update_cache(1);
z_swap(&_sched_spinlock, key);
}
#ifdef CONFIG_USERSPACE
static inline void z_vrfy_k_yield(void)
{
z_impl_k_yield();
}
#include <syscalls/k_yield_mrsh.c>
#endif /* CONFIG_USERSPACE */
static int32_t z_tick_sleep(k_ticks_t ticks)
{
uint32_t expected_wakeup_ticks;
__ASSERT(!arch_is_in_isr(), "");
LOG_DBG("thread %p for %lu ticks", _current, (unsigned long)ticks);
/* wait of 0 ms is treated as a 'yield' */
if (ticks == 0) {
k_yield();
return 0;
}
if (Z_TICK_ABS(ticks) <= 0) {
expected_wakeup_ticks = ticks + sys_clock_tick_get_32();
} else {
expected_wakeup_ticks = Z_TICK_ABS(ticks);
}
k_timeout_t timeout = Z_TIMEOUT_TICKS(ticks);
k_spinlock_key_t key = k_spin_lock(&_sched_spinlock);
#if defined(CONFIG_TIMESLICING) && defined(CONFIG_SWAP_NONATOMIC)
pending_current = _current;
#endif /* CONFIG_TIMESLICING && CONFIG_SWAP_NONATOMIC */
unready_thread(_current);
z_add_thread_timeout(_current, timeout);
z_mark_thread_as_suspended(_current);
(void)z_swap(&_sched_spinlock, key);
__ASSERT(!z_is_thread_state_set(_current, _THREAD_SUSPENDED), "");
ticks = (k_ticks_t)expected_wakeup_ticks - sys_clock_tick_get_32();
if (ticks > 0) {
return ticks;
}
return 0;
}
int32_t z_impl_k_sleep(k_timeout_t timeout)
{
k_ticks_t ticks;
__ASSERT(!arch_is_in_isr(), "");
SYS_PORT_TRACING_FUNC_ENTER(k_thread, sleep, timeout);
/* in case of K_FOREVER, we suspend */
if (K_TIMEOUT_EQ(timeout, K_FOREVER)) {
k_thread_suspend(_current);
SYS_PORT_TRACING_FUNC_EXIT(k_thread, sleep, timeout, (int32_t) K_TICKS_FOREVER);
return (int32_t) K_TICKS_FOREVER;
}
ticks = timeout.ticks;
ticks = z_tick_sleep(ticks);
int32_t ret = k_ticks_to_ms_ceil64(ticks);
SYS_PORT_TRACING_FUNC_EXIT(k_thread, sleep, timeout, ret);
return ret;
}
#ifdef CONFIG_USERSPACE
static inline int32_t z_vrfy_k_sleep(k_timeout_t timeout)
{
return z_impl_k_sleep(timeout);
}
#include <syscalls/k_sleep_mrsh.c>
#endif /* CONFIG_USERSPACE */
int32_t z_impl_k_usleep(int us)
{
int32_t ticks;
SYS_PORT_TRACING_FUNC_ENTER(k_thread, usleep, us);
ticks = k_us_to_ticks_ceil64(us);
ticks = z_tick_sleep(ticks);
int32_t ret = k_ticks_to_us_ceil64(ticks);
SYS_PORT_TRACING_FUNC_EXIT(k_thread, usleep, us, ret);
return ret;
}
#ifdef CONFIG_USERSPACE
static inline int32_t z_vrfy_k_usleep(int us)
{
return z_impl_k_usleep(us);
}
#include <syscalls/k_usleep_mrsh.c>
#endif /* CONFIG_USERSPACE */
void z_impl_k_wakeup(k_tid_t thread)
{
SYS_PORT_TRACING_OBJ_FUNC(k_thread, wakeup, thread);
if (z_is_thread_pending(thread)) {
return;
}
if (z_abort_thread_timeout(thread) < 0) {
/* Might have just been sleeping forever */
if (thread->base.thread_state != _THREAD_SUSPENDED) {
return;
}
}
k_spinlock_key_t key = k_spin_lock(&_sched_spinlock);
z_mark_thread_as_not_suspended(thread);
if (!thread_active_elsewhere(thread)) {
ready_thread(thread);
}
if (arch_is_in_isr()) {
k_spin_unlock(&_sched_spinlock, key);
} else {
z_reschedule(&_sched_spinlock, key);
}
}
#ifdef CONFIG_USERSPACE
static inline void z_vrfy_k_wakeup(k_tid_t thread)
{
K_OOPS(K_SYSCALL_OBJ(thread, K_OBJ_THREAD));
z_impl_k_wakeup(thread);
}
#include <syscalls/k_wakeup_mrsh.c>
#endif /* CONFIG_USERSPACE */
k_tid_t z_impl_k_sched_current_thread_query(void)
{
#ifdef CONFIG_SMP
/* In SMP, _current is a field read from _current_cpu, which
* can race with preemption before it is read. We must lock
* local interrupts when reading it.
