blob: 9705c7ea99d7907de268962728216be62d27d661 [file] [log] [blame]
/*
* Copyright (c) 2021 Microchip Technology Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT microchip_xec_qmspi_ldma
#include <errno.h>
#include <soc.h>
#include <zephyr/device.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/clock_control/mchp_xec_clock_control.h>
#include <zephyr/drivers/gpio.h>
#include <zephyr/drivers/interrupt_controller/intc_mchp_xec_ecia.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/drivers/spi.h>
#include <zephyr/drivers/spi/rtio.h>
#include <zephyr/dt-bindings/clock/mchp_xec_pcr.h>
#include <zephyr/dt-bindings/interrupt-controller/mchp-xec-ecia.h>
#include <zephyr/irq.h>
#include <zephyr/pm/device.h>
#include <zephyr/sys/sys_io.h>
#include <zephyr/sys/util.h>
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(spi_xec, CONFIG_SPI_LOG_LEVEL);
#include "spi_context.h"
/* #define MCHP_XEC_QMSPI_DEBUG 1 */
/* MEC172x QMSPI controller SPI Mode 3 signalling has an anomaly where
* received data is shifted off the input line(s) improperly. Received
* data bytes will be left shifted by 1. Work-around for SPI Mode 3 is
* to sample input line(s) on same edge as output data is ready.
*/
#define XEC_QMSPI_SPI_MODE_3_ANOMALY 1
/* common clock control device node for all Microchip XEC chips */
#define MCHP_XEC_CLOCK_CONTROL_NODE DT_NODELABEL(pcr)
/* spin loops waiting for HW to clear soft reset bit */
#define XEC_QMSPI_SRST_LOOPS 16
/* microseconds for busy wait and total wait interval */
#define XEC_QMSPI_WAIT_INTERVAL 8
#define XEC_QMSPI_WAIT_COUNT 64
/* QSPI transfer and DMA done */
#define XEC_QSPI_HW_XFR_DMA_DONE (MCHP_QMSPI_STS_DONE | MCHP_QMSPI_STS_DMA_DONE)
/* QSPI hardware error status
* Misprogrammed control or descriptors (software error)
* Overflow TX FIFO
* Underflow RX FIFO
*/
#define XEC_QSPI_HW_ERRORS (MCHP_QMSPI_STS_PROG_ERR | \
MCHP_QMSPI_STS_TXB_ERR | \
MCHP_QMSPI_STS_RXB_ERR)
#define XEC_QSPI_HW_ERRORS_LDMA (MCHP_QMSPI_STS_LDMA_RX_ERR | \
MCHP_QMSPI_STS_LDMA_TX_ERR)
#define XEC_QSPI_HW_ERRORS_ALL (XEC_QSPI_HW_ERRORS | \
XEC_QSPI_HW_ERRORS_LDMA)
#define XEC_QSPI_TIMEOUT_US (100 * 1000) /* 100 ms */
/* Device constant configuration parameters */
struct spi_qmspi_config {
struct qmspi_regs *regs;
const struct device *clk_dev;
struct mchp_xec_pcr_clk_ctrl clksrc;
uint32_t clock_freq;
uint32_t cs1_freq;
uint32_t cs_timing;
uint16_t taps_adj;
uint8_t girq;
uint8_t girq_pos;
uint8_t girq_nvic_aggr;
uint8_t girq_nvic_direct;
uint8_t irq_pri;
uint8_t chip_sel;
uint8_t width; /* 0(half) 1(single), 2(dual), 4(quad) */
uint8_t unused[1];
const struct pinctrl_dev_config *pcfg;
void (*irq_config_func)(void);
};
#define XEC_QMSPI_XFR_FLAG_TX BIT(0)
#define XEC_QMSPI_XFR_FLAG_RX BIT(1)
/* Device run time data */
struct spi_qmspi_data {
struct spi_context ctx;
uint32_t base_freq_hz;
uint32_t spi_freq_hz;
uint32_t qstatus;
uint8_t np; /* number of data pins: 1, 2, or 4 */
#ifdef CONFIG_SPI_ASYNC
spi_callback_t cb;
void *userdata;
size_t xfr_len;
#endif
uint32_t tempbuf[2];
#ifdef MCHP_XEC_QMSPI_DEBUG
uint32_t bufcnt_status;
uint32_t rx_ldma_ctrl0;
uint32_t tx_ldma_ctrl0;
uint32_t qunits;
uint32_t qxfru;
uint32_t xfrlen;
#endif
};
static int xec_qmspi_spin_yield(int *counter, int max_count)
{
*counter = *counter + 1;
if (*counter > max_count) {
return -ETIMEDOUT;
}
k_busy_wait(XEC_QMSPI_WAIT_INTERVAL);
return 0;
}
/*
* reset QMSPI controller with save/restore of timing registers.
