| /* |
| * Copyright (c) 2020 Antmicro <www.antmicro.com> |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| #include <zephyr/types.h> |
| #include <device.h> |
| #include <devicetree.h> |
| #include <drivers/clock_control.h> |
| #include <drivers/clock_control/clock_control_litex.h> |
| #include "clock_control_litex.h" |
| #include <logging/log.h> |
| #include <logging/log_ctrl.h> |
| #include <sys/util.h> |
| #include <errno.h> |
| #include <stdlib.h> |
| #include <stdio.h> |
| #include <kernel.h> |
| |
| LOG_MODULE_REGISTER(CLK_CTRL_LITEX, CONFIG_CLOCK_CONTROL_LOG_LEVEL); |
| |
| static struct litex_clk_device *ldev; /* global struct for whole driver */ |
| static struct litex_clk_clkout *clkouts;/* clkout array for whole driver */ |
| |
| /* All DRP regs addresses and sizes */ |
| static struct litex_drp_reg drp[] = { |
| {DRP_ADDR_RESET, DRP_SIZE_RESET}, |
| {DRP_ADDR_LOCKED, DRP_SIZE_LOCKED}, |
| {DRP_ADDR_READ, DRP_SIZE_READ}, |
| {DRP_ADDR_WRITE, DRP_SIZE_WRITE}, |
| {DRP_ADDR_DRDY, DRP_SIZE_DRDY}, |
| {DRP_ADDR_ADR, DRP_SIZE_ADR}, |
| {DRP_ADDR_DAT_W, DRP_SIZE_DAT_W}, |
| {DRP_ADDR_DAT_R, DRP_SIZE_DAT_R}, |
| }; |
| |
| struct litex_clk_regs_addr litex_clk_regs_addr_init(void) |
| { |
| struct litex_clk_regs_addr m; |
| uint32_t i, addr; |
| |
| addr = CLKOUT0_REG1; |
| for (i = 0; i <= CLKOUT_MAX; i++) { |
| if (i == 5) { |
| /* |
| *special case because CLKOUT5 have its reg addresses |
| *placed lower than other CLKOUTs |
| */ |
| m.clkout[5].reg1 = CLKOUT5_REG1; |
| m.clkout[5].reg2 = CLKOUT5_REG2; |
| } else { |
| m.clkout[i].reg1 = addr; |
| addr++; |
| m.clkout[i].reg2 = addr; |
| addr++; |
| } |
| } |
| return m; |
| } |
| |
| /* |
| * These lookup tables are taken from: |
| * https://github.com/Digilent/Zybo-hdmi-out/blob/b991fff6e964420ae3c00c3dbee52f2ad748b3ba/sdk/displaydemo/src/dynclk/dynclk.h |
| * |
| * 2015 Copyright Digilent Incorporated |
| * Author: Sam Bobrowicz |
| * |
| */ |
| |
| /* MMCM loop filter lookup table */ |
| static const uint32_t litex_clk_filter_table[] = { |
| 0b0001011111, |
| 0b0001010111, |
| 0b0001111011, |
| 0b0001011011, |
| 0b0001101011, |
| 0b0001110011, |
| 0b0001110011, |
| 0b0001110011, |
| 0b0001110011, |
| 0b0001001011, |
| 0b0001001011, |
| 0b0001001011, |
| 0b0010110011, |
| 0b0001010011, |
| 0b0001010011, |
| 0b0001010011, |
| 0b0001010011, |
| 0b0001010011, |
| 0b0001010011, |
| 0b0001010011, |
| 0b0001010011, |
| 0b0001010011, |
| 0b0001010011, |
| 0b0001100011, |
| 0b0001100011, |
| 0b0001100011, |
| 0b0001100011, |
| 0b0001100011, |
| 0b0001100011, |
| 0b0001100011, |
| 0b0001100011, |
| 0b0001100011, |
| 0b0001100011, |
| 0b0001100011, |
| 0b0001100011, |
| 0b0001100011, |
| 0b0001100011, |
| 0b0010010011, |
| 0b0010010011, |
| 0b0010010011, |
| 0b0010010011, |
| 0b0010010011, |
| 0b0010010011, |
| 0b0010010011, |
| 0b0010010011, |
| 0b0010010011, |
| 0b0010010011, |
| 0b0010100011, |
| 0b0010100011, |
| 0b0010100011, |
| 0b0010100011, |
| 0b0010100011, |
| 0b0010100011, |
| 0b0010100011, |
| 0b0010100011, |
| 0b0010100011, |
| 0b0010100011, |
| 0b0010100011, |
| 0b0010100011, |
| 0b0010100011, |
| 0b0010100011, |
| 0b0010100011, |
| 0b0010100011, |
| 0b0010100011 |
| }; |
| |
| /* MMCM lock detection lookup table */ |
| static const uint64_t litex_clk_lock_table[] = { |
| 0b0011000110111110100011111010010000000001, |
| 0b0011000110111110100011111010010000000001, |
| 0b0100001000111110100011111010010000000001, |
| 0b0101101011111110100011111010010000000001, |
| 0b0111001110111110100011111010010000000001, |
| 0b1000110001111110100011111010010000000001, |
| 0b1001110011111110100011111010010000000001, |
| 0b1011010110111110100011111010010000000001, |
| 0b1100111001111110100011111010010000000001, |
| 0b1110011100111110100011111010010000000001, |
| 0b1111111111111000010011111010010000000001, |
| 0b1111111111110011100111111010010000000001, |
| 0b1111111111101110111011111010010000000001, |
| 0b1111111111101011110011111010010000000001, |
| 0b1111111111101000101011111010010000000001, |
| 0b1111111111100111000111111010010000000001, |
| 0b1111111111100011111111111010010000000001, |
| 0b1111111111100010011011111010010000000001, |
| 0b1111111111100000110111111010010000000001, |
| 0b1111111111011111010011111010010000000001, |
| 0b1111111111011101101111111010010000000001, |
| 0b1111111111011100001011111010010000000001, |
| 0b1111111111011010100111111010010000000001, |
| 0b1111111111011001000011111010010000000001, |
| 0b1111111111011001000011111010010000000001, |
| 0b1111111111010111011111111010010000000001, |
| 0b1111111111010101111011111010010000000001, |
| 0b1111111111010101111011111010010000000001, |
| 0b1111111111010100010111111010010000000001, |
| 0b1111111111010100010111111010010000000001, |
| 0b1111111111010010110011111010010000000001, |
| 0b1111111111010010110011111010010000000001, |
| 0b1111111111010010110011111010010000000001, |
| 0b1111111111010001001111111010010000000001, |
| 0b1111111111010001001111111010010000000001, |
| 0b1111111111010001001111111010010000000001, |
| 0b1111111111001111101011111010010000000001, |
| 0b1111111111001111101011111010010000000001, |
| 0b1111111111001111101011111010010000000001, |
| 0b1111111111001111101011111010010000000001, |
| 0b1111111111001111101011111010010000000001, |
| 0b1111111111001111101011111010010000000001, |
| 0b1111111111001111101011111010010000000001, |
| 0b1111111111001111101011111010010000000001, |
| 0b1111111111001111101011111010010000000001, |
| 0b1111111111001111101011111010010000000001, |
| 0b1111111111001111101011111010010000000001, |
| 0b1111111111001111101011111010010000000001, |
| 0b1111111111001111101011111010010000000001, |
| 0b1111111111001111101011111010010000000001, |
| 0b1111111111001111101011111010010000000001, |
| 0b1111111111001111101011111010010000000001, |
| 0b1111111111001111101011111010010000000001, |
| 0b1111111111001111101011111010010000000001, |
| 0b1111111111001111101011111010010000000001, |
| 0b1111111111001111101011111010010000000001, |
| 0b1111111111001111101011111010010000000001, |
