| /* |
| * Copyright (c) 2016 BayLibre, SAS |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| #define DT_DRV_COMPAT st_stm32_spi |
| |
| #define LOG_LEVEL CONFIG_SPI_LOG_LEVEL |
| #include <logging/log.h> |
| LOG_MODULE_REGISTER(spi_ll_stm32); |
| |
| #include <sys/util.h> |
| #include <kernel.h> |
| #include <soc.h> |
| #include <errno.h> |
| #include <drivers/spi.h> |
| #include <toolchain.h> |
| #ifdef CONFIG_SPI_STM32_DMA |
| #include <dt-bindings/dma/stm32_dma.h> |
| #include <drivers/dma.h> |
| #endif |
| #include <drivers/clock_control/stm32_clock_control.h> |
| #include <drivers/clock_control.h> |
| |
| #include "spi_ll_stm32.h" |
| |
| #define DEV_CFG(dev) \ |
| (const struct spi_stm32_config * const)(dev->config->config_info) |
| |
| #define DEV_DATA(dev) \ |
| (struct spi_stm32_data * const)(dev->driver_data) |
| |
| /* |
| * Check for SPI_SR_FRE to determine support for TI mode frame format |
| * error flag, because STM32F1 SoCs do not support it and STM32CUBE |
| * for F1 family defines an unused LL_SPI_SR_FRE. |
| */ |
| #ifdef CONFIG_SOC_SERIES_STM32MP1X |
| #define SPI_STM32_ERR_MSK (LL_SPI_SR_UDR | LL_SPI_SR_CRCE | LL_SPI_SR_MODF | \ |
| LL_SPI_SR_OVR | LL_SPI_SR_TIFRE) |
| #else |
| #if defined(LL_SPI_SR_UDR) |
| #define SPI_STM32_ERR_MSK (LL_SPI_SR_UDR | LL_SPI_SR_CRCERR | LL_SPI_SR_MODF | \ |
| LL_SPI_SR_OVR | LL_SPI_SR_FRE) |
| #elif defined(SPI_SR_FRE) |
| #define SPI_STM32_ERR_MSK (LL_SPI_SR_CRCERR | LL_SPI_SR_MODF | \ |
| LL_SPI_SR_OVR | LL_SPI_SR_FRE) |
| #else |
| #define SPI_STM32_ERR_MSK (LL_SPI_SR_CRCERR | LL_SPI_SR_MODF | LL_SPI_SR_OVR) |
| #endif |
| #endif /* CONFIG_SOC_SERIES_STM32MP1X */ |
| |
| |
| #ifdef CONFIG_SPI_STM32_DMA |
| /* dummy value used for transferring NOP when tx buf is null */ |
| u32_t nop_tx; |
| |
| /* This function is executed in the interrupt context */ |
| static void dma_callback(void *arg, u32_t channel, int status) |
| { |
| /* callback_arg directly holds the client data */ |
| struct spi_stm32_data *data = arg; |
| u32_t periph_addr; |
| |
| if (status != 0) { |
| LOG_ERR("DMA callback error with channel %d.", channel); |
| data->dma_tx.transfer_complete = true; |
| data->dma_rx.transfer_complete = true; |
| return; |
| } |
| |
| /* identify the origin of this callback */ |
| if (channel == data->dma_tx.channel) { |
| /* spi tx direction has mem as source and periph as dest */ |
| if (data->ctx.tx_count <= 1) { |
| /* if it was the last count, then we are done */ |
| data->dma_tx.transfer_complete = true; |
| } else { |
| /* this part of the transfer ends */ |
| data->dma_tx.transfer_complete = false; |
| /* |
| * Update the current Tx buffer, decreasing length of |
| * data->ctx.tx_count, by its own length |
| */ |
| spi_context_update_tx(&data->ctx, 1, data->ctx.tx_len); |
| /* keep the same dest (peripheral) */ |
| periph_addr = |
| data->dma_tx.dma_cfg.head_block->dest_address; |
| /* and reload dma with a new source (memory) buffer */ |
| dma_reload(data->dev_dma_tx, |
| data->dma_tx.channel, |
| (u32_t)data->ctx.tx_buf, |
| periph_addr, |
| data->ctx.tx_len); |
| } |
| } else if (channel == data->dma_rx.channel) { |
| /* spi rx direction has periph as source and mem as dest */ |
| if (data->ctx.rx_count <= 1) { |
| /* if it was the last count, then we are done */ |
| data->dma_rx.transfer_complete = true; |
| } else { |
| /* this part of the transfer ends */ |