* Some QMSPI timing register may be modified by the Boot-ROM OTP
* values.
*/
static void qmspi_reset(struct qmspi_regs *regs)
{
uint32_t taps[3];
uint32_t malt1;
uint32_t cstm;
uint32_t mode;
uint32_t cnt = XEC_QMSPI_SRST_LOOPS;
taps[0] = regs->TM_TAPS;
taps[1] = regs->TM_TAPS_ADJ;
taps[2] = regs->TM_TAPS_CTRL;
malt1 = regs->MODE_ALT1;
cstm = regs->CSTM;
mode = regs->MODE;
regs->MODE = MCHP_QMSPI_M_SRST;
while (regs->MODE & MCHP_QMSPI_M_SRST) {
if (cnt == 0) {
break;
}
cnt--;
}
regs->MODE = 0;
regs->MODE = mode & ~MCHP_QMSPI_M_ACTIVATE;
regs->CSTM = cstm;
regs->MODE_ALT1 = malt1;
regs->TM_TAPS = taps[0];
regs->TM_TAPS_ADJ = taps[1];
regs->TM_TAPS_CTRL = taps[2];
}
static uint32_t qmspi_encoded_fdiv(const struct device *dev, uint32_t freq_hz)
{
struct spi_qmspi_data *qdata = dev->data;
if (freq_hz == 0u) {
return 0u; /* maximum frequency divider */
}
return (qdata->base_freq_hz / freq_hz);
}
/* Program QMSPI frequency divider field in the mode register.
* MEC172x QMSPI input clock source is the Fast Peripheral domain whose
* clock is controlled by the PCR turbo clock. 96 MHz if turbo mode
* enabled else 48 MHz. Query the clock control driver to get clock
* rate of fast peripheral domain. MEC172x QMSPI clock divider has
* been expanded to a 16-bit field encoded as:
* 0 = divide by 0x10000
* 1 to 0xffff = divide by this value.
*/
static int qmspi_set_frequency(struct spi_qmspi_data *qdata, struct qmspi_regs *regs,
uint32_t freq_hz)
{
uint32_t clk = MCHP_QMSPI_INPUT_CLOCK_FREQ_HZ;
uint32_t fdiv = 0u; /* maximum divider */
if (qdata->base_freq_hz) {
clk = qdata->base_freq_hz;
}
if (freq_hz) {
fdiv = 1u;
if (freq_hz < clk) {
fdiv = clk / freq_hz;
}
}
regs->MODE = ((regs->MODE & ~(MCHP_QMSPI_M_FDIV_MASK)) |
((fdiv << MCHP_QMSPI_M_FDIV_POS) & MCHP_QMSPI_M_FDIV_MASK));
if (!fdiv) {
fdiv = 0x10000u;
}
qdata->spi_freq_hz = clk / fdiv;
return 0;
}
/*
* SPI signalling mode: CPOL and CPHA
* CPOL = 0 is clock idles low, 1 is clock idle high
* CPHA = 0 Transmitter changes data on trailing of preceding clock cycle.
* Receiver samples data on leading edge of clock cycle.
* 1 Transmitter changes data on leading edge of current clock cycle.
