blob: 3f949a6455c6f090df219a6782128ae9ec39e9b1 [file] [log] [blame]
/*
* Copyright (c) 2015, Freescale Semiconductor, Inc.
* Copyright 2016-2017 NXP
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* o Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* o Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* o Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef _FSL_SPI_H_
#define _FSL_SPI_H_
#include "fsl_common.h"
/*!
* @addtogroup spi_driver
* @{
*/
/*******************************************************************************
* Definitions
******************************************************************************/
/*! @name Driver version */
/*@{*/
/*! @brief SPI driver version 2.0.3. */
#define FSL_SPI_DRIVER_VERSION (MAKE_VERSION(2, 0, 3))
/*@}*/
#ifndef SPI_DUMMYDATA
/*! @brief SPI dummy transfer data, the data is sent while txBuff is NULL. */
#define SPI_DUMMYDATA (0xFFU)
#endif
/*! @brief Return status for the SPI driver.*/
enum _spi_status
{
kStatus_SPI_Busy = MAKE_STATUS(kStatusGroup_SPI, 0), /*!< SPI bus is busy */
kStatus_SPI_Idle = MAKE_STATUS(kStatusGroup_SPI, 1), /*!< SPI is idle */
kStatus_SPI_Error = MAKE_STATUS(kStatusGroup_SPI, 2) /*!< SPI error */
};
/*! @brief SPI clock polarity configuration.*/
typedef enum _spi_clock_polarity
{
kSPI_ClockPolarityActiveHigh = 0x0U, /*!< Active-high SPI clock (idles low). */
kSPI_ClockPolarityActiveLow /*!< Active-low SPI clock (idles high). */
} spi_clock_polarity_t;
/*! @brief SPI clock phase configuration.*/
typedef enum _spi_clock_phase
{
kSPI_ClockPhaseFirstEdge = 0x0U, /*!< First edge on SPSCK occurs at the middle of the first
* cycle of a data transfer. */
kSPI_ClockPhaseSecondEdge /*!< First edge on SPSCK occurs at the start of the
* first cycle of a data transfer. */
} spi_clock_phase_t;
/*! @brief SPI data shifter direction options.*/
typedef enum _spi_shift_direction
{
kSPI_MsbFirst = 0x0U, /*!< Data transfers start with most significant bit. */
kSPI_LsbFirst /*!< Data transfers start with least significant bit. */
} spi_shift_direction_t;
/*! @brief SPI slave select output mode options.*/
typedef enum _spi_ss_output_mode
{
kSPI_SlaveSelectAsGpio = 0x0U, /*!< Slave select pin configured as GPIO. */
kSPI_SlaveSelectFaultInput = 0x2U, /*!< Slave select pin configured for fault detection. */
kSPI_SlaveSelectAutomaticOutput = 0x3U /*!< Slave select pin configured for automatic SPI output. */
} spi_ss_output_mode_t;
/*! @brief SPI pin mode options.*/
typedef enum _spi_pin_mode
{
kSPI_PinModeNormal = 0x0U, /*!< Pins operate in normal, single-direction mode.*/
kSPI_PinModeInput = 0x1U, /*!< Bidirectional mode. Master: MOSI pin is input;
* Slave: MISO pin is input. */
kSPI_PinModeOutput = 0x3U /*!< Bidirectional mode. Master: MOSI pin is output;
* Slave: MISO pin is output. */
} spi_pin_mode_t;
/*! @brief SPI data length mode options.*/
typedef enum _spi_data_bitcount_mode
{
kSPI_8BitMode = 0x0U, /*!< 8-bit data transmission mode*/
kSPI_16BitMode /*!< 16-bit data transmission mode*/
} spi_data_bitcount_mode_t;
/*! @brief SPI interrupt sources.*/
enum _spi_interrupt_enable
{
kSPI_RxFullAndModfInterruptEnable = 0x1U, /*!< Receive buffer full (SPRF) and mode fault (MODF) interrupt */
kSPI_TxEmptyInterruptEnable = 0x2U, /*!< Transmit buffer empty interrupt */
kSPI_MatchInterruptEnable = 0x4U, /*!< Match interrupt */
#if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO
kSPI_RxFifoNearFullInterruptEnable = 0x8U, /*!< Receive FIFO nearly full interrupt */