| 0b1111111111001111101011111010010000000001, |
| 0b1111111111001111101011111010010000000001, |
| 0b1111111111001111101011111010010000000001, |
| 0b1111111111001111101011111010010000000001, |
| 0b1111111111001111101011111010010000000001, |
| 0b1111111111001111101011111010010000000001, |
| 0b1111111111001111101011111010010000000001 |
| }; |
| /* End of copied code */ |
| |
| /* Helper function for filter lookup table */ |
| static inline uint32_t litex_clk_lookup_filter(uint32_t glob_mul) |
| { |
| return litex_clk_filter_table[glob_mul - 1]; |
| } |
| |
| /* Helper function for lock lookup table */ |
| static inline uint64_t litex_clk_lookup_lock(uint32_t glob_mul) |
| { |
| return litex_clk_lock_table[glob_mul - 1]; |
| } |
| |
| static inline void litex_clk_set_reg(uint32_t reg, uint32_t val) |
| { |
| litex_write((uint32_t *)drp[reg].addr, drp[reg].size, val); |
| } |
| |
| static inline uint32_t litex_clk_get_reg(uint32_t reg) |
| { |
| return litex_read((uint32_t *)drp[reg].addr, drp[reg].size); |
| } |
| |
| static inline void litex_clk_assert_reg(uint32_t reg) |
| { |
| int assert = (1 << (drp[reg].size * BITS_PER_BYTE)) - 1; |
| |
| litex_clk_set_reg(reg, assert); |
| } |
| |
| static inline void litex_clk_deassert_reg(uint32_t reg) |
| { |
| litex_clk_set_reg(reg, ZERO_REG); |
| } |
| |
| static int litex_clk_wait(uint32_t reg) |
| { |
| uint32_t timeout; |
| |
| __ASSERT(reg == DRP_LOCKED || reg == DRP_DRDY, "Unsupported register! Please provide DRP_LOCKED or DRP_DRDY"); |
| |
| if (reg == DRP_LOCKED) { |
| timeout = ldev->timeout.lock; |
| } else { |
| timeout = ldev->timeout.drdy; |
| } |
| /*Waiting for signal to assert in reg*/ |
| while (!litex_clk_get_reg(reg) && timeout) { |
| timeout--; |
| k_sleep(K_MSEC(1)); |
| } |
| if (timeout == 0) { |
| LOG_WRN("Timeout occured when waiting for the register: 0x%x", reg); |
| return -ETIME; |
| } |
| return 0; |
| } |
| |
| /* Read value written in given internal MMCM register*/ |
| static int litex_clk_get_DO(uint8_t clk_reg_addr, uint16_t *res) |
| { |
| int ret; |
| |
| litex_clk_set_reg(DRP_ADR, clk_reg_addr); |
| litex_clk_assert_reg(DRP_READ); |
| |
| litex_clk_deassert_reg(DRP_READ); |
| ret = litex_clk_wait(DRP_DRDY); |
| if (ret != 0) { |
| return ret; |
| } |
| |
| *res = litex_clk_get_reg(DRP_DAT_R); |
| |
| return 0; |
| } |
| |
| /* Get global divider and multiplier values and update global config */ |
| static int litex_clk_update_global_config(void) |
| { |
| int ret; |
| uint16_t divreg, mult2; |
| uint8_t low_time, high_time; |
| |
| ret = litex_clk_get_DO(CLKFBOUT_REG2, &mult2); |
| if (ret != 0) { |
| return ret; |
| } |
| ret = litex_clk_get_DO(DIV_REG, &divreg); |
| if (ret != 0) { |
| return ret; |
| } |
| |
| if (mult2 & (NO_CNT_MASK << NO_CNT_POS)) { |
| ldev->g_config.mul = 1; |
| } else { |
| uint16_t mult1; |
| |
| ret = litex_clk_get_DO(CLKFBOUT_REG1, &mult1); |
| if (ret != 0) { |
| return ret; |
| } |
| low_time = mult1 & HL_TIME_MASK; |
| high_time = (mult1 >> HIGH_TIME_POS) & HL_TIME_MASK; |
| ldev->g_config.mul = low_time + high_time; |
| } |
| |
| if (divreg & (NO_CNT_MASK << NO_CNT_DIVREG_POS)) { |
| ldev->g_config.div = 1; |
| } else { |
| low_time = divreg & HL_TIME_MASK; |
| high_time = (divreg >> HIGH_TIME_POS) & HL_TIME_MASK; |
| ldev->g_config.div = low_time + high_time; |
| } |
| |
| return 0; |
| } |
| |
| static uint64_t litex_clk_calc_global_frequency(uint32_t mul, uint32_t div) |
| { |
| uint64_t f; |
| |
| f = (uint64_t)ldev->sys_clk_freq * (uint64_t)mul; |
| f /= div; |
| |
| return f; |
| } |
| |
| /* Calculate frequency with real global params and update global config */ |
| static uint64_t litex_clk_get_real_global_frequency(void) |
| { |
| uint64_t f; |
| |
| litex_clk_update_global_config(); |
| f = litex_clk_calc_global_frequency(ldev->g_config.mul, |
| ldev->g_config.div); |
| ldev->g_config.freq = f; |
| ldev->ts_g_config.div = ldev->g_config.div; |
| ldev->ts_g_config.mul = ldev->g_config.mul; |
| ldev->ts_g_config.freq = ldev->g_config.freq; |
| |
| return f; |
| } |
| |
| /* Return dividers of given CLKOUT */ |
| static int litex_clk_get_clkout_divider(struct litex_clk_clkout *lcko, |
| uint32_t *divider, uint32_t *fract_cnt) |
| { |
| struct litex_clk_regs_addr drp_addr = litex_clk_regs_addr_init(); |
| int ret; |
| uint16_t div, frac; |
| uint8_t clkout_nr = lcko->id; |
| uint8_t low_time, high_time; |
| |
| ret = litex_clk_get_DO(drp_addr.clkout[clkout_nr].reg1, &div); |
| if (ret != 0) { |
| return ret; |
| } |
| ret = litex_clk_get_DO(drp_addr.clkout[clkout_nr].reg2, &frac); |
| if (ret != 0) { |
| return ret; |
| } |
| |
| low_time = div & HL_TIME_MASK; |
| high_time = (div >> HIGH_TIME_POS) & HL_TIME_MASK; |
| *divider = low_time + high_time; |
| *fract_cnt = (frac >> FRAC_POS) & FRAC_MASK; |
| |
| return 0; |
| } |
| |
| /* Debug functions */ |
| #ifdef CONFIG_CLOCK_CONTROL_LOG_LEVEL_DBG |
| |
| static void litex_clk_check_DO(char *reg_name, uint8_t clk_reg_addr, |
| uint16_t *res) |
| { |
| int ret; |
| |
| ret = litex_clk_get_DO(clk_reg_addr, res); |
| if (ret != 0) |
| LOG_ERR("%s: read error: %d", reg_name, ret); |
| else |
| LOG_DBG("%s: 0x%x", reg_name, *res); |
| } |
| |
| static void litex_clk_print_general_regs(void) |
| { |
| uint16_t power_reg, div_reg, clkfbout_reg1, clkfbout_reg2, |
| lock_reg1, lock_reg2, lock_reg3, filt_reg1, filt_reg2; |
| |
| litex_clk_check_DO("POWER_REG", POWER_REG, &power_reg); |
| litex_clk_check_DO("DIV_REG", DIV_REG, &div_reg); |
| litex_clk_check_DO("MUL_REG1", CLKFBOUT_REG1, &clkfbout_reg1); |
| litex_clk_check_DO("MUL_REG2", CLKFBOUT_REG2, &clkfbout_reg2); |
| litex_clk_check_DO("LOCK_REG1", LOCK_REG1, &lock_reg1); |
| litex_clk_check_DO("LOCK_REG2", LOCK_REG2, &lock_reg2); |
| litex_clk_check_DO("LOCK_REG3", LOCK_REG3, &lock_reg3); |
| litex_clk_check_DO("FILT_REG1", FILT_REG1, &filt_reg1); |
| litex_clk_check_DO("FILT_REG2", FILT_REG2, &filt_reg2); |
| } |
| |
| static void litex_clk_print_clkout_regs(uint8_t clkout, uint8_t reg1, |
| uint8_t reg2) |
| { |