* Receiver samples data on the trailing edge of clock cycle.
* SPI Mode nomenclature:
* Mode CPOL CPHA
* 0 0 0
* 1 0 1
* 2 1 0
* 3 1 1
* QMSPI has three controls, CPOL, CPHA for output and CPHA for input.
* SPI frequency < 48MHz
* Mode 0: CPOL=0 CHPA=0 (CHPA_MISO=0 and CHPA_MOSI=0)
* Mode 3: CPOL=1 CHPA=1 (CHPA_MISO=1 and CHPA_MOSI=1)
* Data sheet recommends when QMSPI set at max. SPI frequency (48MHz).
* SPI frequency == 48MHz sample and change data on same edge.
* Mode 0: CPOL=0 CHPA=0 (CHPA_MISO=1 and CHPA_MOSI=0)
* Mode 3: CPOL=1 CHPA=1 (CHPA_MISO=0 and CHPA_MOSI=1)
*
* There is an anomaly in MEC172x for SPI signalling mode 3. We must
* set CHPA_MISO=0 for SPI Mode 3 at all frequencies.
*/
const uint8_t smode_tbl[4] = {
0x00u, 0x06u, 0x01u,
#ifdef XEC_QMSPI_SPI_MODE_3_ANOMALY
0x03u, /* CPOL=1, CPHA_MOSI=1, CPHA_MISO=0 */
#else
0x07u, /* CPOL=1, CPHA_MOSI=1, CPHA_MISO=1 */
#endif
};
const uint8_t smode48_tbl[4] = {
0x04u, 0x02u, 0x05u, 0x03u
};
static void qmspi_set_signalling_mode(struct spi_qmspi_data *qdata,
struct qmspi_regs *regs, uint32_t smode)
{
const uint8_t *ptbl;
uint32_t m;
ptbl = smode_tbl;
if (qdata->spi_freq_hz >= MHZ(48)) {
ptbl = smode48_tbl;
}
m = (uint32_t)ptbl[smode & 0x03];
regs->MODE = (regs->MODE & ~(MCHP_QMSPI_M_SIG_MASK))
| (m << MCHP_QMSPI_M_SIG_POS);
}
#ifdef CONFIG_SPI_EXTENDED_MODES
/*
* QMSPI HW support single, dual, and quad.
* Return QMSPI Control/Descriptor register encoded value.
*/
static uint32_t encode_lines(const struct spi_config *config)
{
uint32_t qlines;
switch (config->operation & SPI_LINES_MASK) {
case SPI_LINES_SINGLE:
qlines = MCHP_QMSPI_C_IFM_1X;
break;
#if DT_INST_PROP(0, lines) > 1
case SPI_LINES_DUAL:
qlines = MCHP_QMSPI_C_IFM_2X;
break;
#endif
#if DT_INST_PROP(0, lines) > 2
case SPI_LINES_QUAD:
qlines = MCHP_QMSPI_C_IFM_4X;
break;
#endif
default:
qlines = 0xffu;
}
return qlines;
}
static uint8_t npins_from_spi_config(const struct spi_config *config)
{
switch (config->operation & SPI_LINES_MASK) {
case SPI_LINES_DUAL:
return 2u;
case SPI_LINES_QUAD:
return 4u;
default:
return 1u;
}
}
#endif /* CONFIG_SPI_EXTENDED_MODES */
static int spi_feature_support(const struct spi_config *config)
{
if (config->operation & (SPI_TRANSFER_LSB | SPI_OP_MODE_SLAVE | SPI_MODE_LOOP)) {
LOG_ERR("Driver does not support LSB first, slave, or loop back");
return -ENOTSUP;
}
if (config->operation & SPI_CS_ACTIVE_HIGH) {
LOG_ERR("CS active high not supported");
return -ENOTSUP;
}
if (config->operation & SPI_LOCK_ON) {
LOG_ERR("Lock On not supported");
return -ENOTSUP;
}
if (SPI_WORD_SIZE_GET(config->operation) != 8) {
LOG_ERR("Word size != 8 not supported");
return -ENOTSUP;
}
return 0;
}
/* Configure QMSPI.