| data->dma_rx.transfer_complete = false; |
| /* |
| * Update the current Rx buffer, decreasing length of |
| * data->ctx.rx_count, by its own length |
| */ |
| spi_context_update_rx(&data->ctx, 1, data->ctx.rx_len); |
| /* keep the same source (peripheral) */ |
| periph_addr = |
| data->dma_rx.dma_cfg.head_block->dest_address; |
| /* and reload dma with a new dest (memory) buffer */ |
| dma_reload(data->dev_dma_rx, |
| data->dma_rx.channel, |
| periph_addr, |
| (u32_t)data->ctx.rx_buf, |
| data->ctx.rx_len); |
| } |
| } else { |
| LOG_ERR("DMA callback channel %d is not valid.", channel); |
| data->dma_tx.transfer_complete = true; |
| data->dma_rx.transfer_complete = true; |
| return; |
| } |
| } |
| |
| static int spi_stm32_dma_tx_load(struct device *dev, const u8_t *buf, |
| size_t len) |
| { |
| const struct spi_stm32_config *cfg = DEV_CFG(dev); |
| struct spi_stm32_data *data = DEV_DATA(dev); |
| struct dma_block_config blk_cfg; |
| int ret; |
| |
| /* remember active TX DMA channel (used in callback) */ |
| struct stream *stream = &data->dma_tx; |
| |
| /* prepare the block for this TX DMA channel */ |
| memset(&blk_cfg, 0, sizeof(blk_cfg)); |
| blk_cfg.block_size = len; |
| |
| /* tx direction has memory as source and periph as dest. */ |
| if (buf == NULL) { |
| nop_tx = 0; |
| /* if tx buff is null, then sends NOP on the line. */ |
| blk_cfg.source_address = (u32_t)&nop_tx; |
| blk_cfg.source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; |
| } else { |
| blk_cfg.source_address = (u32_t)buf; |
| if (data->dma_tx.src_addr_increment) { |
| blk_cfg.source_addr_adj = DMA_ADDR_ADJ_INCREMENT; |
| } else { |
| blk_cfg.source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; |
| } |
| } |
| |
| blk_cfg.dest_address = (u32_t)LL_SPI_DMA_GetRegAddr(cfg->spi); |
| /* fifo mode NOT USED there */ |
| if (data->dma_tx.dst_addr_increment) { |
| blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_INCREMENT; |
| } else { |
| blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; |
| } |
| |
| /* give the fifo mode from the DT */ |
| blk_cfg.fifo_mode_control = data->dma_tx.fifo_threshold; |
| |
| /* direction is given by the DT */ |
| stream->dma_cfg.head_block = &blk_cfg; |
| /* give the client data as arg, as the callback comes from the dma */ |
| stream->dma_cfg.callback_arg = data; |
| /* pass our client origin to the dma: data->dma_tx.dma_channel */ |
| ret = dma_config(data->dev_dma_tx, data->dma_tx.channel, |
| &stream->dma_cfg); |
| /* the channel is the actual stream from 0 */ |
| if (ret != 0) { |
| return ret; |
| } |
| |
| /* starting this dma transfer */ |
| data->dma_tx.transfer_complete = false; |
| |
| /* gives the request ID to the dma mux */ |
| return dma_start(data->dev_dma_tx, data->dma_tx.channel); |
| } |
| |
| static int spi_stm32_dma_rx_load(struct device *dev, u8_t *buf, size_t len) |
| { |
| const struct spi_stm32_config *cfg = DEV_CFG(dev); |
| struct spi_stm32_data *data = DEV_DATA(dev); |
| struct dma_block_config blk_cfg; |
| int ret; |
| |
| /* retrieve active RX DMA channel (used in callback) */ |
| struct stream *stream = &data->dma_rx; |
| |
| /* prepare the block for this RX DMA channel */ |
| memset(&blk_cfg, 0, sizeof(blk_cfg)); |
| blk_cfg.block_size = len; |
| |
| /* rx direction has periph as source and mem as dest. */ |