*/
unsigned int k = arch_irq_lock();
#endif /* CONFIG_SMP */
k_tid_t ret = _current_cpu->current;
#ifdef CONFIG_SMP
arch_irq_unlock(k);
#endif /* CONFIG_SMP */
return ret;
}
#ifdef CONFIG_USERSPACE
static inline k_tid_t z_vrfy_k_sched_current_thread_query(void)
{
return z_impl_k_sched_current_thread_query();
}
#include <syscalls/k_sched_current_thread_query_mrsh.c>
#endif /* CONFIG_USERSPACE */
static inline void unpend_all(_wait_q_t *wait_q)
{
struct k_thread *thread;
while ((thread = z_waitq_head(wait_q)) != NULL) {
unpend_thread_no_timeout(thread);
(void)z_abort_thread_timeout(thread);
arch_thread_return_value_set(thread, 0);
ready_thread(thread);
}
}
#ifdef CONFIG_THREAD_ABORT_HOOK
extern void thread_abort_hook(struct k_thread *thread);
#endif /* CONFIG_THREAD_ABORT_HOOK */
/**
* @brief Dequeues the specified thread
*
* Dequeues the specified thread and move it into the specified new state.
*
* @param thread Identify the thread to halt
* @param new_state New thread state (_THREAD_DEAD or _THREAD_SUSPENDED)
*/
static void halt_thread(struct k_thread *thread, uint8_t new_state)
{
/* We hold the lock, and the thread is known not to be running
* anywhere.
*/
if ((thread->base.thread_state & new_state) == 0U) {
thread->base.thread_state |= new_state;
clear_halting(thread);
if (z_is_thread_queued(thread)) {
dequeue_thread(thread);
}
if (new_state == _THREAD_DEAD) {
if (thread->base.pended_on != NULL) {
unpend_thread_no_timeout(thread);
}
(void)z_abort_thread_timeout(thread);
unpend_all(&thread->join_queue);
}
#ifdef CONFIG_SMP
unpend_all(&thread->halt_queue);
#endif /* CONFIG_SMP */
update_cache(1);
if (new_state == _THREAD_SUSPENDED) {
return;
}
#if defined(CONFIG_FPU) && defined(CONFIG_FPU_SHARING)
arch_float_disable(thread);
#endif /* CONFIG_FPU && CONFIG_FPU_SHARING */
SYS_PORT_TRACING_FUNC(k_thread, sched_abort, thread);
z_thread_monitor_exit(thread);
#ifdef CONFIG_THREAD_ABORT_HOOK
thread_abort_hook(thread);
#endif /* CONFIG_THREAD_ABORT_HOOK */
#ifdef CONFIG_OBJ_CORE_THREAD
#ifdef CONFIG_OBJ_CORE_STATS_THREAD
k_obj_core_stats_deregister(K_OBJ_CORE(thread));
#endif /* CONFIG_OBJ_CORE_STATS_THREAD */
k_obj_core_unlink(K_OBJ_CORE(thread));
#endif /* CONFIG_OBJ_CORE_THREAD */
#ifdef CONFIG_USERSPACE
z_mem_domain_exit_thread(thread);
k_thread_perms_all_clear(thread);
k_object_uninit(thread->stack_obj);
k_object_uninit(thread);
#endif /* CONFIG_USERSPACE */
#ifdef CONFIG_THREAD_ABORT_NEED_CLEANUP
k_thread_abort_cleanup(thread);
#endif /* CONFIG_THREAD_ABORT_NEED_CLEANUP */
}
}
void z_thread_abort(struct k_thread *thread)
{
k_spinlock_key_t key = k_spin_lock(&_sched_spinlock);
if (z_is_thread_essential(thread)) {
k_spin_unlock(&_sched_spinlock, key);
__ASSERT(false, "aborting essential thread %p", thread);
k_panic();
return;
}
if ((thread->base.thread_state & _THREAD_DEAD) != 0U) {
k_spin_unlock(&_sched_spinlock, key);
return;
}
z_thread_halt(thread, key, true);
}
#if !defined(CONFIG_ARCH_HAS_THREAD_ABORT)
void z_impl_k_thread_abort(struct k_thread *thread)
{
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_thread, abort, thread);
z_thread_abort(thread);
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_thread, abort, thread);
}
#endif /* !CONFIG_ARCH_HAS_THREAD_ABORT */
int z_impl_k_thread_join(struct k_thread *thread, k_timeout_t timeout)
{
k_spinlock_key_t key = k_spin_lock(&_sched_spinlock);