* NOTE: QMSPI Shared SPI port has two chip selects.
* Private SPI and internal SPI ports support one chip select.
* Hardware supports dual and quad I/O. Dual and quad are allowed
* if SPI extended mode is enabled at build time. User must
* provide pin configuration via DTS.
*/
static int qmspi_configure(const struct device *dev,
const struct spi_config *config)
{
const struct spi_qmspi_config *cfg = dev->config;
struct spi_qmspi_data *qdata = dev->data;
struct qmspi_regs *regs = cfg->regs;
uint32_t smode;
int ret;
if (!config) {
return -EINVAL;
}
if (spi_context_configured(&qdata->ctx, config)) {
return 0;
}
qmspi_set_frequency(qdata, regs, config->frequency);
/* check new configuration */
ret = spi_feature_support(config);
if (ret) {
return ret;
}
#ifdef CONFIG_SPI_EXTENDED_MODES
smode = encode_lines(config);
if (smode == 0xff) {
LOG_ERR("Requested lines mode not supported");
return -ENOTSUP;
}
qdata->np = npins_from_spi_config(config);
#else
smode = MCHP_QMSPI_C_IFM_1X;
qdata->np = 1u;
#endif
regs->CTRL = smode;
smode = 0;
if ((config->operation & SPI_MODE_CPHA) != 0U) {
smode |= BIT(0);
}
if ((config->operation & SPI_MODE_CPOL) != 0U) {
smode |= BIT(1);
}
qmspi_set_signalling_mode(qdata, regs, smode);
/* chip select */
smode = regs->MODE & ~(MCHP_QMSPI_M_CS_MASK);
if (cfg->chip_sel == 0) {
smode |= MCHP_QMSPI_M_CS0;
} else {
smode |= MCHP_QMSPI_M_CS1;
}
regs->MODE = smode;
/* chip select timing and TAPS adjust */
regs->CSTM = cfg->cs_timing;
regs->TM_TAPS_ADJ = cfg->taps_adj;
/* CS1 alternate mode (frequency) */
regs->MODE_ALT1 = 0;
if (cfg->cs1_freq) {
uint32_t fdiv = qmspi_encoded_fdiv(dev, cfg->cs1_freq);
regs->MODE_ALT1 = (fdiv << MCHP_QMSPI_MA1_CS1_CDIV_POS) &
MCHP_QMSPI_MA1_CS1_CDIV_MSK;
regs->MODE_ALT1 |= MCHP_QMSPI_MA1_CS1_CDIV_EN;
}
qdata->ctx.config = config;
regs->MODE |= MCHP_QMSPI_M_ACTIVATE;
return 0;
}
static uint32_t encode_npins(uint8_t npins)
{
if (npins == 4) {
return MCHP_QMSPI_C_IFM_4X;
} else if (npins == 2) {
return MCHP_QMSPI_C_IFM_2X;
} else {
return MCHP_QMSPI_C_IFM_1X;
}
}
/* Common controller transfer initialziation using Local-DMA.
* Full-duplex: controller configured to transmit and receive simultaneouly.
* Half-duplex(dual/quad): User may only specify TX or RX buffer sets.
* Passing both buffers sets is reported as an error.
*/
static inline int qmspi_xfr_cm_init(const struct device *dev,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs)
{
const struct spi_qmspi_config *devcfg = dev->config;
struct spi_qmspi_data *qdata = dev->data;
struct qmspi_regs *regs = devcfg->regs;
regs->IEN = 0;
regs->EXE = MCHP_QMSPI_EXE_CLR_FIFOS;
regs->LDMA_RX_DESCR_BM = 0;
regs->LDMA_TX_DESCR_BM = 0;
regs->MODE &= ~(MCHP_QMSPI_M_LDMA_TX_EN | MCHP_QMSPI_M_LDMA_RX_EN);
regs->STS = 0xffffffffu;
regs->CTRL = encode_npins(qdata->np);
qdata->qstatus = 0;
#ifdef CONFIG_SPI_EXTENDED_MODES
if (qdata->np != 1) {
if (tx_bufs && rx_bufs) {
LOG_ERR("Cannot specify both TX and RX buffers in half-duplex(dual/quad)");
return -EPROTONOSUPPORT;
}
}
#endif
return 0;
}
/* QMSPI Local-DMA transfer configuration:
* Support full and half(dual/quad) duplex transfers.