| blk_cfg.dest_address = (buf != NULL) ? (u32_t)buf : (u32_t)NULL; |
| blk_cfg.source_address = (u32_t)LL_SPI_DMA_GetRegAddr(cfg->spi); |
| if (data->dma_rx.src_addr_increment) { |
| blk_cfg.source_addr_adj = DMA_ADDR_ADJ_INCREMENT; |
| } else { |
| blk_cfg.source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; |
| } |
| if (data->dma_rx.dst_addr_increment) { |
| blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_INCREMENT; |
| } else { |
| blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; |
| } |
| |
| /* give the fifo mode from the DT */ |
| blk_cfg.fifo_mode_control = data->dma_rx.fifo_threshold; |
| |
| /* direction is given by the DT */ |
| stream->dma_cfg.head_block = &blk_cfg; |
| stream->dma_cfg.callback_arg = data; |
| |
| |
| /* pass our client origin to the dma: data->dma_rx.channel */ |
| ret = dma_config(data->dev_dma_rx, data->dma_rx.channel, |
| &stream->dma_cfg); |
| /* the channel is the actual stream from 0 */ |
| if (ret != 0) { |
| return ret; |
| } |
| |
| /* starting this dma transfer */ |
| data->dma_rx.transfer_complete = false; |
| |
| /* gives the request ID to the dma mux */ |
| return dma_start(data->dev_dma_rx, data->dma_rx.channel); |
| } |
| |
| static int spi_dma_move_buffers(struct device *dev) |
| { |
| struct spi_stm32_data *data = DEV_DATA(dev); |
| int ret; |
| |
| /* the length to transmit depends on the source data size (1,2 4) */ |
| data->dma_segment_len = data->ctx.tx_len |
| / data->dma_tx.dma_cfg.source_data_size; |
| |
| /* Load receive first, so it can accept transmit data */ |
| if (data->ctx.rx_len) { |
| ret = spi_stm32_dma_rx_load(dev, data->ctx.rx_buf, |
| data->dma_segment_len); |
| } else { |
| ret = spi_stm32_dma_rx_load(dev, NULL, data->dma_segment_len); |
| } |
| |
| if (ret != 0) { |
| return ret; |
| } |
| |
| if (data->ctx.tx_len) { |
| ret = spi_stm32_dma_tx_load(dev, data->ctx.tx_buf, |
| data->dma_segment_len); |
| } else { |
| ret = spi_stm32_dma_tx_load(dev, NULL, data->dma_segment_len); |
| } |
| |
| return ret; |
| } |
| |
| static bool spi_stm32_dma_transfer_ongoing(struct spi_stm32_data *data) |
| { |
| return ((data->dma_tx.transfer_complete != true) |
| && (data->dma_rx.transfer_complete != true)); |
| } |
| #endif /* CONFIG_SPI_STM32_DMA */ |
| |
| /* Value to shift out when no application data needs transmitting. */ |
| #define SPI_STM32_TX_NOP 0x00 |
| |
| static bool spi_stm32_transfer_ongoing(struct spi_stm32_data *data) |
| { |
| return spi_context_tx_on(&data->ctx) || spi_context_rx_on(&data->ctx); |
| } |
| |
| static int spi_stm32_get_err(SPI_TypeDef *spi) |
| { |
| u32_t sr = LL_SPI_ReadReg(spi, SR); |
| |
| if (sr & SPI_STM32_ERR_MSK) { |
| LOG_ERR("%s: err=%d", __func__, |
| sr & (u32_t)SPI_STM32_ERR_MSK); |
| |
| /* OVR error must be explicitly cleared */ |
| if (LL_SPI_IsActiveFlag_OVR(spi)) { |
| LL_SPI_ClearFlag_OVR(spi); |
| } |
| |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| /* Shift a SPI frame as master. */ |
| static void spi_stm32_shift_m(SPI_TypeDef *spi, struct spi_stm32_data *data) |
| { |
| u16_t tx_frame = SPI_STM32_TX_NOP; |
| u16_t rx_frame; |
| |
| while (!ll_func_tx_is_empty(spi)) { |
| /* NOP */ |
| } |
| |
| #ifdef CONFIG_SOC_SERIES_STM32MP1X |
| /* With the STM32MP1, if the device is the SPI master, we need to enable |
| * the start of the transfer with LL_SPI_StartMasterTransfer(spi) |
| */ |