| uint16_t clkout_reg1, clkout_reg2; |
| char reg_name[16]; |
| |
| sprintf(reg_name, "CLKOUT%u REG1", clkout); |
| litex_clk_check_DO(reg_name, reg1, &clkout_reg1); |
| |
| sprintf(reg_name, "CLKOUT%u REG2", clkout); |
| litex_clk_check_DO(reg_name, reg2, &clkout_reg2); |
| } |
| |
| static void litex_clk_print_all_regs(void) |
| { |
| struct litex_clk_regs_addr drp_addr = litex_clk_regs_addr_init(); |
| uint32_t i; |
| |
| litex_clk_print_general_regs(); |
| for (i = 0; i < ldev->nclkout; i++) { |
| litex_clk_print_clkout_regs(i, drp_addr.clkout[i].reg1, |
| drp_addr.clkout[i].reg2); |
| } |
| } |
| |
| static void litex_clk_print_params(struct litex_clk_clkout *lcko) |
| { |
| LOG_DBG("CLKOUT%d DUMP:", lcko->id); |
| LOG_DBG("Defaults:"); |
| LOG_DBG("f: %u d: %u/%u p: %u", |
| lcko->def.freq, lcko->def.duty.num, |
| lcko->def.duty.den, lcko->def.phase); |
| LOG_DBG("Config to set:"); |
| LOG_DBG("div: %u freq: %u duty: %u/%u phase: %d per_off: %u", |
| lcko->ts_config.div, lcko->ts_config.freq, |
| lcko->ts_config.duty.num, lcko->ts_config.duty.den, |
| lcko->ts_config.phase, lcko->config.period_off); |
| LOG_DBG("Config:"); |
| LOG_DBG("div: %u freq: %u duty: %u/%u phase: %d per_off: %u", |
| lcko->config.div, lcko->config.freq, |
| lcko->config.duty.num, lcko->config.duty.den, |
| lcko->config.phase, lcko->config.period_off); |
| LOG_DBG("Divide group:"); |
| LOG_DBG("e: %u ht: %u lt: %u nc: %u", |
| lcko->div.edge, lcko->div.high_time, |
| lcko->div.low_time, lcko->div.no_cnt); |
| LOG_DBG("Frac group:"); |
| LOG_DBG("f: %u fen: %u fwff: %u fwfr: %u pmf: %u", |
| lcko->frac.frac, lcko->frac.frac_en, lcko->frac.frac_wf_f, |
| lcko->frac.frac_wf_r, lcko->frac.phase_mux_f); |
| LOG_DBG("Phase group:"); |
| LOG_DBG("dt: %u pm: %u mx: %u", |
| lcko->phase.delay_time, lcko->phase.phase_mux, lcko->phase.mx); |
| } |
| |
| static void litex_clk_print_all_params(void) |
| { |
| uint32_t c; |
| |
| LOG_DBG("Global Config to set:"); |
| LOG_DBG("freq: %llu mul: %u div: %u", |
| ldev->ts_g_config.freq, ldev->ts_g_config.mul, |
| ldev->ts_g_config.div); |
| LOG_DBG("Global Config:"); |
| LOG_DBG("freq: %llu mul: %u div: %u", |
| ldev->g_config.freq, ldev->g_config.mul, ldev->g_config.div); |
| for (c = 0; c < ldev->nclkout; c++) { |
| litex_clk_print_params(&ldev->clkouts[c]); |
| } |
| } |
| #endif /* CONFIG_CLOCK_CONTROL_LOG_LEVEL_DBG */ |
| |
| /* Returns raw value ready to be written into MMCM */ |
| static inline uint16_t litex_clk_calc_DI(uint16_t DO_val, uint16_t mask, |
| uint16_t bitset) |
| { |
| uint16_t DI_val; |
| |
| DI_val = DO_val & mask; |
| DI_val |= bitset; |
| |
| return DI_val; |
| } |
| |
| /* Sets calculated DI value into DI DRP register */ |
| static int litex_clk_set_DI(uint16_t DI_val) |
| { |
| int ret; |
| |
| litex_clk_set_reg(DRP_DAT_W, DI_val); |
| litex_clk_assert_reg(DRP_WRITE); |
| litex_clk_deassert_reg(DRP_WRITE); |
| ret = litex_clk_wait(DRP_DRDY); |
| return ret; |
| } |
| |
| /* |
| * Change register value as specified in arguments |
| * |
| * mask: preserve or zero MMCM register bits |
| * by selecting 1 or 0 on desired specific mask positions |
| * bitset: set those bits in MMCM register which are 1 in bitset |
| * clk_reg_addr: internal MMCM address of control register |
| * |
| */ |
| static int litex_clk_change_value(uint16_t mask, uint16_t bitset, |
| uint8_t clk_reg_addr) |
| { |
| uint16_t DO_val, DI_val; |
| int ret; |
| |
| litex_clk_assert_reg(DRP_RESET); |
| |
| ret = litex_clk_get_DO(clk_reg_addr, &DO_val); |
| if (ret != 0) { |
| return ret; |
| } |
| DI_val = litex_clk_calc_DI(DO_val, mask, bitset); |
| ret = litex_clk_set_DI(DI_val); |
| if (ret != 0) { |
| return ret; |
| } |
| #ifdef CONFIG_CLOCK_CONTROL_LOG_LEVEL_DBG |
| DI_val = litex_clk_get_reg(DRP_DAT_W); |
| LOG_DBG("set 0x%x under: 0x%x", DI_val, clk_reg_addr); |
| #endif |
| litex_clk_deassert_reg(DRP_DAT_W); |
| litex_clk_deassert_reg(DRP_RESET); |
| ret = litex_clk_wait(DRP_LOCKED); |
| return ret; |
| } |
| |
| /* |
| * Set register values for given CLKOUT |
| * |
| * clkout_nr: clock output number |
| * mask_regX: preserve or zero MMCM register X bits |
| * by selecting 1 or 0 on desired specific mask positions |
| * bitset_regX: set those bits in MMCM register X which are 1 in bitset |
| * |
| */ |
| static int litex_clk_set_clock(uint8_t clkout_nr, uint16_t mask_reg1, |
| uint16_t bitset_reg1, uint16_t mask_reg2, |
| uint16_t bitset_reg2) |
| { |
| struct litex_clk_regs_addr drp_addr = litex_clk_regs_addr_init(); |
| int ret; |
| |
| if (!(mask_reg2 == FULL_REG_16 && bitset_reg2 == ZERO_REG)) { |
| ret = litex_clk_change_value(mask_reg2, bitset_reg2, |
| drp_addr.clkout[clkout_nr].reg2); |
| if (ret != 0) { |
| return ret; |
| } |
| } |
| if (!(mask_reg1 == FULL_REG_16 && bitset_reg1 == ZERO_REG)) { |
| ret = litex_clk_change_value(mask_reg1, bitset_reg1, |
| drp_addr.clkout[clkout_nr].reg1); |
| if (ret != 0) { |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* Set global divider for all CLKOUTs */ |
| static int litex_clk_set_divreg(void) |
| { |
| int ret; |
| uint8_t no_cnt = 0, edge = 0, ht = 0, lt = 0, |
| div = ldev->ts_g_config.div; |
| uint16_t bitset = 0; |
| |
| if (div == 1) { |
| no_cnt = 1; |
| } else { |
| ht = div / 2; |
| lt = ht; |
| edge = div % 2; |
| if (edge) { |
| lt += edge; |
| } |
| } |
| |
| bitset = (edge << EDGE_DIVREG_POS) | |
| (no_cnt << NO_CNT_DIVREG_POS) | |
| (ht << HIGH_TIME_POS) | |
| (lt << LOW_TIME_POS); |
| |
| ret = litex_clk_change_value(KEEP_IN_DIV, bitset, DIV_REG); |
| if (ret != 0) { |
| return ret; |
| } |
| |
| ldev->g_config.div = div; |
| LOG_DBG("Global divider set to %u", div); |
| |
| return 0; |
| } |
| |
| /* Set global multiplier for all CLKOUTs */ |
| static int litex_clk_set_mulreg(void) |
| { |
| int ret; |
| uint8_t no_cnt = 0, edge = 0, ht = 0, lt = 0, |
| mul = ldev->ts_g_config.mul; |
| uint16_t bitset1 = 0; |
| |
| if (mul == 1) { |
| no_cnt = 1; |
| } else { |
| ht = mul / 2; |
| lt = ht; |
| edge = mul % 2; |
| if (edge) { |
| lt += edge; |
| } |