kSPI_TxFifoNearEmptyInterruptEnable = 0x10U, /*!< Transmit FIFO nearly empty interrupt */
#endif /* FSL_FEATURE_SPI_HAS_FIFO */
};
/*! @brief SPI status flags.*/
enum _spi_flags
{
kSPI_RxBufferFullFlag = SPI_S_SPRF_MASK, /*!< Read buffer full flag */
kSPI_MatchFlag = SPI_S_SPMF_MASK, /*!< Match flag */
kSPI_TxBufferEmptyFlag = SPI_S_SPTEF_MASK, /*!< Transmit buffer empty flag */
kSPI_ModeFaultFlag = SPI_S_MODF_MASK, /*!< Mode fault flag */
#if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO
kSPI_RxFifoNearFullFlag = SPI_S_RNFULLF_MASK, /*!< Rx FIFO near full */
kSPI_TxFifoNearEmptyFlag = SPI_S_TNEAREF_MASK, /*!< Tx FIFO near empty */
kSPI_TxFifoFullFlag = SPI_S_TXFULLF_MASK, /*!< Tx FIFO full */
kSPI_RxFifoEmptyFlag = SPI_S_RFIFOEF_MASK, /*!< Rx FIFO empty */
kSPI_TxFifoError = SPI_CI_TXFERR_MASK << 8U, /*!< Tx FIFO error */
kSPI_RxFifoError = SPI_CI_RXFERR_MASK << 8U, /*!< Rx FIFO error */
kSPI_TxOverflow = SPI_CI_TXFOF_MASK << 8U, /*!< Tx FIFO Overflow */
kSPI_RxOverflow = SPI_CI_RXFOF_MASK << 8U /*!< Rx FIFO Overflow */
#endif /* FSL_FEATURE_SPI_HAS_FIFO */
};
#if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO
/*! @brief SPI FIFO write-1-to-clear interrupt flags.*/
typedef enum _spi_w1c_interrupt
{
kSPI_RxFifoFullClearInterrupt = SPI_CI_SPRFCI_MASK, /*!< Receive FIFO full interrupt */
kSPI_TxFifoEmptyClearInterrupt = SPI_CI_SPTEFCI_MASK, /*!< Transmit FIFO empty interrupt */
kSPI_RxNearFullClearInterrupt = SPI_CI_RNFULLFCI_MASK, /*!< Receive FIFO nearly full interrupt */
kSPI_TxNearEmptyClearInterrupt = SPI_CI_TNEAREFCI_MASK /*!< Transmit FIFO nearly empty interrupt */
} spi_w1c_interrupt_t;
/*! @brief SPI TX FIFO watermark settings.*/
typedef enum _spi_txfifo_watermark
{
kSPI_TxFifoOneFourthEmpty = 0, /*!< SPI tx watermark at 1/4 FIFO size */
kSPI_TxFifoOneHalfEmpty = 1 /*!< SPI tx watermark at 1/2 FIFO size */
} spi_txfifo_watermark_t;
/*! @brief SPI RX FIFO watermark settings.*/
typedef enum _spi_rxfifo_watermark
{
kSPI_RxFifoThreeFourthsFull = 0, /*!< SPI rx watermark at 3/4 FIFO size */
kSPI_RxFifoOneHalfFull = 1 /*!< SPI rx watermark at 1/2 FIFO size */
} spi_rxfifo_watermark_t;
#endif /* FSL_FEATURE_SPI_HAS_FIFO */
#if defined(FSL_FEATURE_SPI_HAS_DMA_SUPPORT) && FSL_FEATURE_SPI_HAS_DMA_SUPPORT
/*! @brief SPI DMA source*/
enum _spi_dma_enable_t
{
kSPI_TxDmaEnable = SPI_C2_TXDMAE_MASK, /*!< Tx DMA request source */
kSPI_RxDmaEnable = SPI_C2_RXDMAE_MASK, /*!< Rx DMA request source */
kSPI_DmaAllEnable = (SPI_C2_TXDMAE_MASK | SPI_C2_RXDMAE_MASK) /*!< All DMA request source*/
};
#endif /* FSL_FEATURE_SPI_HAS_DMA_SUPPORT */
/*! @brief SPI master user configure structure.*/
typedef struct _spi_master_config
{
bool enableMaster; /*!< Enable SPI at initialization time */
bool enableStopInWaitMode; /*!< SPI stop in wait mode */
spi_clock_polarity_t polarity; /*!< Clock polarity */
spi_clock_phase_t phase; /*!< Clock phase */
spi_shift_direction_t direction; /*!< MSB or LSB */
#if defined(FSL_FEATURE_SPI_16BIT_TRANSFERS) && FSL_FEATURE_SPI_16BIT_TRANSFERS
spi_data_bitcount_mode_t dataMode; /*!< 8bit or 16bit mode */
#endif /* FSL_FEATURE_SPI_16BIT_TRANSFERS */
#if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO
spi_txfifo_watermark_t txWatermark; /*!< Tx watermark settings */
spi_rxfifo_watermark_t rxWatermark; /*!< Rx watermark settings */
#endif /* FSL_FEATURE_SPI_HAS_FIFO */
spi_ss_output_mode_t outputMode; /*!< SS pin setting */
spi_pin_mode_t pinMode; /*!< SPI pin mode select */