| if (LL_SPI_GetMode(spi) == LL_SPI_MODE_MASTER) { |
| LL_SPI_StartMasterTransfer(spi); |
| while (!LL_SPI_IsActiveMasterTransfer(spi)) { |
| /* NOP */ |
| } |
| } |
| #endif |
| |
| if (SPI_WORD_SIZE_GET(data->ctx.config->operation) == 8) { |
| if (spi_context_tx_buf_on(&data->ctx)) { |
| tx_frame = UNALIGNED_GET((u8_t *)(data->ctx.tx_buf)); |
| } |
| LL_SPI_TransmitData8(spi, tx_frame); |
| /* The update is ignored if TX is off. */ |
| spi_context_update_tx(&data->ctx, 1, 1); |
| } else { |
| if (spi_context_tx_buf_on(&data->ctx)) { |
| tx_frame = UNALIGNED_GET((u16_t *)(data->ctx.tx_buf)); |
| } |
| LL_SPI_TransmitData16(spi, tx_frame); |
| /* The update is ignored if TX is off. */ |
| spi_context_update_tx(&data->ctx, 2, 1); |
| } |
| |
| while (!ll_func_rx_is_not_empty(spi)) { |
| /* NOP */ |
| } |
| |
| if (SPI_WORD_SIZE_GET(data->ctx.config->operation) == 8) { |
| rx_frame = LL_SPI_ReceiveData8(spi); |
| if (spi_context_rx_buf_on(&data->ctx)) { |
| UNALIGNED_PUT(rx_frame, (u8_t *)data->ctx.rx_buf); |
| } |
| spi_context_update_rx(&data->ctx, 1, 1); |
| } else { |
| rx_frame = LL_SPI_ReceiveData16(spi); |
| if (spi_context_rx_buf_on(&data->ctx)) { |
| UNALIGNED_PUT(rx_frame, (u16_t *)data->ctx.rx_buf); |
| } |
| spi_context_update_rx(&data->ctx, 2, 1); |
| } |
| } |
| |
| /* Shift a SPI frame as slave. */ |
| static void spi_stm32_shift_s(SPI_TypeDef *spi, struct spi_stm32_data *data) |
| { |
| if (ll_func_tx_is_empty(spi) && spi_context_tx_on(&data->ctx)) { |
| u16_t tx_frame; |
| |
| if (SPI_WORD_SIZE_GET(data->ctx.config->operation) == 8) { |
| tx_frame = UNALIGNED_GET((u8_t *)(data->ctx.tx_buf)); |
| LL_SPI_TransmitData8(spi, tx_frame); |
| spi_context_update_tx(&data->ctx, 1, 1); |
| } else { |
| tx_frame = UNALIGNED_GET((u16_t *)(data->ctx.tx_buf)); |
| LL_SPI_TransmitData16(spi, tx_frame); |
| spi_context_update_tx(&data->ctx, 2, 1); |
| } |
| } else { |
| ll_func_disable_int_tx_empty(spi); |
| } |
| |
| if (ll_func_rx_is_not_empty(spi) && |
| spi_context_rx_buf_on(&data->ctx)) { |
| u16_t rx_frame; |
| |
| if (SPI_WORD_SIZE_GET(data->ctx.config->operation) == 8) { |
| rx_frame = LL_SPI_ReceiveData8(spi); |
| UNALIGNED_PUT(rx_frame, (u8_t *)data->ctx.rx_buf); |
| spi_context_update_rx(&data->ctx, 1, 1); |
| } else { |
| rx_frame = LL_SPI_ReceiveData16(spi); |
| UNALIGNED_PUT(rx_frame, (u16_t *)data->ctx.rx_buf); |
| spi_context_update_rx(&data->ctx, 2, 1); |
| } |
| } |
| } |
| |
| /* |
| * Without a FIFO, we can only shift out one frame's worth of SPI |
| * data, and read the response back. |
| * |
| * TODO: support 16-bit data frames. |
| */ |
| static int spi_stm32_shift_frames(SPI_TypeDef *spi, struct spi_stm32_data *data) |
| { |
| u16_t operation = data->ctx.config->operation; |
| |
| if (SPI_OP_MODE_GET(operation) == SPI_OP_MODE_MASTER) { |
| spi_stm32_shift_m(spi, data); |
| } else { |
| spi_stm32_shift_s(spi, data); |
| } |
| |
| return spi_stm32_get_err(spi); |
| } |
| |
| static void spi_stm32_complete(struct spi_stm32_data *data, SPI_TypeDef *spi, |
| int status) |
| { |
| #ifdef CONFIG_SPI_STM32_INTERRUPT |
| ll_func_disable_int_tx_empty(spi); |
| ll_func_disable_int_rx_not_empty(spi); |
| ll_func_disable_int_errors(spi); |
| #endif |
| |
| spi_context_cs_control(&data->ctx, false); |
| |
| #if DT_HAS_COMPAT(st_stm32_spi_fifo) |
| /* Flush RX buffer */ |
| while (ll_func_rx_is_not_empty(spi)) { |