| } |
| |
| bitset1 = (ht << HIGH_TIME_POS) | |
| (lt << LOW_TIME_POS); |
| |
| ret = litex_clk_change_value(KEEP_IN_MUL_REG1, bitset1, CLKFBOUT_REG1); |
| if (ret != 0) { |
| return ret; |
| } |
| |
| if (edge || no_cnt) { |
| uint16_t bitset2 = (edge << EDGE_POS) | |
| (no_cnt << NO_CNT_POS); |
| |
| ret = litex_clk_change_value(KEEP_IN_MUL_REG2, |
| bitset2, CLKFBOUT_REG2); |
| if (ret != 0) { |
| return ret; |
| } |
| } |
| |
| ldev->g_config.mul = mul; |
| LOG_DBG("Global multiplier set to %u", mul); |
| |
| return 0; |
| } |
| |
| static int litex_clk_set_filt(void) |
| { |
| uint16_t filt_reg; |
| uint32_t filt, mul; |
| int ret; |
| |
| mul = ldev->g_config.mul; |
| filt = litex_clk_lookup_filter(mul); |
| |
| /* |
| * Preparing and setting filter register values |
| * according to reg map form Xilinx XAPP888 |
| */ |
| filt_reg = (((filt >> 9) & 0x1) << 15) | |
| (((filt >> 7) & 0x3) << 11) | |
| (((filt >> 6) & 0x1) << 8); |
| ret = litex_clk_change_value(FILT1_MASK, filt_reg, FILT_REG1); |
| if (ret != 0) { |
| return ret; |
| } |
| |
| filt_reg = (((filt >> 5) & 0x1) << 15) | |
| (((filt >> 3) & 0x3) << 11) | |
| (((filt >> 1) & 0x3) << 7) | |
| (((filt) & 0x1) << 4); |
| ret = litex_clk_change_value(FILT2_MASK, filt_reg, FILT_REG2); |
| |
| return ret; |
| } |
| |
| static int litex_clk_set_lock(void) |
| { |
| uint16_t lock_reg; |
| uint32_t mul; |
| uint64_t lock; |
| int ret; |
| |
| mul = ldev->g_config.mul; |
| lock = litex_clk_lookup_lock(mul); |
| |
| /* |
| * Preparing and setting lock register values |
| * according to reg map form Xilinx XAPP888 |
| */ |
| lock_reg = (lock >> 20) & 0x3FF; |
| ret = litex_clk_change_value(LOCK1_MASK, lock_reg, LOCK_REG1); |
| if (ret != 0) { |
| return ret; |
| } |
| |
| lock_reg = (((lock >> 30) & 0x1F) << 10) | |
| (lock & 0x3FF); |
| ret = litex_clk_change_value(LOCK23_MASK, lock_reg, LOCK_REG2); |
| if (ret != 0) { |
| return ret; |
| } |
| |
| lock_reg = (((lock >> 35) & 0x1F) << 10) | |
| ((lock >> 10) & 0x3FF); |
| ret = litex_clk_change_value(LOCK23_MASK, lock_reg, LOCK_REG3); |
| |
| return ret; |
| } |
| |
| /* Set all multiplier-related regs: mul, filt and lock regs */ |
| static int litex_clk_set_mul(void) |
| { |
| int ret; |
| |
| ret = litex_clk_set_mulreg(); |
| if (ret != 0) { |
| return ret; |
| } |
| ret = litex_clk_set_filt(); |
| if (ret != 0) { |
| return ret; |
| } |
| ret = litex_clk_set_lock(); |
| return ret; |
| } |
| |
| static int litex_clk_set_both_globs(void) |
| { |
| /* |
| * we need to check what change first to prevent |
| * getting our VCO_FREQ out of possible range |
| */ |
| uint64_t vco_freq; |
| int ret; |
| |
| /* div-first case */ |
| vco_freq = litex_clk_calc_global_frequency( |
| ldev->g_config.mul, |
| ldev->ts_g_config.div); |
| if (vco_freq > ldev->vco.max || vco_freq < ldev->vco.min) { |
| /* div-first not safe */ |
| vco_freq = litex_clk_calc_global_frequency( |
| ldev->ts_g_config.mul, |
| ldev->g_config.div); |
| if (vco_freq > ldev->vco.max || vco_freq < ldev->vco.min) { |
| /* mul-first not safe */ |
| ret = litex_clk_set_divreg(); |
| /* Ignore timeout because we expect that to happen */ |
| if (ret != -ETIME && ret != 0) { |
| return ret; |
| } else if (ret == -ETIME) { |
| ldev->g_config.div = ldev->ts_g_config.div; |
| LOG_DBG("Global divider set to %u", |
| ldev->g_config.div); |
| } |
| ret = litex_clk_set_mul(); |
| if (ret != 0) { |
| return ret; |
| } |
| } else { |
| /* mul-first safe */ |
| ret = litex_clk_set_mul(); |
| if (ret != 0) { |
| return ret; |
| } |
| ret = litex_clk_set_divreg(); |
| if (ret != 0) { |
| return ret; |
| } |
| } |
| } else { |
| /* div-first safe */ |
| ret = litex_clk_set_divreg(); |
| if (ret != 0) { |
| return ret; |
| } |
| ret = litex_clk_set_mul(); |
| if (ret != 0) { |
| return ret; |
| } |
| } |
| return 0; |
| } |
| |
| /* Set global divider, multiplier, filt and lock values */ |
| static int litex_clk_set_globs(void) |
| { |
| int ret; |
| uint8_t set_div = 0, |
| set_mul = 0; |
| |
| set_div = ldev->ts_g_config.div != ldev->g_config.div; |
| set_mul = ldev->ts_g_config.mul != ldev->g_config.mul; |
| |
| if (set_div || set_mul) { |
| if (set_div && set_mul) { |
| ret = litex_clk_set_both_globs(); |
| if (ret != 0) { |
| return ret; |
| } |
| } else if (set_div) { |
| /* set divider only */ |
| ret = litex_clk_set_divreg(); |
| if (ret != 0) { |
| return ret; |
| } |
| } else { |
| /* set multiplier only */ |
| ret = litex_clk_set_mul(); |
| if (ret != 0) { |
| return ret; |
| } |
| } |
| ldev->g_config.freq = ldev->ts_g_config.freq; |
| } |
| return 0; |
| } |
| |
| /* Round scaled value*/ |
| static inline uint32_t litex_round(uint32_t val, uint32_t mod) |
| { |
| if (val % mod > mod / 2) { |
| return val / mod + 1; |
| } |
| return val / mod; |
| } |
| |
| /* |
| * Duty Cycle |
| */ |
| |
| /* Returns accurate duty ratio of given clkout*/ |
| int litex_clk_get_duty_cycle(struct litex_clk_clkout *lcko, |
| struct clk_duty *duty) |
| { |
| struct litex_clk_regs_addr drp_addr = litex_clk_regs_addr_init(); |
| int ret; |
| uint32_t divider; |
| uint16_t clkout_reg1, clkout_reg2; |
| uint8_t clkout_nr, high_time, edge, no_cnt, frac_en, frac_cnt; |
| |
| clkout_nr = lcko->id; |
| /* Check if divider is off */ |
| ret = litex_clk_get_DO(drp_addr.clkout[clkout_nr].reg2, &clkout_reg2); |
| if (ret != 0) { |
| return ret; |
| } |
| |
| edge = (clkout_reg2 >> EDGE_POS) & EDGE_MASK; |
| no_cnt = (clkout_reg2 >> NO_CNT_POS) & NO_CNT_MASK; |
| frac_en = (clkout_reg2 >> FRAC_EN_POS) & FRAC_EN_MASK; |
| frac_cnt = (clkout_reg2 >> FRAC_POS) & FRAC_MASK; |
| |
| /* get duty 50% when divider is off or fractional is enabled */ |
| if (no_cnt || (frac_en && frac_cnt)) { |
| duty->num = 1; |
| duty->den = 2; |
| return 0; |
| } |
| |
| ret = litex_clk_get_DO(drp_addr.clkout[clkout_nr].reg1, &clkout_reg1); |
| if (ret != 0) { |
| return ret; |
| } |
| |
| divider = clkout_reg1 & HL_TIME_MASK; |
| high_time = (clkout_reg1 >> HIGH_TIME_POS) & HL_TIME_MASK; |
| divider += high_time; |
| |
