| /* |
| * Copyright (c) 1997-2016 Wind River Systems, Inc. |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| #include <zephyr/kernel.h> |
| |
| #include <zephyr/init.h> |
| #include <zephyr/internal/syscall_handler.h> |
| #include <stdbool.h> |
| #include <zephyr/spinlock.h> |
| #include <ksched.h> |
| #include <wait_q.h> |
| |
| static struct k_spinlock lock; |
| |
| #ifdef CONFIG_OBJ_CORE_TIMER |
| static struct k_obj_type obj_type_timer; |
| #endif /* CONFIG_OBJ_CORE_TIMER */ |
| |
| /** |
| * @brief Handle expiration of a kernel timer object. |
| * |
| * @param t Timeout used by the timer. |
| */ |
| void z_timer_expiration_handler(struct _timeout *t) |
| { |
| struct k_timer *timer = CONTAINER_OF(t, struct k_timer, timeout); |
| struct k_thread *thread; |
| k_spinlock_key_t key = k_spin_lock(&lock); |
| |
| /* In sys_clock_announce(), when a timeout expires, it is first removed |
| * from the timeout list, then its expiration handler is called (with |
| * unlocked interrupts). For kernel timers, the expiration handler is |
| * this function. Usually, the timeout structure related to the timer |
| * that is handled here will not be linked to the timeout list at this |
| * point. But it may happen that before this function is executed and |
| * interrupts are locked again, a given timer gets restarted from an |
| * interrupt context that has a priority higher than the system timer |
| * interrupt. Then, the timeout structure for this timer will turn out |
| * to be linked to the timeout list. And in such case, since the timer |
| * was restarted, its expiration handler should not be executed then, |
| * so the function exits immediately. |
| */ |
| if (sys_dnode_is_linked(&t->node)) { |
| k_spin_unlock(&lock, key); |
| return; |
| } |
| |
| /* |
| * if the timer is periodic, start it again; don't add _TICK_ALIGN |
| * since we're already aligned to a tick boundary |
| */ |
| if (!K_TIMEOUT_EQ(timer->period, K_NO_WAIT) && |
| !K_TIMEOUT_EQ(timer->period, K_FOREVER)) { |
| k_timeout_t next = timer->period; |
| |
| /* see note about z_add_timeout() in z_impl_k_timer_start() */ |
| next.ticks = MAX(next.ticks - 1, 0); |
| |
| #ifdef CONFIG_TIMEOUT_64BIT |
| /* Exploit the fact that uptime during a kernel |
| * timeout handler reflects the time of the scheduled |
| * event and not real time to get some inexpensive |
| * protection against late interrupts. If we're |
| * delayed for any reason, we still end up calculating |
| * the next expiration as a regular stride from where |
| * we "should" have run. Requires absolute timeouts. |
| * (Note offset by one: we're nominally at the |
| * beginning of a tick, so need to defeat the "round |
| * down" behavior on timeout addition). |
| */ |
| next = K_TIMEOUT_ABS_TICKS(k_uptime_ticks() + 1 + next.ticks); |
| #endif /* CONFIG_TIMEOUT_64BIT */ |
| z_add_timeout(&timer->timeout, z_timer_expiration_handler, |
| next); |
| } |
| |
| /* update timer's status */ |
| timer->status += 1U; |
| |
| /* invoke timer expiry function */ |
| if (timer->expiry_fn != NULL) { |
| /* Unlock for user handler. */ |
| k_spin_unlock(&lock, key); |
| timer->expiry_fn(timer); |
| key = k_spin_lock(&lock); |
| } |
| |
| if (!IS_ENABLED(CONFIG_MULTITHREADING)) { |
| k_spin_unlock(&lock, key); |
| return; |
| } |
| |
| thread = z_waitq_head(&timer->wait_q); |
| |
| if (thread == NULL) { |
| k_spin_unlock(&lock, key); |
| return; |
| } |
| |
| z_unpend_thread_no_timeout(thread); |
| |
| arch_thread_return_value_set(thread, 0); |
| |
| k_spin_unlock(&lock, key); |
| |
| z_ready_thread(thread); |
| } |
| |