uint32_t baudRate_Bps; /*!< Baud Rate for SPI in Hz */
} spi_master_config_t;
/*! @brief SPI slave user configure structure.*/
typedef struct _spi_slave_config
{
bool enableSlave; /*!< Enable SPI at initialization time */
bool enableStopInWaitMode; /*!< SPI stop in wait mode */
spi_clock_polarity_t polarity; /*!< Clock polarity */
spi_clock_phase_t phase; /*!< Clock phase */
spi_shift_direction_t direction; /*!< MSB or LSB */
#if defined(FSL_FEATURE_SPI_16BIT_TRANSFERS) && FSL_FEATURE_SPI_16BIT_TRANSFERS
spi_data_bitcount_mode_t dataMode; /*!< 8bit or 16bit mode */
#endif /* FSL_FEATURE_SPI_16BIT_TRANSFERS */
#if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO
spi_txfifo_watermark_t txWatermark; /*!< Tx watermark settings */
spi_rxfifo_watermark_t rxWatermark; /*!< Rx watermark settings */
#endif /* FSL_FEATURE_SPI_HAS_FIFO */
} spi_slave_config_t;
/*! @brief SPI transfer structure */
typedef struct _spi_transfer
{
uint8_t *txData; /*!< Send buffer */
uint8_t *rxData; /*!< Receive buffer */
size_t dataSize; /*!< Transfer bytes */
uint32_t flags; /*!< SPI control flag, useless to SPI.*/
} spi_transfer_t;
typedef struct _spi_master_handle spi_master_handle_t;
/*! @brief Slave handle is the same with master handle */
typedef spi_master_handle_t spi_slave_handle_t;
/*! @brief SPI master callback for finished transmit */
typedef void (*spi_master_callback_t)(SPI_Type *base, spi_master_handle_t *handle, status_t status, void *userData);
/*! @brief SPI master callback for finished transmit */
typedef void (*spi_slave_callback_t)(SPI_Type *base, spi_slave_handle_t *handle, status_t status, void *userData);
/*! @brief SPI transfer handle structure */
struct _spi_master_handle
{
uint8_t *volatile txData; /*!< Transfer buffer */
uint8_t *volatile rxData; /*!< Receive buffer */
volatile size_t txRemainingBytes; /*!< Send data remaining in bytes */
volatile size_t rxRemainingBytes; /*!< Receive data remaining in bytes */
volatile uint32_t state; /*!< SPI internal state */
size_t transferSize; /*!< Bytes to be transferred */
uint8_t bytePerFrame; /*!< SPI mode, 2bytes or 1byte in a frame */
uint8_t watermark; /*!< Watermark value for SPI transfer */
spi_master_callback_t callback; /*!< SPI callback */
void *userData; /*!< Callback parameter */
};
#if defined(__cplusplus)
extern "C" {
#endif
/*******************************************************************************
* APIs
******************************************************************************/
/*!
* @name Initialization and deinitialization
* @{
*/
/*!
* @brief Sets the SPI master configuration structure to default values.
*
* The purpose of this API is to get the configuration structure initialized for use in SPI_MasterInit().
* User may use the initialized structure unchanged in SPI_MasterInit(), or modify
* some fields of the structure before calling SPI_MasterInit(). After calling this API,
* the master is ready to transfer.
* Example:
@code
spi_master_config_t config;
SPI_MasterGetDefaultConfig(&config);
@endcode
*
* @param config pointer to master config structure
*/
void SPI_MasterGetDefaultConfig(spi_master_config_t *config);
/*!
* @brief Initializes the SPI with master configuration.
*
* The configuration structure can be filled by user from scratch, or be set with default
* values by SPI_MasterGetDefaultConfig(). After calling this API, the slave is ready to transfer.
* Example
@code
spi_master_config_t config = {
.baudRate_Bps = 400000,
...