| /* Scaling to consider edge control bit */ |
| duty->num = high_time * 10 + edge * 5; |
| duty->den = (divider + edge) * 10; |
| |
| return 0; |
| } |
| |
| /* Calculates duty cycle for given ratio in percent, 1% accuracy */ |
| static inline uint8_t litex_clk_calc_duty_percent(struct clk_duty *duty) |
| { |
| uint32_t div, duty_ratio, ht; |
| |
| ht = duty->num; |
| div = duty->den; |
| duty_ratio = ht * 10000 / div; |
| |
| return (uint8_t)litex_round(duty_ratio, 100); |
| } |
| |
| /* Calculate necessary values for setting duty cycle in normal mode */ |
| static int litex_clk_calc_duty_normal(struct litex_clk_clkout *lcko, |
| int calc_new) |
| { |
| struct clk_duty duty; |
| int delta_d; |
| uint32_t ht_aprox, synth_duty, min_d; |
| uint8_t high_time_it, edge_it, high_duty, |
| divider = lcko->config.div; |
| |
| if (calc_new) { |
| duty = lcko->ts_config.duty; |
| } else { |
| litex_clk_get_duty_cycle(lcko, &duty); |
| } |
| |
| high_duty = litex_clk_calc_duty_percent(&duty); |
| min_d = INT_MAX; |
| /* check if duty is available to set */ |
| ht_aprox = high_duty * divider; |
| |
| if (ht_aprox > ((HIGH_LOW_TIME_REG_MAX * 100) + 50) || |
| ((HIGH_LOW_TIME_REG_MAX * 100) + 50) < |
| (divider * 100) - ht_aprox) { |
| return -EINVAL; |
| } |
| |
| /* to prevent high_time == 0 or low_time == 0 */ |
| for (high_time_it = 1; high_time_it < divider; high_time_it++) { |
| for (edge_it = 0; edge_it < 2; edge_it++) { |
| synth_duty = (high_time_it * 100 + 50 * edge_it) / |
| divider; |
| delta_d = synth_duty - high_duty; |
| delta_d = abs(delta_d); |
| /* check if low_time won't be above acceptable range */ |
| if (delta_d < min_d && (divider - high_time_it) <= |
| HIGH_LOW_TIME_REG_MAX) { |
| min_d = delta_d; |
| lcko->div.high_time = high_time_it; |
| lcko->div.low_time = divider - high_time_it; |
| lcko->div.edge = edge_it; |
| lcko->config.duty.num = high_time_it * 100 + 50 |
| * edge_it; |
| lcko->config.duty.den = divider * 100; |
| } |
| } |
| } |
| /* |
| * Calculating values in normal mode, |
| * clear control bits of fractional part |
| */ |
| lcko->frac.frac_wf_f = 0; |
| lcko->frac.frac_wf_r = 0; |
| |
| return 0; |
| } |
| |
| /* Calculates duty high_time for given divider and ratio */ |
| static inline int litex_clk_calc_duty_high_time(struct clk_duty *duty, |
| uint32_t divider) |
| { |
| uint32_t high_duty; |
| |
| high_duty = litex_clk_calc_duty_percent(duty) * divider; |
| |
| return litex_round(high_duty, 100); |
| } |
| |
| /* Set duty cycle with given ratio */ |
| static int litex_clk_set_duty_cycle(struct litex_clk_clkout *lcko, |
| struct clk_duty *duty) |
| { |
| int ret; |
| uint16_t bitset1, bitset2; |
| uint8_t clkout_nr = lcko->id, |
| *edge = &lcko->div.edge, |
| *high_time = &lcko->div.high_time, |
| high_duty = litex_clk_calc_duty_percent(duty), |
| *low_time = &lcko->div.low_time; |
| |
| if (lcko->frac.frac == 0) { |
| int ret; |
| |
| lcko->ts_config.duty = *duty; |
| LOG_DBG("CLKOUT%d: setting duty: %u/%u", |
| lcko->id, duty->num, duty->den); |
| ret = litex_clk_calc_duty_normal(lcko, true); |
| if (ret != 0) { |
| LOG_ERR("CLKOUT%d: cannot set %d%% duty cycle", |
| clkout_nr, high_duty); |
| return ret; |
| } |
| } else { |
| LOG_ERR("CLKOUT%d: cannot set duty cycle when fractional divider enabled", |
| clkout_nr); |
| return -EACCES; |
| } |
| |
| bitset1 = (*high_time << HIGH_TIME_POS) | |
| (*low_time << LOW_TIME_POS); |
| bitset2 = (*edge << EDGE_POS); |
| |
| LOG_DBG("SET DUTY CYCLE: e:%u ht:%u lt:%u\nbitset1: 0x%x bitset2: 0x%x", |
| *edge, *high_time, *low_time, bitset1, bitset2); |
| |
| ret = litex_clk_set_clock(clkout_nr, REG1_DUTY_MASK, bitset1, |
| REG2_DUTY_MASK, bitset2); |
| if (ret != 0) { |
| return ret; |
| } |
| |
| LOG_INF("CLKOUT%d: set duty: %d%%", lcko->id, |
| litex_clk_calc_duty_percent(&lcko->config.duty)); |
| return 0; |
| } |
| |
| /* |
| * Phase |
| */ |
| |
| /* Calculate necessary values for setting phase in normal mode */ |
| static int litex_clk_calc_phase_normal(struct litex_clk_clkout *lcko) |
| { |
| uint64_t period_buff; |
| uint32_t post_glob_div_f, global_period, clkout_period, |
| *period_off = &lcko->ts_config.period_off; |
| uint8_t divider = lcko->config.div; |
| /* ps unit */ |
| |
| post_glob_div_f = (uint32_t)litex_clk_get_real_global_frequency(); |
| period_buff = PICOS_IN_SEC; |
| period_buff /= post_glob_div_f; |
| global_period = (uint32_t)period_buff; |
| clkout_period = global_period * divider; |
| |
| if (lcko->ts_config.phase != 0) { |
| int synth_phase, delta_p, min_p, p_o; |
| uint8_t delay, p_m; |
| |
| *period_off = litex_round(clkout_period * (*period_off), 10000); |
| |
| if (*period_off / global_period > DELAY_TIME_MAX) { |
| return -EINVAL; |
| } |
| |
| min_p = INT_MAX; |
| p_o = *period_off; |
| /* Delay_time: (0-63) */ |
| for (delay = 0; delay <= DELAY_TIME_MAX; delay++) { |
| /* phase_mux: (0-7) */ |
| for (p_m = 0; p_m <= PHASE_MUX_MAX; p_m++) { |
| synth_phase = (delay * global_period) + |
| ((p_m * ((global_period * 100) / 8) / 100)); |
| |
| delta_p = synth_phase - p_o; |
| delta_p = abs(delta_p); |
| if (delta_p < min_p) { |
| min_p = delta_p; |
| lcko->phase.phase_mux = p_m; |
| lcko->phase.delay_time = delay; |
| lcko->config.period_off = synth_phase; |
| } |
| } |
| } |
| } else { |
| /* Don't change phase offset*/ |
| lcko->phase.phase_mux = 0; |
| lcko->phase.delay_time = 0; |
| } |
| /* |
| * Calculating values in normal mode, |
| * fractional control bits need to be zero |
| */ |
| lcko->frac.phase_mux_f = 0; |
| |
| return 0; |
| } |
| |
| /* Convert phase offset to positive lower than 360 deg. and calculate period */ |
| static int litex_clk_prepare_phase(struct litex_clk_clkout *lcko) |
| { |
| int *phase = &lcko->ts_config.phase; |
| |
| *phase %= 360; |
| |
| if (*phase < 0) { |
| *phase += 360; |
| } |
| |
| lcko->ts_config.period_off = ((*phase * 10000) / 360); |
| |
| return 0; |
| } |
| |
| /* Calculate necessary values for setting phase */ |
| static int litex_clk_calc_phase(struct litex_clk_clkout *lcko) |