| |
| void k_timer_init(struct k_timer *timer, |
| k_timer_expiry_t expiry_fn, |
| k_timer_stop_t stop_fn) |
| { |
| timer->expiry_fn = expiry_fn; |
| timer->stop_fn = stop_fn; |
| timer->status = 0U; |
| |
| if (IS_ENABLED(CONFIG_MULTITHREADING)) { |
| z_waitq_init(&timer->wait_q); |
| } |
| |
| z_init_timeout(&timer->timeout); |
| |
| SYS_PORT_TRACING_OBJ_INIT(k_timer, timer); |
| |
| timer->user_data = NULL; |
| |
| k_object_init(timer); |
| |
| #ifdef CONFIG_OBJ_CORE_TIMER |
| k_obj_core_init_and_link(K_OBJ_CORE(timer), &obj_type_timer); |
| #endif /* CONFIG_OBJ_CORE_TIMER */ |
| } |
| |
| |
| void z_impl_k_timer_start(struct k_timer *timer, k_timeout_t duration, |
| k_timeout_t period) |
| { |
| SYS_PORT_TRACING_OBJ_FUNC(k_timer, start, timer, duration, period); |
| |
| /* Acquire spinlock to ensure safety during concurrent calls to |
| * k_timer_start for scheduling or rescheduling. This is necessary |
| * since k_timer_start can be preempted, especially for the same |
| * timer instance. |
| */ |
| k_spinlock_key_t key = k_spin_lock(&lock); |
| |
| if (K_TIMEOUT_EQ(duration, K_FOREVER)) { |
| k_spin_unlock(&lock, key); |
| return; |
| } |
| |
| /* z_add_timeout() always adds one to the incoming tick count |
| * to round up to the next tick (by convention it waits for |
| * "at least as long as the specified timeout"), but the |
| * period interval is always guaranteed to be reset from |
| * within the timer ISR, so no round up is desired and 1 is |
| * subtracted in there. |
| * |
| * Note that the duration (!) value gets the same treatment |
| * for backwards compatibility. This is unfortunate |
| * (i.e. k_timer_start() doesn't treat its initial sleep |
| * argument the same way k_sleep() does), but historical. The |
| * timer_api test relies on this behavior. |
| */ |
| if (Z_TICK_ABS(duration.ticks) < 0) { |
| duration.ticks = MAX(duration.ticks - 1, 0); |
| } |
| |
| (void)z_abort_timeout(&timer->timeout); |
| timer->period = period; |
| timer->status = 0U; |
| |
| z_add_timeout(&timer->timeout, z_timer_expiration_handler, |
| duration); |
| |
| k_spin_unlock(&lock, key); |
| } |
| |
| #ifdef CONFIG_USERSPACE |
| static inline void z_vrfy_k_timer_start(struct k_timer *timer, |
| k_timeout_t duration, |
| k_timeout_t period) |
| { |
| K_OOPS(K_SYSCALL_OBJ(timer, K_OBJ_TIMER)); |
| z_impl_k_timer_start(timer, duration, period); |
| } |
| #include <syscalls/k_timer_start_mrsh.c> |
| #endif /* CONFIG_USERSPACE */ |
| |
| void z_impl_k_timer_stop(struct k_timer *timer) |
| { |
| SYS_PORT_TRACING_OBJ_FUNC(k_timer, stop, timer); |
| |
| bool inactive = (z_abort_timeout(&timer->timeout) != 0); |
| |
| if (inactive) { |
| return; |
| } |
| |
| if (timer->stop_fn != NULL) { |
| timer->stop_fn(timer); |
| } |
| |
| if (IS_ENABLED(CONFIG_MULTITHREADING)) { |
| struct k_thread *pending_thread = z_unpend1_no_timeout(&timer->wait_q); |
| |
| if (pending_thread != NULL) { |
| z_ready_thread(pending_thread); |
| z_reschedule_unlocked(); |
| } |
| } |
| } |
| |
| #ifdef CONFIG_USERSPACE |
| static inline void z_vrfy_k_timer_stop(struct k_timer *timer) |
| { |
| K_OOPS(K_SYSCALL_OBJ(timer, K_OBJ_TIMER)); |
| z_impl_k_timer_stop(timer); |
| } |
| #include <syscalls/k_timer_stop_mrsh.c> |
| #endif /* CONFIG_USERSPACE */ |
| |
| uint32_t z_impl_k_timer_status_get(struct k_timer *timer) |
| { |
| k_spinlock_key_t key = k_spin_lock(&lock); |
| uint32_t result = timer->status; |
| |
| timer->status = 0U; |
| k_spin_unlock(&lock, key); |
| |
| return result; |
| } |
| |
| #ifdef CONFIG_USERSPACE |
| static inline uint32_t z_vrfy_k_timer_status_get(struct k_timer *timer) |