};
SPI_MasterInit(SPI0, &config);
@endcode
*
* @param base SPI base pointer
* @param config pointer to master configuration structure
* @param srcClock_Hz Source clock frequency.
*/
void SPI_MasterInit(SPI_Type *base, const spi_master_config_t *config, uint32_t srcClock_Hz);
/*!
* @brief Sets the SPI slave configuration structure to default values.
*
* The purpose of this API is to get the configuration structure initialized for use in SPI_SlaveInit().
* Modify some fields of the structure before calling SPI_SlaveInit().
* Example:
@code
spi_slave_config_t config;
SPI_SlaveGetDefaultConfig(&config);
@endcode
*
* @param config pointer to slave configuration structure
*/
void SPI_SlaveGetDefaultConfig(spi_slave_config_t *config);
/*!
* @brief Initializes the SPI with slave configuration.
*
* The configuration structure can be filled by user from scratch or be set with
* default values by SPI_SlaveGetDefaultConfig().
* After calling this API, the slave is ready to transfer.
* Example
@code
spi_slave_config_t config = {
.polarity = kSPIClockPolarity_ActiveHigh;
.phase = kSPIClockPhase_FirstEdge;
.direction = kSPIMsbFirst;
...
};
SPI_MasterInit(SPI0, &config);
@endcode
*
* @param base SPI base pointer
* @param config pointer to master configuration structure
*/
void SPI_SlaveInit(SPI_Type *base, const spi_slave_config_t *config);
/*!
* @brief De-initializes the SPI.
*
* Calling this API resets the SPI module, gates the SPI clock.
* The SPI module can't work unless calling the SPI_MasterInit/SPI_SlaveInit to initialize module.
*
* @param base SPI base pointer
*/
void SPI_Deinit(SPI_Type *base);
/*!
* @brief Enables or disables the SPI.
*
* @param base SPI base pointer
* @param enable pass true to enable module, false to disable module
*/
static inline void SPI_Enable(SPI_Type *base, bool enable)
{
if (enable)
{
base->C1 |= SPI_C1_SPE_MASK;
}
else
{
base->C1 &= ~SPI_C1_SPE_MASK;
}
}
/*! @} */
/*!
* @name Status
* @{
*/
/*!
* @brief Gets the status flag.
*
* @param base SPI base pointer
* @return SPI Status, use status flag to AND #_spi_flags could get the related status.
*/
uint32_t SPI_GetStatusFlags(SPI_Type *base);
#if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO
/*!
* @brief Clear the interrupt if enable INCTLR.
*
* @param base SPI base pointer
* @param interrupt Interrupt need to be cleared
* The parameter could be any combination of the following values:
* @arg kSPIRxFifoFullClearInt
* @arg kSPITxFifoEmptyClearInt
* @arg kSPIRxNearFullClearInt
* @arg kSPITxNearEmptyClearInt
*/
static inline void SPI_ClearInterrupt(SPI_Type *base, uint32_t mask)
{
base->CI |= mask;
}
#endif /* FSL_FEATURE_SPI_HAS_FIFO */
/*! @} */
/*!
* @name Interrupts
* @{
*/
/*!
* @brief Enables the interrupt for the SPI.
*
* @param base SPI base pointer
* @param mask SPI interrupt source. The parameter can be any combination of the following values:
* @arg kSPI_RxFullAndModfInterruptEnable
* @arg kSPI_TxEmptyInterruptEnable
* @arg kSPI_MatchInterruptEnable
* @arg kSPI_RxFifoNearFullInterruptEnable
* @arg kSPI_TxFifoNearEmptyInterruptEnable
*/
void SPI_EnableInterrupts(SPI_Type *base, uint32_t mask);
/*!
* @brief Disables the interrupt for the SPI.
*
* @param base SPI base pointer
* @param mask SPI interrupt source. The parameter can be any combination of the following values:
* @arg kSPI_RxFullAndModfInterruptEnable
* @arg kSPI_TxEmptyInterruptEnable
* @arg kSPI_MatchInterruptEnable
* @arg kSPI_RxFifoNearFullInterruptEnable
* @arg kSPI_TxFifoNearEmptyInterruptEnable
*/
void SPI_DisableInterrupts(SPI_Type *base, uint32_t mask);
/*! @} */
/*!
* @name DMA Control
* @{
*/
#if defined(FSL_FEATURE_SPI_HAS_DMA_SUPPORT) && FSL_FEATURE_SPI_HAS_DMA_SUPPORT
/*!