| { |
| litex_clk_prepare_phase(lcko); |
| |
| return litex_clk_calc_phase_normal(lcko); |
| } |
| |
| /* Returns phase-specific values of given clock output */ |
| static int litex_clk_get_phase_data(struct litex_clk_clkout *lcko, |
| uint8_t *phase_mux, uint8_t *delay_time) |
| { |
| struct litex_clk_regs_addr drp_addr = litex_clk_regs_addr_init(); |
| int ret; |
| uint16_t r1, r2; |
| uint8_t clkout_nr = lcko->id; |
| |
| ret = litex_clk_get_DO(drp_addr.clkout[clkout_nr].reg1, &r1); |
| if (ret != 0) { |
| return ret; |
| } |
| ret = litex_clk_get_DO(drp_addr.clkout[clkout_nr].reg2, &r2); |
| if (ret != 0) { |
| return ret; |
| } |
| |
| *phase_mux = (r1 >> PHASE_MUX_POS) & PHASE_MUX_MASK; |
| *delay_time = (r2 >> DELAY_TIME_POS) & HL_TIME_MASK; |
| |
| return 0; |
| } |
| |
| /* Returns phase of given clock output in time offset */ |
| int litex_clk_get_phase(struct litex_clk_clkout *lcko) |
| { |
| uint64_t period_buff; |
| uint32_t divider = 0, fract_cnt, post_glob_div_f, |
| pm, global_period, clkout_period, period; |
| uint8_t phase_mux = 0, delay_time = 0; |
| |
| litex_clk_get_phase_data(lcko, &phase_mux, &delay_time); |
| litex_clk_get_clkout_divider(lcko, ÷r, &fract_cnt); |
| |
| post_glob_div_f = (uint32_t)litex_clk_get_real_global_frequency(); |
| period_buff = PICOS_IN_SEC; |
| period_buff /= post_glob_div_f; |
| /* ps unit */ |
| global_period = (uint32_t)period_buff; |
| clkout_period = global_period * divider; |
| |
| pm = (phase_mux * global_period * 1000) / PHASE_MUX_RES_FACTOR; |
| pm = litex_round(pm, 1000); |
| |
| period = delay_time * global_period + pm; |
| |
| period = period * 1000 / clkout_period; |
| period = period * 360; |
| |
| return litex_round(period, 1000); |
| } |
| |
| /* Returns phase of given clock output in degrees */ |
| int litex_clk_get_phase_deg(struct litex_clk_clkout *lcko) |
| { |
| uint64_t post_glob_div_f, buff, clkout_period; |
| |
| post_glob_div_f = (uint32_t)litex_clk_get_real_global_frequency(); |
| buff = PICOS_IN_SEC; |
| buff /= post_glob_div_f; |
| clkout_period = (uint32_t)buff; |
| clkout_period *= lcko->config.div; |
| |
| buff = lcko->config.period_off * 1000 / clkout_period; |
| buff *= 360; |
| buff = litex_round(buff, 1000); |
| |
| return (int)buff; |
| } |
| /* Sets phase given in degrees on given clock output */ |
| int litex_clk_set_phase(struct litex_clk_clkout *lcko, int degrees) |
| { |
| int ret; |
| uint16_t bitset1, bitset2, reg2_mask; |
| uint8_t *phase_mux = &lcko->phase.phase_mux, |
| *delay_time = &lcko->phase.delay_time, |
| clkout_nr = lcko->id; |
| |
| lcko->ts_config.phase = degrees; |
| reg2_mask = REG2_PHASE_MASK; |
| LOG_DBG("CLKOUT%d: setting phase: %u deg", lcko->id, degrees); |
| |
| ret = litex_clk_calc_phase(lcko); |
| if (ret != 0) { |
| LOG_ERR("CLKOUT%d: phase offset %d deg is too high", |
| clkout_nr, degrees); |
| return ret; |
| } |
| |
| bitset1 = (*phase_mux << PHASE_MUX_POS); |
| bitset2 = (*delay_time << DELAY_TIME_POS); |
| |
| ret = litex_clk_set_clock(clkout_nr, REG1_PHASE_MASK, bitset1, |
| reg2_mask, bitset2); |
| if (ret != 0) { |
| return ret; |
| } |
| lcko->config.phase = litex_clk_get_phase_deg(lcko); |
| LOG_INF("CLKOUT%d: set phase: %d deg", lcko->id, lcko->config.phase); |
| LOG_DBG("SET PHASE: pm:%u dt:%u\nbitset1: 0x%x bitset2: 0x%x", |
| *phase_mux, *delay_time, bitset1, bitset2); |
| |
| return 0; |
| } |
| |
| /* |
| * Frequency |
| */ |
| |
| /* Returns rate in Hz */ |
| static inline uint32_t litex_clk_calc_rate(struct litex_clk_clkout *lcko) |
| { |
| uint64_t f = litex_clk_calc_global_frequency(ldev->ts_g_config.mul, |
| ldev->ts_g_config.div); |
| |
| f /= lcko->config.div; |
| |
| return (uint32_t)f; |
| } |
| |
| /* |
| * Written since there is no pow() in math.h. Only for exponent |
| * and base above 0. Used for calculating scaling factor for |
| * frequency margin |
| * |
| */ |
| static uint32_t litex_clk_pow(uint32_t base, uint32_t exp) |
| { |
| int ret = 1; |
| |
| while (exp--) { |
| ret *= base; |
| } |
| |
| return ret; |
| } |
| |
| /* Returns true when possible to set frequency with given global settings */ |
| static int litex_clk_calc_clkout_params(struct litex_clk_clkout *lcko, |
| uint64_t vco_freq) |
| { |
| int delta_f; |
| uint64_t m, clk_freq = 0; |
| uint32_t d, margin = 1; |
| |
| if (lcko->margin.exp) { |
| margin = litex_clk_pow(10, lcko->margin.exp); |
| } |
| |
| lcko->div.no_cnt = 0; |
| |
| for (d = lcko->clkout_div.min; d <= lcko->clkout_div.max; d++) { |
| clk_freq = vco_freq; |
| clk_freq /= d; |
| m = lcko->ts_config.freq * lcko->margin.m; |
| /* Scale margin according to its exponent */ |
| if (lcko->margin.exp) { |
| m /= margin; |
| } |
| |
| delta_f = clk_freq - lcko->ts_config.freq; |
| delta_f = abs(delta_f); |
| if (delta_f <= m) { |
| lcko->config.freq = (uint32_t)clk_freq; |
| if (lcko->config.div != d) { |
| ldev->update_clkout[lcko->id] = 1; |
| } |
| lcko->config.div = d; |
| /* for sake of completeness */ |
| lcko->ts_config.div = d; |
| /* we are not using fractional divider */ |
| lcko->frac.frac_en = 0; |
| lcko->frac.frac = 0; |
| if (d == 1) { |
| lcko->div.no_cnt = 1; |
| } |
| LOG_DBG("CLKOUT%d: freq:%u div:%u gdiv:%u gmul:%u", |
| lcko->id, lcko->config.freq, lcko->config.div, |
| ldev->ts_g_config.div, ldev->ts_g_config.mul); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| /* Compute dividers for all active clock outputs */ |
| static int litex_clk_calc_all_clkout_params(uint64_t vco_freq) |
| { |
| struct litex_clk_clkout *lcko; |
| uint32_t c; |
| |
| for (c = 0; c < ldev->nclkout; c++) { |
| lcko = &ldev->clkouts[c]; |
| if (!litex_clk_calc_clkout_params(lcko, vco_freq)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| /* Calculate parameters for whole active part of MMCM */ |
| static int litex_clk_calc_all_params(void) |
| { |
| uint32_t div, mul; |
| uint64_t vco_freq = 0; |
| |
| for (div = ldev->divclk.min; div <= ldev->divclk.max; div++) { |
| ldev->ts_g_config.div = div; |
| for (mul = ldev->clkfbout.max; mul >= ldev->clkfbout.min; |