| (void) LL_SPI_ReceiveData8(spi); |
| } |
| #endif |
| |
| if (LL_SPI_GetMode(spi) == LL_SPI_MODE_MASTER) { |
| while (ll_func_spi_is_busy(spi)) { |
| /* NOP */ |
| } |
| } |
| /* BSY flag is cleared when MODF flag is raised */ |
| if (LL_SPI_IsActiveFlag_MODF(spi)) { |
| LL_SPI_ClearFlag_MODF(spi); |
| } |
| |
| ll_func_disable_spi(spi); |
| |
| #ifdef CONFIG_SPI_STM32_INTERRUPT |
| spi_context_complete(&data->ctx, status); |
| #endif |
| } |
| |
| #ifdef CONFIG_SPI_STM32_INTERRUPT |
| static void spi_stm32_isr(void *arg) |
| { |
| struct device * const dev = (struct device *) arg; |
| const struct spi_stm32_config *cfg = dev->config->config_info; |
| struct spi_stm32_data *data = dev->driver_data; |
| SPI_TypeDef *spi = cfg->spi; |
| int err; |
| |
| err = spi_stm32_get_err(spi); |
| if (err) { |
| spi_stm32_complete(data, spi, err); |
| return; |
| } |
| |
| if (spi_stm32_transfer_ongoing(data)) { |
| err = spi_stm32_shift_frames(spi, data); |
| } |
| |
| if (err || !spi_stm32_transfer_ongoing(data)) { |
| spi_stm32_complete(data, spi, err); |
| } |
| } |
| #endif |
| |
| static int spi_stm32_configure(struct device *dev, |
| const struct spi_config *config) |
| { |
| const struct spi_stm32_config *cfg = DEV_CFG(dev); |
| struct spi_stm32_data *data = DEV_DATA(dev); |
| const u32_t scaler[] = { |
| LL_SPI_BAUDRATEPRESCALER_DIV2, |
| LL_SPI_BAUDRATEPRESCALER_DIV4, |
| LL_SPI_BAUDRATEPRESCALER_DIV8, |
| LL_SPI_BAUDRATEPRESCALER_DIV16, |
| LL_SPI_BAUDRATEPRESCALER_DIV32, |
| LL_SPI_BAUDRATEPRESCALER_DIV64, |
| LL_SPI_BAUDRATEPRESCALER_DIV128, |
| LL_SPI_BAUDRATEPRESCALER_DIV256 |
| }; |
| SPI_TypeDef *spi = cfg->spi; |
| u32_t clock; |
| int br; |
| |
| if (spi_context_configured(&data->ctx, config)) { |
| /* Nothing to do */ |
| return 0; |
| } |
| |
| if ((SPI_WORD_SIZE_GET(config->operation) != 8) |
| && (SPI_WORD_SIZE_GET(config->operation) != 16)) { |
| return -ENOTSUP; |
| } |
| |
| if (clock_control_get_rate(device_get_binding(STM32_CLOCK_CONTROL_NAME), |
| (clock_control_subsys_t) &cfg->pclken, &clock) < 0) { |
| LOG_ERR("Failed call clock_control_get_rate"); |
| return -EIO; |
| } |
| |
| for (br = 1 ; br <= ARRAY_SIZE(scaler) ; ++br) { |
| u32_t clk = clock >> br; |
| |
| if (clk <= config->frequency) { |
| break; |
| } |
| } |
| |
| if (br > ARRAY_SIZE(scaler)) { |
| LOG_ERR("Unsupported frequency %uHz, max %uHz, min %uHz", |
| config->frequency, |
| clock >> 1, |
| clock >> ARRAY_SIZE(scaler)); |
| return -EINVAL; |
| } |
| |
| LL_SPI_Disable(spi); |
| LL_SPI_SetBaudRatePrescaler(spi, scaler[br - 1]); |
| |
| if (SPI_MODE_GET(config->operation) & SPI_MODE_CPOL) { |
| LL_SPI_SetClockPolarity(spi, LL_SPI_POLARITY_HIGH); |
| } else { |
| LL_SPI_SetClockPolarity(spi, LL_SPI_POLARITY_LOW); |
| } |
| |
| if (SPI_MODE_GET(config->operation) & SPI_MODE_CPHA) { |
| LL_SPI_SetClockPhase(spi, LL_SPI_PHASE_2EDGE); |
| } else { |
| LL_SPI_SetClockPhase(spi, LL_SPI_PHASE_1EDGE); |
| } |
| |
| LL_SPI_SetTransferDirection(spi, LL_SPI_FULL_DUPLEX); |
| |
| if (config->operation & SPI_TRANSFER_LSB) { |
| LL_SPI_SetTransferBitOrder(spi, LL_SPI_LSB_FIRST); |
| } else { |
| LL_SPI_SetTransferBitOrder(spi, LL_SPI_MSB_FIRST); |
| } |
| |
| LL_SPI_DisableCRC(spi); |
| |
| if (config->cs || !IS_ENABLED(CONFIG_SPI_STM32_USE_HW_SS)) { |
| LL_SPI_SetNSSMode(spi, LL_SPI_NSS_SOFT); |
| } else { |
| if (config->operation & SPI_OP_MODE_SLAVE) { |