* @brief Enables the DMA source for SPI.
*
* @param base SPI base pointer
* @param source SPI DMA source.
* @param enable True means enable DMA, false means disable DMA
*/
static inline void SPI_EnableDMA(SPI_Type *base, uint32_t mask, bool enable)
{
if (enable)
{
base->C2 |= mask;
}
else
{
base->C2 &= ~mask;
}
}
#endif /* FSL_FEATURE_SPI_HAS_DMA_SUPPORT */
/*!
* @brief Gets the SPI tx/rx data register address.
*
* This API is used to provide a transfer address for the SPI DMA transfer configuration.
*
* @param base SPI base pointer
* @return data register address
*/
static inline uint32_t SPI_GetDataRegisterAddress(SPI_Type *base)
{
#if defined(FSL_FEATURE_SPI_16BIT_TRANSFERS) && FSL_FEATURE_SPI_16BIT_TRANSFERS
return (uint32_t)(&(base->DL));
#else
return (uint32_t)(&(base->D));
#endif /* FSL_FEATURE_SPI_16BIT_TRANSFERS */
}
/*! @} */
/*!
* @name Bus Operations
* @{
*/
/*!
* @brief Sets the baud rate for SPI transfer. This is only used in master.
*
* @param base SPI base pointer
* @param baudRate_Bps baud rate needed in Hz.
* @param srcClock_Hz SPI source clock frequency in Hz.
*/
void SPI_MasterSetBaudRate(SPI_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz);
/*!
* @brief Sets the match data for SPI.
*
* The match data is a hardware comparison value. When the value received in the SPI receive data
* buffer equals the hardware comparison value, the SPI Match Flag in the S register (S[SPMF]) sets.
* This can also generate an interrupt if the enable bit sets.
*
* @param base SPI base pointer
* @param matchData Match data.
*/
static inline void SPI_SetMatchData(SPI_Type *base, uint32_t matchData)
{
#if defined(FSL_FEATURE_SPI_16BIT_TRANSFERS) && FSL_FEATURE_SPI_16BIT_TRANSFERS
base->ML = matchData & 0xFFU;
base->MH = (matchData >> 8U) & 0xFFU;
#else
base->M = matchData;
#endif /* FSL_FEATURE_SPI_16BIT_TRANSFERS */
}
#if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO
/*!
* @brief Enables or disables the FIFO if there is a FIFO.
*
* @param base SPI base pointer
* @param enable True means enable FIFO, false means disable FIFO.
*/
void SPI_EnableFIFO(SPI_Type *base, bool enable);
#endif
/*!
* @brief Sends a buffer of data bytes using a blocking method.
*
* @note This function blocks via polling until all bytes have been sent.
*
* @param base SPI base pointer
* @param buffer The data bytes to send
* @param size The number of data bytes to send
*/
void SPI_WriteBlocking(SPI_Type *base, uint8_t *buffer, size_t size);
/*!
* @brief Writes a data into the SPI data register.
*
* @param base SPI base pointer
* @param data needs to be write.
*/
void SPI_WriteData(SPI_Type *base, uint16_t data);
/*!
* @brief Gets a data from the SPI data register.
*
* @param base SPI base pointer
* @return Data in the register.
*/
uint16_t SPI_ReadData(SPI_Type *base);
/*! @} */
/*!
* @name Transactional
* @{
*/
/*!
* @brief Initializes the SPI master handle.
*
* This function initializes the SPI master handle which can be used for other SPI master transactional APIs. Usually,
* for a specified SPI instance, call this API once to get the initialized handle.
*
* @param base SPI peripheral base address.
* @param handle SPI handle pointer.
* @param callback Callback function.
* @param userData User data.
*/
void SPI_MasterTransferCreateHandle(SPI_Type *base,
spi_master_handle_t *handle,
spi_master_callback_t callback,
void *userData);
/*!
* @brief Transfers a block of data using a polling method.
*
* @param base SPI base pointer
* @param xfer pointer to spi_xfer_config_t structure
* @retval kStatus_Success Successfully start a transfer.
* @retval kStatus_InvalidArgument Input argument is invalid.
*/
status_t SPI_MasterTransferBlocking(SPI_Type *base, spi_transfer_t *xfer);
/*!
* @brief Performs a non-blocking SPI interrupt transfer.
*
* @note The API immediately returns after transfer initialization is finished.
* Call SPI_GetStatusIRQ() to get the transfer status.
* @note If SPI transfer data frame size is 16 bits, the transfer size cannot be an odd number.