* Requires caller to have checked that only one direction was setup
* in the SPI context: TX or RX not both. (refer to qmspi_xfr_cm_init)
* Supports spi_buf's where data pointer is NULL and length non-zero.
* These buffers are used as TX tri-state I/O clock only generation or
* RX data discard for certain SPI command protocols using dual/quad I/O.
* 1. Get largest contiguous data size from SPI context.
* 2. If the SPI TX context has a non-zero length configure Local-DMA TX
* channel 1 for contiguous data size. If TX context has valid buffer
* configure channel to use context buffer with address increment.
* If the TX buffer pointer is NULL interpret byte length as the number
* of clocks to generate with output line(s) tri-stated. NOTE: The controller
* must be configured with TX disabled to not drive output line(s) during
* clock generation. Also, no data should be written to TX FIFO. The unit
* size can be set to bits. The number of units to transfer must be computed
* based upon the number of output pins in the IOM field: full-duplex is one
* bit per clock, dual is 2 bits per clock, and quad is 4 bits per clock.
* For example, if I/O lines is 4 (quad) meaning 4 bits per clock and the
* user wants 7 clocks then the number of bit units is 4 * 7 = 28.
* 3. If instead, the SPI RX context has a non-zero length configure Local-DMA
* RX channel 1 for the contiguous data size. If RX context has a valid
* buffer configure channel to use buffer with address increment else
* configure channel for driver data temporary buffer without address
* increment.
* 4. Update QMSPI Control register.
*/
static uint32_t qmspi_ldma_encode_unit_size(uint32_t maddr, size_t len)
{
uint8_t temp = (maddr | (uint32_t)len) & 0x3u;
if (temp == 0) {
return MCHP_QMSPI_LDC_ASZ_4;
} else if (temp == 2) {
return MCHP_QMSPI_LDC_ASZ_2;
} else {
return MCHP_QMSPI_LDC_ASZ_1;
}
}
static uint32_t qmspi_unit_size(size_t xfrlen)
{
if ((xfrlen & 0xfu) == 0u) {
return 16u;
} else if ((xfrlen & 0x3u) == 0u) {
return 4u;
} else {
return 1u;
}
}
static uint32_t qmspi_encode_unit_size(uint32_t units_in_bytes)
{
if (units_in_bytes == 16u) {
return MCHP_QMSPI_C_XFR_UNITS_16;
} else if (units_in_bytes == 4u) {
return MCHP_QMSPI_C_XFR_UNITS_4;
} else {
return MCHP_QMSPI_C_XFR_UNITS_1;
}
}
static size_t q_ldma_cfg(const struct device *dev)
{
const struct spi_qmspi_config *devcfg = dev->config;