| LL_SPI_SetNSSMode(spi, LL_SPI_NSS_HARD_INPUT); |
| } else { |
| LL_SPI_SetNSSMode(spi, LL_SPI_NSS_HARD_OUTPUT); |
| } |
| } |
| |
| if (config->operation & SPI_OP_MODE_SLAVE) { |
| LL_SPI_SetMode(spi, LL_SPI_MODE_SLAVE); |
| } else { |
| LL_SPI_SetMode(spi, LL_SPI_MODE_MASTER); |
| } |
| |
| if (SPI_WORD_SIZE_GET(config->operation) == 8) { |
| LL_SPI_SetDataWidth(spi, LL_SPI_DATAWIDTH_8BIT); |
| } else { |
| LL_SPI_SetDataWidth(spi, LL_SPI_DATAWIDTH_16BIT); |
| } |
| |
| #if DT_HAS_COMPAT(st_stm32_spi_fifo) |
| ll_func_set_fifo_threshold_8bit(spi); |
| #endif |
| |
| #ifdef CONFIG_SPI_STM32_DMA |
| /* with LL_SPI_FULL_DUPLEX mode, both tx and Rx DMA are on */ |
| if (data->dev_dma_tx) { |
| LL_SPI_EnableDMAReq_TX(spi); |
| } |
| if (data->dev_dma_rx) { |
| LL_SPI_EnableDMAReq_RX(spi); |
| } |
| #endif /* CONFIG_SPI_STM32_DMA */ |
| |
| #ifndef CONFIG_SOC_SERIES_STM32F1X |
| LL_SPI_SetStandard(spi, LL_SPI_PROTOCOL_MOTOROLA); |
| #endif |
| |
| /* At this point, it's mandatory to set this on the context! */ |
| data->ctx.config = config; |
| |
| spi_context_cs_configure(&data->ctx); |
| |
| LOG_DBG("Installed config %p: freq %uHz (div = %u)," |
| " mode %u/%u/%u, slave %u", |
| config, clock >> br, 1 << br, |
| (SPI_MODE_GET(config->operation) & SPI_MODE_CPOL) ? 1 : 0, |
| (SPI_MODE_GET(config->operation) & SPI_MODE_CPHA) ? 1 : 0, |
| (SPI_MODE_GET(config->operation) & SPI_MODE_LOOP) ? 1 : 0, |
| config->slave); |
| |
| return 0; |
| } |
| |
| static int spi_stm32_release(struct device *dev, |
| const struct spi_config *config) |
| { |
| struct spi_stm32_data *data = DEV_DATA(dev); |
| |
| spi_context_unlock_unconditionally(&data->ctx); |
| |
| return 0; |
| } |
| |
| static int transceive(struct device *dev, |
| const struct spi_config *config, |
| const struct spi_buf_set *tx_bufs, |
| const struct spi_buf_set *rx_bufs, |
| bool asynchronous, struct k_poll_signal *signal) |
| { |
| const struct spi_stm32_config *cfg = DEV_CFG(dev); |
| struct spi_stm32_data *data = DEV_DATA(dev); |
| SPI_TypeDef *spi = cfg->spi; |
| int ret; |
| |
| if (!tx_bufs && !rx_bufs) { |
| return 0; |
| } |
| |
| #ifndef CONFIG_SPI_STM32_INTERRUPT |
| if (asynchronous) { |
| return -ENOTSUP; |
| } |
| #endif |
| |
| spi_context_lock(&data->ctx, asynchronous, signal); |
| |
| ret = spi_stm32_configure(dev, config); |
| if (ret) { |
| return ret; |
| } |
| |
| /* Set buffers info */ |
| spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1); |
| |
| #if DT_HAS_COMPAT(st_stm32_spi_fifo) |
| /* Flush RX buffer */ |
| while (ll_func_rx_is_not_empty(spi)) { |
| (void) LL_SPI_ReceiveData8(spi); |
| } |
| #endif |
| |
| LL_SPI_Enable(spi); |
| |
| /* This is turned off in spi_stm32_complete(). */ |
| spi_context_cs_control(&data->ctx, true); |
| |
| #ifdef CONFIG_SPI_STM32_INTERRUPT |
| ll_func_enable_int_errors(spi); |
| |
| if (rx_bufs) { |
| ll_func_enable_int_rx_not_empty(spi); |
| } |
| |
| ll_func_enable_int_tx_empty(spi); |
| |
| ret = spi_context_wait_for_completion(&data->ctx); |
| #else |
| do { |
| ret = spi_stm32_shift_frames(spi, data); |
| } while (!ret && spi_stm32_transfer_ongoing(data)); |
| |
| spi_stm32_complete(data, spi, ret); |
| |
| #ifdef CONFIG_SPI_SLAVE |
| if (spi_context_is_slave(&data->ctx) && !ret) { |
| ret = data->ctx.recv_frames; |
| } |
| #endif /* CONFIG_SPI_SLAVE */ |
| |
| #endif |
| |