*
* @param base SPI peripheral base address.
* @param handle pointer to spi_master_handle_t structure which stores the transfer state
* @param xfer pointer to spi_xfer_config_t structure
* @retval kStatus_Success Successfully start a transfer.
* @retval kStatus_InvalidArgument Input argument is invalid.
* @retval kStatus_SPI_Busy SPI is not idle, is running another transfer.
*/
status_t SPI_MasterTransferNonBlocking(SPI_Type *base, spi_master_handle_t *handle, spi_transfer_t *xfer);
/*!
* @brief Gets the bytes of the SPI interrupt transferred.
*
* @param base SPI peripheral base address.
* @param handle Pointer to SPI transfer handle, this should be a static variable.
* @param count Transferred bytes of SPI master.
* @retval kStatus_SPI_Success Succeed get the transfer count.
* @retval kStatus_NoTransferInProgress There is not a non-blocking transaction currently in progress.
*/
status_t SPI_MasterTransferGetCount(SPI_Type *base, spi_master_handle_t *handle, size_t *count);
/*!
* @brief Aborts an SPI transfer using interrupt.
*
* @param base SPI peripheral base address.
* @param handle Pointer to SPI transfer handle, this should be a static variable.
*/
void SPI_MasterTransferAbort(SPI_Type *base, spi_master_handle_t *handle);
/*!
* @brief Interrupts the handler for the SPI.
*
* @param base SPI peripheral base address.
* @param handle pointer to spi_master_handle_t structure which stores the transfer state.
*/
void SPI_MasterTransferHandleIRQ(SPI_Type *base, spi_master_handle_t *handle);
/*!
* @brief Initializes the SPI slave handle.
*
* This function initializes the SPI slave handle which can be used for other SPI slave transactional APIs. Usually,
* for a specified SPI instance, call this API once to get the initialized handle.
*
* @param base SPI peripheral base address.
* @param handle SPI handle pointer.
* @param callback Callback function.
* @param userData User data.
*/
void SPI_SlaveTransferCreateHandle(SPI_Type *base,
spi_slave_handle_t *handle,
spi_slave_callback_t callback,
void *userData);
/*!
* @brief Performs a non-blocking SPI slave interrupt transfer.
*
* @note The API returns immediately after the transfer initialization is finished.
* Call SPI_GetStatusIRQ() to get the transfer status.
* @note If SPI transfer data frame size is 16 bits, the transfer size cannot be an odd number.
*
* @param base SPI peripheral base address.
* @param handle pointer to spi_master_handle_t structure which stores the transfer state
* @param xfer pointer to spi_xfer_config_t structure
* @retval kStatus_Success Successfully start a transfer.
* @retval kStatus_InvalidArgument Input argument is invalid.
* @retval kStatus_SPI_Busy SPI is not idle, is running another transfer.
*/
static inline status_t SPI_SlaveTransferNonBlocking(SPI_Type *base, spi_slave_handle_t *handle, spi_transfer_t *xfer)
{
return SPI_MasterTransferNonBlocking(base, handle, xfer);
}
/*!
* @brief Gets the bytes of the SPI interrupt transferred.
*
* @param base SPI peripheral base address.
* @param handle Pointer to SPI transfer handle, this should be a static variable.
* @param count Transferred bytes of SPI slave.
* @retval kStatus_SPI_Success Succeed get the transfer count.
* @retval kStatus_NoTransferInProgress There is not a non-blocking transaction currently in progress.
*/
static inline status_t SPI_SlaveTransferGetCount(SPI_Type *base, spi_slave_handle_t *handle, size_t *count)
{
return SPI_MasterTransferGetCount(base, handle, count);
}
/*!
* @brief Aborts an SPI slave transfer using interrupt.
*
* @param base SPI peripheral base address.
* @param handle Pointer to SPI transfer handle, this should be a static variable.
*/
static inline void SPI_SlaveTransferAbort(SPI_Type *base, spi_slave_handle_t *handle)
{
SPI_MasterTransferAbort(base, handle);
}
/*!
* @brief Interrupts a handler for the SPI slave.
*
* @param base SPI peripheral base address.
* @param handle pointer to spi_slave_handle_t structure which stores the transfer state
*/
void SPI_SlaveTransferHandleIRQ(SPI_Type *base, spi_slave_handle_t *handle);
/*! @} */
#if defined(__cplusplus)
}
#endif
/*! @} */
#endif /* _FSL_SPI_H_*/