| { |
| K_OOPS(K_SYSCALL_OBJ(timer, K_OBJ_TIMER)); |
| return z_impl_k_timer_status_get(timer); |
| } |
| #include <syscalls/k_timer_status_get_mrsh.c> |
| #endif /* CONFIG_USERSPACE */ |
| |
| uint32_t z_impl_k_timer_status_sync(struct k_timer *timer) |
| { |
| __ASSERT(!arch_is_in_isr(), ""); |
| SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_timer, status_sync, timer); |
| |
| if (!IS_ENABLED(CONFIG_MULTITHREADING)) { |
| uint32_t result; |
| |
| do { |
| k_spinlock_key_t key = k_spin_lock(&lock); |
| |
| if (!z_is_inactive_timeout(&timer->timeout)) { |
| result = *(volatile uint32_t *)&timer->status; |
| timer->status = 0U; |
| k_spin_unlock(&lock, key); |
| if (result > 0) { |
| break; |
| } |
| } else { |
| result = timer->status; |
| k_spin_unlock(&lock, key); |
| break; |
| } |
| } while (true); |
| |
| return result; |
| } |
| |
| k_spinlock_key_t key = k_spin_lock(&lock); |
| uint32_t result = timer->status; |
| |
| if (result == 0U) { |
| if (!z_is_inactive_timeout(&timer->timeout)) { |
| SYS_PORT_TRACING_OBJ_FUNC_BLOCKING(k_timer, status_sync, timer, K_FOREVER); |
| |
| /* wait for timer to expire or stop */ |
| (void)z_pend_curr(&lock, key, &timer->wait_q, K_FOREVER); |
| |
| /* get updated timer status */ |
| key = k_spin_lock(&lock); |
| result = timer->status; |
| } else { |
| /* timer is already stopped */ |
| } |
| } else { |
| /* timer has already expired at least once */ |
| } |
| |
| timer->status = 0U; |
| k_spin_unlock(&lock, key); |
| |
| /** |
| * @note New tracing hook |
| */ |
| SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_timer, status_sync, timer, result); |
| |
| return result; |
| } |
| |
| #ifdef CONFIG_USERSPACE |
| static inline uint32_t z_vrfy_k_timer_status_sync(struct k_timer *timer) |
| { |
| K_OOPS(K_SYSCALL_OBJ(timer, K_OBJ_TIMER)); |
| return z_impl_k_timer_status_sync(timer); |
| } |
| #include <syscalls/k_timer_status_sync_mrsh.c> |
| |
| static inline k_ticks_t z_vrfy_k_timer_remaining_ticks( |
| const struct k_timer *timer) |
| { |
| K_OOPS(K_SYSCALL_OBJ(timer, K_OBJ_TIMER)); |
| return z_impl_k_timer_remaining_ticks(timer); |
| } |
| #include <syscalls/k_timer_remaining_ticks_mrsh.c> |
| |
| static inline k_ticks_t z_vrfy_k_timer_expires_ticks( |
| const struct k_timer *timer) |
| { |
| K_OOPS(K_SYSCALL_OBJ(timer, K_OBJ_TIMER)); |
| return z_impl_k_timer_expires_ticks(timer); |
| } |
| #include <syscalls/k_timer_expires_ticks_mrsh.c> |
| |
| static inline void *z_vrfy_k_timer_user_data_get(const struct k_timer *timer) |
| { |
| K_OOPS(K_SYSCALL_OBJ(timer, K_OBJ_TIMER)); |
| return z_impl_k_timer_user_data_get(timer); |
| } |
| #include <syscalls/k_timer_user_data_get_mrsh.c> |
| |
| static inline void z_vrfy_k_timer_user_data_set(struct k_timer *timer, |
| void *user_data) |
| { |
| K_OOPS(K_SYSCALL_OBJ(timer, K_OBJ_TIMER)); |
| z_impl_k_timer_user_data_set(timer, user_data); |
| } |
| #include <syscalls/k_timer_user_data_set_mrsh.c> |
| |
| #endif /* CONFIG_USERSPACE */ |
| |
| #ifdef CONFIG_OBJ_CORE_TIMER |
| static int init_timer_obj_core_list(void) |
| { |
| /* Initialize timer object type */ |
| |
| z_obj_type_init(&obj_type_timer, K_OBJ_TYPE_TIMER_ID, |
| offsetof(struct k_timer, obj_core)); |
| |
| /* Initialize and link statically defined timers */ |
| |
| STRUCT_SECTION_FOREACH(k_timer, timer) { |
| k_obj_core_init_and_link(K_OBJ_CORE(timer), &obj_type_timer); |
| } |
| |
| return 0; |
| } |
| SYS_INIT(init_timer_obj_core_list, PRE_KERNEL_1, |
| CONFIG_KERNEL_INIT_PRIORITY_OBJECTS); |
| #endif /* CONFIG_OBJ_CORE_TIMER */ |