int ret = 0;
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_thread, join, thread, timeout);
if ((thread->base.thread_state & _THREAD_DEAD) != 0U) {
z_sched_switch_spin(thread);
ret = 0;
} else if (K_TIMEOUT_EQ(timeout, K_NO_WAIT)) {
ret = -EBUSY;
} else if ((thread == _current) ||
(thread->base.pended_on == &_current->join_queue)) {
ret = -EDEADLK;
} else {
__ASSERT(!arch_is_in_isr(), "cannot join in ISR");
add_to_waitq_locked(_current, &thread->join_queue);
add_thread_timeout(_current, timeout);
SYS_PORT_TRACING_OBJ_FUNC_BLOCKING(k_thread, join, thread, timeout);
ret = z_swap(&_sched_spinlock, key);
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_thread, join, thread, timeout, ret);
return ret;
}
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_thread, join, thread, timeout, ret);
k_spin_unlock(&_sched_spinlock, key);
return ret;
}
#ifdef CONFIG_USERSPACE
/* Special case: don't oops if the thread is uninitialized. This is because
* the initialization bit does double-duty for thread objects; if false, means
* the thread object is truly uninitialized, or the thread ran and exited for
* some reason.
*
* Return true in this case indicating we should just do nothing and return
* success to the caller.
*/
static bool thread_obj_validate(struct k_thread *thread)
{
struct k_object *ko = k_object_find(thread);
int ret = k_object_validate(ko, K_OBJ_THREAD, _OBJ_INIT_TRUE);
switch (ret) {
case 0:
return false;
case -EINVAL:
return true;
default:
#ifdef CONFIG_LOG
k_object_dump_error(ret, thread, ko, K_OBJ_THREAD);
#endif /* CONFIG_LOG */
K_OOPS(K_SYSCALL_VERIFY_MSG(ret, "access denied"));
}
CODE_UNREACHABLE; /* LCOV_EXCL_LINE */
}
static inline int z_vrfy_k_thread_join(struct k_thread *thread,
k_timeout_t timeout)
{
if (thread_obj_validate(thread)) {
return 0;
}
return z_impl_k_thread_join(thread, timeout);
}
#include <syscalls/k_thread_join_mrsh.c>
static inline void z_vrfy_k_thread_abort(k_tid_t thread)
{
if (thread_obj_validate(thread)) {
return;
}
K_OOPS(K_SYSCALL_VERIFY_MSG(!z_is_thread_essential(thread),
"aborting essential thread %p", thread));
z_impl_k_thread_abort((struct k_thread *)thread);
}
#include <syscalls/k_thread_abort_mrsh.c>
#endif /* CONFIG_USERSPACE */
/*
* future scheduler.h API implementations
*/
bool z_sched_wake(_wait_q_t *wait_q, int swap_retval, void *swap_data)
{
struct k_thread *thread;
bool ret = false;
K_SPINLOCK(&_sched_spinlock) {
thread = _priq_wait_best(&wait_q->waitq);
if (thread != NULL) {
z_thread_return_value_set_with_data(thread,
swap_retval,
swap_data);
unpend_thread_no_timeout(thread);
(void)z_abort_thread_timeout(thread);
ready_thread(thread);
ret = true;
}
}
return ret;
}
int z_sched_wait(struct k_spinlock *lock, k_spinlock_key_t key,
_wait_q_t *wait_q, k_timeout_t timeout, void **data)
{
int ret = z_pend_curr(lock, key, wait_q, timeout);
if (data != NULL) {
*data = _current->base.swap_data;
}
return ret;
}
int z_sched_waitq_walk(_wait_q_t *wait_q,
int (*func)(struct k_thread *, void *), void *data)
{
struct k_thread *thread;
int status = 0;
K_SPINLOCK(&_sched_spinlock) {
_WAIT_Q_FOR_EACH(wait_q, thread) {
/*
* Invoke the callback function on each waiting thread
* for as long as there are both waiting threads AND
* it returns 0.
*/
status = func(thread, data);
if (status != 0) {
break;
}
}
}
return status;
}