| mul--) { |
| int bellow, above, all_valid = true; |
| |
| vco_freq = (uint64_t)ldev->sys_clk_freq * (uint64_t)mul; |
| vco_freq /= div; |
| bellow = vco_freq < (ldev->vco.min |
| * (1 + ldev->vco_margin)); |
| above = vco_freq > (ldev->vco.max |
| * (1 - ldev->vco_margin)); |
| |
| if (!bellow && !above) { |
| all_valid = litex_clk_calc_all_clkout_params |
| (vco_freq); |
| if (all_valid) { |
| ldev->ts_g_config.mul = mul; |
| ldev->ts_g_config.freq = vco_freq; |
| LOG_DBG("GLOBAL: freq:%llu g_div:%u g_mul:%u", |
| ldev->ts_g_config.freq, |
| ldev->ts_g_config.div, |
| ldev->ts_g_config.mul); |
| return 0; |
| } |
| } |
| } |
| } |
| LOG_ERR("Cannot find correct settings for all clock outputs!"); |
| return -ENOTSUP; |
| } |
| |
| int litex_clk_check_rate_range(struct litex_clk_clkout *lcko, uint32_t rate) |
| { |
| uint64_t max, min, m; |
| uint32_t div, margin; |
| |
| m = rate * lcko->margin.m; |
| if (lcko->margin.exp) { |
| margin = litex_clk_pow(10, lcko->margin.exp); |
| } |
| |
| max = (uint64_t)ldev->sys_clk_freq * (uint64_t)ldev->clkfbout.max; |
| div = ldev->divclk.min * lcko->clkout_div.min; |
| max /= div; |
| max += m; |
| |
| min = ldev->sys_clk_freq * ldev->clkfbout.min; |
| div = ldev->divclk.max * lcko->clkout_div.max; |
| min /= div; |
| |
| if (min < m) { |
| min = 0; |
| } else { |
| min -= m; |
| } |
| |
| if ((uint64_t)rate < min || (uint64_t)rate > max) { |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| /* Returns closest available clock rate in Hz */ |
| long litex_clk_round_rate(struct litex_clk_clkout *lcko, unsigned long rate) |
| { |
| int ret; |
| |
| ret = litex_clk_check_rate_range(lcko, rate); |
| if (ret != 0) { |
| return -EINVAL; |
| } |
| |
| lcko->ts_config.freq = rate; |
| |
| ret = litex_clk_calc_all_params(); |
| if (ret != 0) { |
| return ret; |
| } |
| |
| return litex_clk_calc_rate(lcko); |
| } |
| |
| int litex_clk_write_rate(struct litex_clk_clkout *lcko) |
| { |
| int ret; |
| uint16_t bitset1, bitset2; |
| uint8_t *divider = &lcko->config.div, |
| *edge = &lcko->div.edge, |
| *high_time = &lcko->div.high_time, |
| *low_time = &lcko->div.low_time, |
| *no_cnt = &lcko->div.no_cnt, |
| *frac = &lcko->frac.frac, |
| *frac_en = &lcko->frac.frac_en, |
| *frac_wf_r = &lcko->frac.frac_wf_r; |
| |
| bitset1 = (*high_time << HIGH_TIME_POS) | |
| (*low_time << LOW_TIME_POS); |
| |
| bitset2 = (*frac << FRAC_POS) | |
| (*frac_en << FRAC_EN_POS) | |
| (*frac_wf_r << FRAC_WF_R_POS) | |
| (*edge << EDGE_POS) | |
| (*no_cnt << NO_CNT_POS); |
| |
| LOG_DBG("SET RATE: div:%u f:%u fwfr:%u fen:%u nc:%u e:%u ht:%u lt:%u\nbitset1: 0x%x bitset2: 0x%x", |
| *divider, *frac, *frac_wf_r, *frac_en, |
| *no_cnt, *edge, *high_time, *low_time, bitset1, bitset2); |
| |
| ret = litex_clk_set_clock(lcko->id, REG1_FREQ_MASK, bitset1, |
| REG2_FREQ_MASK, bitset2); |
| if (ret != 0) { |
| return ret; |
| } |
| |
| ldev->update_clkout[lcko->id] = 0; |
| |
| return 0; |
| } |
| |
| int litex_clk_update_clkouts(void) |
| { |
| struct litex_clk_clkout *lcko; |
| int ret; |
| uint8_t c; |
| |
| for (c = 0; c < ldev->nclkout; c++) { |
| if (ldev->update_clkout[c]) { |
| lcko = &ldev->clkouts[c]; |
| ret = litex_clk_calc_duty_normal(lcko, false); |
| if (ret != 0) { |
| return ret; |
| } |
| ret = litex_clk_write_rate(lcko); |
| if (ret != 0) { |
| return ret; |
| } |
| LOG_INF("CLKOUT%d: updated rate: %u to %u HZ", |
| lcko->id, lcko->ts_config.freq, |
| lcko->config.freq); |
| } |
| } |
| |
| return 0; |
| } |
| /* Set closest available clock rate in Hz, parent_rate ignored */ |
| int litex_clk_set_rate(struct litex_clk_clkout *lcko, unsigned long rate) |
| { |
| int ret; |
| |
| LOG_DBG("CLKOUT%d: setting rate: %lu", lcko->id, rate); |
| ret = litex_clk_round_rate(lcko, rate); |
| if (ret < 0) { |
| return ret; |
| } |
| ret = litex_clk_set_globs(); |
| if (ret != 0) { |
| return ret; |
| } |
| ret = litex_clk_calc_duty_normal(lcko, false); |
| if (ret != 0) { |
| return ret; |
| } |
| ret = litex_clk_write_rate(lcko); |
| if (ret != 0) { |
| return ret; |
| } |
| LOG_INF("CLKOUT%d: set rate: %u HZ", lcko->id, lcko->config.freq); |
| ret = litex_clk_update_clkouts(); |
| if (ret != 0) { |
| return ret; |
| } |
| |
| #ifdef CONFIG_CLOCK_CONTROL_LOG_LEVEL_DBG |
| litex_clk_print_all_params(); |
| litex_clk_print_all_regs(); |
| #endif /* CONFIG_CLOCK_CONTROL_LOG_LEVEL_DBG */ |
| |
| return 0; |
| } |
| |
| /* Set default clock value from device tree for given clkout*/ |
| static int litex_clk_set_def_clkout(int clkout_nr) |
| { |
| struct litex_clk_clkout *lcko = &ldev->clkouts[clkout_nr]; |
| int ret; |
| |
| ret = litex_clk_set_rate(lcko, lcko->def.freq); |
| if (ret != 0) { |
| return ret; |
| } |
| ret = litex_clk_set_duty_cycle(lcko, &lcko->def.duty); |
| if (ret != 0) { |
| return ret; |
| } |
| return litex_clk_set_phase(lcko, lcko->def.phase); |
| } |
| |
| static int litex_clk_set_all_def_clkouts(void) |
| { |
| int c, ret; |
| |
| for (c = 0; c < ldev->nclkout; c++) { |
| ret = litex_clk_set_def_clkout(c); |
| if (ret != 0) { |
| return ret; |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| * Returns parameters of given clock output |
| * |
| * clock: device structure for driver |
| * sub_system: pointer to struct litex_clk_clkout |
| * casted to clock_control_subsys with |
| * all clkout parameters |
| */ |
| static int litex_clk_get_subsys_rate(const struct device *clock, |
| clock_control_subsys_t sys, uint32_t *rate) |
| { |
| struct litex_clk_setup *setup = sys; |
| struct litex_clk_clkout *lcko; |
| |
| lcko = &ldev->clkouts[setup->clkout_nr]; |
| *rate = litex_clk_calc_rate(lcko); |
| |
| return 0; |
| } |
| |
| static enum clock_control_status litex_clk_get_status(const struct device *dev, |
| clock_control_subsys_t sys) |
| { |
| struct litex_clk_setup *setup = sys; |
| struct clk_duty duty; |
| struct litex_clk_clkout *lcko; |
| int ret; |
| |
| lcko = &ldev->clkouts[setup->clkout_nr]; |
| |
| setup->rate = litex_clk_calc_rate(lcko); |
| ret = litex_clk_get_duty_cycle(lcko, &duty); |