struct spi_qmspi_data *qdata = dev->data;
struct spi_context *ctx = &qdata->ctx;
struct qmspi_regs *regs = devcfg->regs;
size_t ctx_xfr_len = spi_context_max_continuous_chunk(ctx);
uint32_t ctrl, ldctrl, mstart, qunits, qxfru, xfrlen;
regs->EXE = MCHP_QMSPI_EXE_CLR_FIFOS;
regs->MODE &= ~(MCHP_QMSPI_M_LDMA_RX_EN | MCHP_QMSPI_M_LDMA_TX_EN);
regs->LDRX[0].CTRL = 0;
regs->LDRX[0].MSTART = 0;
regs->LDRX[0].LEN = 0;
regs->LDTX[0].CTRL = 0;
regs->LDTX[0].MSTART = 0;
regs->LDTX[0].LEN = 0;
if (ctx_xfr_len == 0) {
return 0;
}
qunits = qmspi_unit_size(ctx_xfr_len);
ctrl = qmspi_encode_unit_size(qunits);
qxfru = ctx_xfr_len / qunits;
if (qxfru > 0x7fffu) {
qxfru = 0x7fffu;
}
ctrl |= (qxfru << MCHP_QMSPI_C_XFR_NUNITS_POS);
xfrlen = qxfru * qunits;
#ifdef MCHP_XEC_QMSPI_DEBUG
qdata->qunits = qunits;
qdata->qxfru = qxfru;
qdata->xfrlen = xfrlen;
#endif
if (spi_context_tx_buf_on(ctx)) {
mstart = (uint32_t)ctx->tx_buf;
ctrl |= MCHP_QMSPI_C_TX_DATA | MCHP_QMSPI_C_TX_LDMA_CH0;
ldctrl = qmspi_ldma_encode_unit_size(mstart, xfrlen);
ldctrl |= MCHP_QMSPI_LDC_INCR_EN | MCHP_QMSPI_LDC_EN;
regs->MODE |= MCHP_QMSPI_M_LDMA_TX_EN;
regs->LDTX[0].LEN = xfrlen;
regs->LDTX[0].MSTART = mstart;
regs->LDTX[0].CTRL = ldctrl;
}
if (spi_context_rx_buf_on(ctx)) {
mstart = (uint32_t)ctx->rx_buf;
ctrl |= MCHP_QMSPI_C_RX_LDMA_CH0 | MCHP_QMSPI_C_RX_EN;
ldctrl = MCHP_QMSPI_LDC_EN | MCHP_QMSPI_LDC_INCR_EN;
ldctrl |= qmspi_ldma_encode_unit_size(mstart, xfrlen);
regs->MODE |= MCHP_QMSPI_M_LDMA_RX_EN;
regs->LDRX[0].LEN = xfrlen;
regs->LDRX[0].MSTART = mstart;
regs->LDRX[0].CTRL = ldctrl;
}
regs->CTRL = (regs->CTRL & 0x3u) | ctrl;
return xfrlen;
}
/* Start and wait for QMSPI synchronous transfer(s) to complete.
* Initialize QMSPI controller for Local-DMA operation.
* Iterate over SPI context with non-zero TX or RX data lengths.
* 1. Configure QMSPI Control register and Local-DMA channel(s)
* 2. Clear QMSPI status
* 3. Start QMSPI transfer
* 4. Poll QMSPI status for transfer done and DMA done with timeout.
* 5. Hardware anomaly work-around: Poll with timeout QMSPI Local-DMA
* TX and RX channels until hardware clears both channel enables.
* This indicates hardware is really done with transfer to/from memory.
* 6. Update SPI context with amount of data transmitted and received.
* If SPI configuration hold chip select on flag is not set then instruct
* QMSPI to de-assert chip select.