| spi_context_release(&data->ctx, ret); |
| |
| return ret; |
| } |
| |
| #ifdef CONFIG_SPI_STM32_DMA |
| static int transceive_dma(struct device *dev, |
| const struct spi_config *config, |
| const struct spi_buf_set *tx_bufs, |
| const struct spi_buf_set *rx_bufs, |
| bool asynchronous, struct k_poll_signal *signal) |
| { |
| const struct spi_stm32_config *cfg = DEV_CFG(dev); |
| struct spi_stm32_data *data = DEV_DATA(dev); |
| SPI_TypeDef *spi = cfg->spi; |
| int ret; |
| |
| if (!tx_bufs && !rx_bufs) { |
| return 0; |
| } |
| |
| if (asynchronous) { |
| return -ENOTSUP; |
| } |
| |
| spi_context_lock(&data->ctx, asynchronous, signal); |
| |
| data->dma_tx.transfer_complete = false; |
| data->dma_rx.transfer_complete = false; |
| |
| ret = spi_stm32_configure(dev, config); |
| if (ret) { |
| return ret; |
| } |
| |
| /* Set buffers info */ |
| spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1); |
| |
| ret = spi_dma_move_buffers(dev); |
| if (ret) { |
| return ret; |
| } |
| |
| LL_SPI_Enable(spi); |
| |
| do { |
| } while (spi_stm32_dma_transfer_ongoing(data)); |
| |
| /* This is turned off in spi_stm32_complete(). */ |
| spi_context_cs_control(&data->ctx, true); |
| |
| spi_context_release(&data->ctx, ret); |
| |
| return ret; |
| } |
| #endif /* CONFIG_SPI_STM32_DMA */ |
| |
| static int spi_stm32_transceive(struct device *dev, |
| const struct spi_config *config, |
| const struct spi_buf_set *tx_bufs, |
| const struct spi_buf_set *rx_bufs) |
| { |
| #ifdef CONFIG_SPI_STM32_DMA |
| struct spi_stm32_data *data = DEV_DATA(dev); |
| |
| if ((data->dma_tx.dma_name != NULL) |
| && (data->dma_rx.dma_name != NULL)) { |
| return transceive_dma(dev, config, tx_bufs, rx_bufs, |
| false, NULL); |
| } |
| #endif /* CONFIG_SPI_STM32_DMA */ |
| return transceive(dev, config, tx_bufs, rx_bufs, false, NULL); |
| } |
| |
| #ifdef CONFIG_SPI_ASYNC |
| static int spi_stm32_transceive_async(struct device *dev, |
| const struct spi_config *config, |
| const struct spi_buf_set *tx_bufs, |
| const struct spi_buf_set *rx_bufs, |
| struct k_poll_signal *async) |
| { |
| return transceive(dev, config, tx_bufs, rx_bufs, true, async); |
| } |
| #endif /* CONFIG_SPI_ASYNC */ |
| |
| static const struct spi_driver_api api_funcs = { |
| .transceive = spi_stm32_transceive, |
| #ifdef CONFIG_SPI_ASYNC |
| .transceive_async = spi_stm32_transceive_async, |
| #endif |
| .release = spi_stm32_release, |
| }; |
| |
| static int spi_stm32_init(struct device *dev) |
| { |
| struct spi_stm32_data *data __attribute__((unused)) = dev->driver_data; |
| const struct spi_stm32_config *cfg = dev->config->config_info; |
| |
| __ASSERT_NO_MSG(device_get_binding(STM32_CLOCK_CONTROL_NAME)); |
| |
| if (clock_control_on(device_get_binding(STM32_CLOCK_CONTROL_NAME), |
| (clock_control_subsys_t) &cfg->pclken) != 0) { |
| LOG_ERR("Could not enable SPI clock"); |
| return -EIO; |
| } |
| |
| #ifdef CONFIG_SPI_STM32_INTERRUPT |
| cfg->irq_config(dev); |
| #endif |
| |
| #ifdef CONFIG_SPI_STM32_DMA |
| if (data->dma_tx.dma_name != NULL) { |
| /* Get the binding to the DMA device */ |
| data->dev_dma_tx = device_get_binding(data->dma_tx.dma_name); |
| if (!data->dev_dma_tx) { |
| LOG_ERR("%s device not found", data->dma_tx.dma_name); |
| return -ENODEV; |
| } |
| } |
| |
| if (data->dma_rx.dma_name != NULL) { |
| data->dev_dma_rx = device_get_binding(data->dma_rx.dma_name); |