| if (ret != 0) { |
| return ret; |
| } |
| setup->duty = litex_clk_calc_duty_percent(&duty); |
| setup->phase = litex_clk_get_phase(lcko); |
| |
| return CLOCK_CONTROL_STATUS_ON; |
| } |
| |
| static inline int litex_clk_on(const struct device *dev, clock_control_subsys_t sys) |
| { |
| struct litex_clk_setup *setup = sys; |
| struct clk_duty duty; |
| struct litex_clk_clkout *lcko; |
| uint8_t duty_perc; |
| int ret; |
| |
| lcko = &ldev->clkouts[setup->clkout_nr]; |
| |
| if (lcko->config.freq != setup->rate) { |
| ret = litex_clk_set_rate(lcko, setup->rate); |
| if (ret != 0) { |
| return ret; |
| } |
| } |
| if (lcko->config.phase != setup->phase) { |
| ret = litex_clk_set_phase(lcko, setup->phase); |
| if (ret != 0) { |
| return ret; |
| } |
| } |
| duty_perc = litex_clk_calc_duty_percent(&lcko->config.duty); |
| if (duty_perc != setup->duty) { |
| duty.num = setup->duty; |
| duty.den = 100; |
| ret = litex_clk_set_duty_cycle(lcko, &duty); |
| if (ret != 0) { |
| return ret; |
| } |
| } |
| return 0; |
| } |
| |
| static inline int litex_clk_off(const struct device *dev, |
| clock_control_subsys_t sub_system) |
| { |
| return litex_clk_change_value(ZERO_REG, ZERO_REG, POWER_REG); |
| } |
| |
| static const struct clock_control_driver_api litex_clk_api = { |
| .on = litex_clk_on, |
| .off = litex_clk_off, |
| .get_rate = litex_clk_get_subsys_rate, |
| .get_status = litex_clk_get_status |
| }; |
| |
| static void litex_clk_dts_clkout_ranges_read(struct litex_clk_range *clkout_div) |
| { |
| clkout_div->min = CLKOUT_DIVIDE_MIN; |
| clkout_div->max = CLKOUT_DIVIDE_MAX; |
| } |
| |
| static int litex_clk_dts_timeout_read(struct litex_clk_timeout *timeout) |
| { |
| /* Read wait_lock timeout from device property*/ |
| timeout->lock = LOCK_TIMEOUT; |
| if (timeout->lock < 1) { |
| LOG_ERR("LiteX CLK driver cannot wait shorter than ca. 1ms\n"); |
| return -EINVAL; |
| } |
| |
| /* Read wait_drdy timeout from device property*/ |
| timeout->drdy = DRDY_TIMEOUT; |
| if (timeout->drdy < 1) { |
| LOG_ERR("LiteX CLK driver cannot wait shorter than ca. 1ms\n"); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int litex_clk_dts_clkouts_read(void) |
| { |
| struct litex_clk_range clkout_div; |
| struct litex_clk_clkout *lcko; |
| |
| litex_clk_dts_clkout_ranges_read(&clkout_div); |
| |
| #if CLKOUT_EXIST(0) == 1 |
| CLKOUT_INIT(0) |
| #endif |
| #if CLKOUT_EXIST(1) == 1 |
| CLKOUT_INIT(1) |
| #endif |
| #if CLKOUT_EXIST(2) == 1 |
| CLKOUT_INIT(2) |
| #endif |
| #if CLKOUT_EXIST(3) == 1 |
| CLKOUT_INIT(3) |
| #endif |
| #if CLKOUT_EXIST(4) == 1 |
| CLKOUT_INIT(4) |
| #endif |
| #if CLKOUT_EXIST(5) == 1 |
| CLKOUT_INIT(5) |
| #endif |
| #if CLKOUT_EXIST(6) == 1 |
| CLKOUT_INIT(6) |
| #endif |
| return 0; |
| } |
| |
| static void litex_clk_init_clkouts(void) |
| { |
| struct litex_clk_clkout *lcko; |
| int i; |
| |
| for (i = 0; i < ldev->nclkout; i++) { |
| lcko = &ldev->clkouts[i]; |
| lcko->base = ldev->base; |
| /* mark defaults to set */ |
| lcko->ts_config.freq = lcko->def.freq; |
| lcko->ts_config.duty = lcko->def.duty; |
| lcko->ts_config.phase = lcko->def.phase; |
| } |
| } |
| |
| static int litex_clk_dts_cnt_clocks(void) |
| { |
| return NCLKOUT; |
| } |
| |
| static void litex_clk_dts_global_ranges_read(void) |
| { |
| ldev->divclk.min = DIVCLK_DIVIDE_MIN; |
| ldev->divclk.max = DIVCLK_DIVIDE_MAX; |
| ldev->clkfbout.min = CLKFBOUT_MULT_MIN; |
| ldev->clkfbout.max = CLKFBOUT_MULT_MAX; |
| ldev->vco.min = VCO_FREQ_MIN; |
| ldev->vco.max = VCO_FREQ_MAX; |
| ldev->vco_margin = VCO_MARGIN; |
| } |
| |
| static int litex_clk_dts_global_read(void) |
| { |
| int ret; |
| |
| ldev->sys_clk_freq = SYS_CLOCK_FREQUENCY; |
| |
| ldev->nclkout = litex_clk_dts_cnt_clocks(); |
| |
| clkouts = k_malloc(sizeof(struct litex_clk_clkout) * ldev->nclkout); |
| ldev->update_clkout = k_malloc(sizeof(uint8_t) * ldev->nclkout); |
| if (!clkouts || !ldev->update_clkout) { |
| LOG_ERR("CLKOUT memory allocation failure!"); |
| return -ENOMEM; |
| } |
| ldev->clkouts = clkouts; |
| |
| ret = litex_clk_dts_timeout_read(&ldev->timeout); |
| if (ret != 0) { |
| return ret; |
| } |
| |
| litex_clk_dts_global_ranges_read(); |
| |
| return 0; |
| } |
| |
| static int litex_clk_init_glob_clk(void) |
| { |
| int ret; |
| |
| /* Power on MMCM module */ |
| ret = litex_clk_change_value(FULL_REG_16, FULL_REG_16, POWER_REG); |
| if (ret != 0) { |
| LOG_ERR("MMCM initialization failure, ret: %d", ret); |
| return ret; |
| } |
| |
| return 0; |
| } |
| /* Enable module, set global divider, multiplier, default clkout parameters */ |
| static int litex_clk_init(const struct device *dev) |
| { |
| int ret; |
| |
| ldev = k_malloc(sizeof(struct litex_clk_device)); |
| if (ldev == NULL) { |
| return -ENOMEM; |
| } |
| |
| ldev->base = (uint32_t *)DRP_BASE; |
| if (ldev->base == NULL) { |
| return -EIO; |
| } |
| |
| ret = litex_clk_dts_global_read(); |
| if (ret != 0) { |
| return ret; |
| } |
| |
| ret = litex_clk_dts_clkouts_read(); |
| if (ret != 0) { |
| return ret; |
| } |
| |
| litex_clk_init_clkouts(); |
| |
| ret = litex_clk_init_glob_clk(); |
| if (ret != 0) { |
| return ret; |
| } |
| |
| ret = litex_clk_set_all_def_clkouts(); |
| if (ret != 0) { |
| return ret; |
| } |
| |
| #ifdef CONFIG_CLOCK_CONTROL_LOG_LEVEL_DBG |
| litex_clk_print_all_params(); |
| litex_clk_print_all_regs(); |
| #endif /* CONFIG_CLOCK_CONTROL_LOG_LEVEL_DBG */ |
| |
| LOG_INF("LiteX Clock Control driver initialized"); |
| return 0; |
| } |
| |
| static const struct litex_clk_device ldev_init = { |
| .base = (uint32_t *)DRP_BASE, |
| .timeout = {LOCK_TIMEOUT, DRDY_TIMEOUT}, |
| .divclk = {DIVCLK_DIVIDE_MIN, DIVCLK_DIVIDE_MAX}, |
| .clkfbout = {CLKFBOUT_MULT_MIN, CLKFBOUT_MULT_MAX}, |
| .vco = {VCO_FREQ_MIN, VCO_FREQ_MAX}, |
| .sys_clk_freq = SYS_CLOCK_FREQUENCY, |
| .vco_margin = VCO_MARGIN, |
| .nclkout = NCLKOUT |
| }; |
| |
| DEVICE_DT_DEFINE(DT_NODELABEL(clock0), &litex_clk_init, NULL, |
| NULL, &ldev_init, POST_KERNEL, |
| CONFIG_KERNEL_INIT_PRIORITY_DEVICE, &litex_clk_api); |