| if (!data->dev_dma_rx) { |
| LOG_ERR("%s device not found", data->dma_rx.dma_name); |
| return -ENODEV; |
| } |
| } |
| #endif /* CONFIG_SPI_STM32_DMA */ |
| spi_context_unlock_unconditionally(&data->ctx); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_SPI_STM32_INTERRUPT |
| #define STM32_SPI_IRQ_HANDLER_DECL(id) \ |
| static void spi_stm32_irq_config_func_##id(struct device *dev) |
| #define STM32_SPI_IRQ_HANDLER_FUNC(id) \ |
| .irq_config = spi_stm32_irq_config_func_##id, |
| #define STM32_SPI_IRQ_HANDLER(id) \ |
| static void spi_stm32_irq_config_func_##id(struct device *dev) \ |
| { \ |
| IRQ_CONNECT(DT_INST_IRQN(id), \ |
| DT_INST_IRQ(id, priority), \ |
| spi_stm32_isr, DEVICE_GET(spi_stm32_##id), 0); \ |
| irq_enable(DT_INST_IRQN(id)); \ |
| } |
| #else |
| #define STM32_SPI_IRQ_HANDLER_DECL(id) |
| #define STM32_SPI_IRQ_HANDLER_FUNC(id) |
| #define STM32_SPI_IRQ_HANDLER(id) |
| #endif |
| |
| #define DMA_CHANNEL_CONFIG(id, dir) \ |
| DT_INST_DMAS_CELL_BY_NAME(id, dir, channel_config) |
| #define DMA_FEATURES(id, dir) \ |
| DT_INST_DMAS_CELL_BY_NAME(id, dir, features) |
| |
| #define SPI_DMA_CHANNEL_INIT(index, dir, dir_cap, src_dev, dest_dev) \ |
| .dma_##dir = { \ |
| .dma_name = DT_INST_DMAS_LABEL_BY_NAME(index, dir), \ |
| .channel = \ |
| DT_INST_DMAS_CELL_BY_NAME(index, dir, channel), \ |
| .dma_cfg = { \ |
| .dma_slot = \ |
| DT_INST_DMAS_CELL_BY_NAME(index, dir, slot), \ |
| .channel_direction = STM32_DMA_CONFIG_DIRECTION( \ |
| DMA_CHANNEL_CONFIG(index, dir)),\ |
| .source_data_size = STM32_DMA_CONFIG_##src_dev##_DATA_SIZE(\ |
| DMA_CHANNEL_CONFIG(index, dir)),\ |
| .dest_data_size = STM32_DMA_CONFIG_##dest_dev##_DATA_SIZE(\ |
| DMA_CHANNEL_CONFIG(index, dir)),\ |
| .source_burst_length = 1, /* SINGLE transfer */ \ |
| .dest_burst_length = 1, /* SINGLE transfer */ \ |
| .channel_priority = STM32_DMA_CONFIG_PRIORITY( \ |
| DMA_CHANNEL_CONFIG(index, dir)),\ |
| .dma_callback = dma_callback, \ |
| .block_count = 2, \ |
| }, \ |
| .src_addr_increment = STM32_DMA_CONFIG_##src_dev##_ADDR_INC( \ |
| DMA_CHANNEL_CONFIG(index, dir)),\ |
| .dst_addr_increment = STM32_DMA_CONFIG_##dest_dev##_ADDR_INC( \ |
| DMA_CHANNEL_CONFIG(index, dir)),\ |
| .transfer_complete = false, \ |
| .fifo_threshold = STM32_DMA_FEATURES_FIFO_THRESHOLD( \ |
| DMA_FEATURES(index, dir)) \ |
| } |
| |
| #define STM32_SPI_INIT(id) \ |
| STM32_SPI_IRQ_HANDLER_DECL(id); \ |
| \ |
| static const struct spi_stm32_config spi_stm32_cfg_##id = { \ |
| .spi = (SPI_TypeDef *) DT_INST_REG_ADDR(id),\ |
| .pclken = { \ |
| .enr = DT_INST_CLOCKS_CELL(id, bits), \ |
| .bus = DT_INST_CLOCKS_CELL(id, bus) \ |
| }, \ |
| STM32_SPI_IRQ_HANDLER_FUNC(id) \ |
| }; \ |
| \ |
| static struct spi_stm32_data spi_stm32_dev_data_##id = { \ |
| SPI_CONTEXT_INIT_LOCK(spi_stm32_dev_data_##id, ctx), \ |
| SPI_CONTEXT_INIT_SYNC(spi_stm32_dev_data_##id, ctx), \ |
| UTIL_AND(DT_INST_DMAS_HAS_NAME(id, rx), \ |
| SPI_DMA_CHANNEL_INIT(id, rx, RX, PERIPHERAL, MEMORY)), \ |
| UTIL_AND(DT_INST_DMAS_HAS_NAME(id, tx), \ |
| SPI_DMA_CHANNEL_INIT(id, tx, TX, MEMORY, PERIPHERAL)), \ |
| }; \ |
| \ |
| DEVICE_AND_API_INIT(spi_stm32_##id, DT_INST_LABEL(id), \ |
| &spi_stm32_init, \ |
| &spi_stm32_dev_data_##id, &spi_stm32_cfg_##id, \ |
| POST_KERNEL, CONFIG_SPI_INIT_PRIORITY, \ |
| &api_funcs); \ |
| \ |
| STM32_SPI_IRQ_HANDLER(id) |
| |
| DT_INST_FOREACH(STM32_SPI_INIT) |