* Set SPI context as complete
*/
static int qmspi_xfr_sync(const struct device *dev,
const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs)
{
const struct spi_qmspi_config *devcfg = dev->config;
struct spi_qmspi_data *qdata = dev->data;
struct spi_context *ctx = &qdata->ctx;
struct qmspi_regs *regs = devcfg->regs;
size_t xfr_len;
int ret = qmspi_xfr_cm_init(dev, tx_bufs, rx_bufs);
if (ret) {
return ret;
}
while (spi_context_tx_on(ctx) || spi_context_rx_on(ctx)) {
xfr_len = q_ldma_cfg(dev);
regs->STS = 0xffffffffu;
regs->EXE = MCHP_QMSPI_EXE_START;
#ifdef MCHP_XEC_QMSPI_DEBUG
uint32_t temp = regs->STS;
while (!(temp & MCHP_QMSPI_STS_DONE)) {
temp = regs->STS;
}
qdata->qstatus = temp;
qdata->bufcnt_status = regs->BCNT_STS;
qdata->rx_ldma_ctrl0 = regs->LDRX[0].CTRL;
qdata->tx_ldma_ctrl0 = regs->LDTX[0].CTRL;
#else
uint32_t wcnt = 0;
qdata->qstatus = regs->STS;
while (!(qdata->qstatus & MCHP_QMSPI_STS_DONE)) {
k_busy_wait(1u);
if (++wcnt > XEC_QSPI_TIMEOUT_US) {
regs->EXE = MCHP_QMSPI_EXE_STOP;
return -ETIMEDOUT;
}
qdata->qstatus = regs->STS;
}
#endif
spi_context_update_tx(ctx, 1, xfr_len);
spi_context_update_rx(ctx, 1, xfr_len);
}
if (!(spi_cfg->operation & SPI_HOLD_ON_CS)) {
regs->EXE = MCHP_QMSPI_EXE_STOP;
}
spi_context_complete(ctx, dev, 0);
return 0;
}
#ifdef CONFIG_SPI_ASYNC
/* Configure QMSPI such that QMSPI transfer FSM and LDMA FSM are synchronized.
* Transfer length must be programmed into control/descriptor register(s) and
* LDMA register(s). LDMA override length bit must NOT be set.
*/
static int qmspi_xfr_start_async(const struct device *dev, const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs)
{
const struct spi_qmspi_config *devcfg = dev->config;
struct spi_qmspi_data *qdata = dev->data;
struct qmspi_regs *regs = devcfg->regs;
int ret;
ret = qmspi_xfr_cm_init(dev, tx_bufs, rx_bufs);
if (ret) {
return ret;
}
qdata->xfr_len = q_ldma_cfg(dev);
if (!qdata->xfr_len) {
return 0; /* nothing to do */
}
regs->STS = 0xffffffffu;
regs->EXE = MCHP_QMSPI_EXE_START;
regs->IEN = MCHP_QMSPI_IEN_XFR_DONE | MCHP_QMSPI_IEN_PROG_ERR
| MCHP_QMSPI_IEN_LDMA_RX_ERR | MCHP_QMSPI_IEN_LDMA_TX_ERR;
return 0;
}
/* Wrapper to start asynchronous (interrupts enabled) SPI transaction */
static int qmspi_xfr_async(const struct device *dev,
const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs)
{
struct spi_qmspi_data *qdata = dev->data;
int err = 0;
qdata->qstatus = 0;
qdata->xfr_len = 0;
err = qmspi_xfr_start_async(dev, tx_bufs, rx_bufs);
return err;
}
#endif /* CONFIG_SPI_ASYNC */
/* Start (a)synchronous transaction using QMSPI Local-DMA */
static int qmspi_transceive(const struct device *dev,
const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
bool asynchronous,
spi_callback_t cb,
void *user_data)
{
struct spi_qmspi_data *qdata = dev->data;
struct spi_context *ctx = &qdata->ctx;
int err = 0;
if (!config) {
return -EINVAL;
}
if (!tx_bufs && !rx_bufs) {
return 0;
}
spi_context_lock(&qdata->ctx, asynchronous, cb, user_data, config);
err = qmspi_configure(dev, config);
if (err != 0) {
spi_context_release(ctx, err);
return err;
}
spi_context_cs_control(ctx, true);
spi_context_buffers_setup(ctx, tx_bufs, rx_bufs, 1);
#ifdef CONFIG_SPI_ASYNC
if (asynchronous) {
qdata->cb = cb;
qdata->userdata = user_data;
err = qmspi_xfr_async(dev, config, tx_bufs, rx_bufs);
} else {
err = qmspi_xfr_sync(dev, config, tx_bufs, rx_bufs);
}
#else
err = qmspi_xfr_sync(dev, config, tx_bufs, rx_bufs);
#endif
if (err) { /* de-assert CS# and give semaphore */
spi_context_unlock_unconditionally(ctx);
return err;
}
if (asynchronous) {
return err;
}
err = spi_context_wait_for_completion(ctx);
if (!(config->operation & SPI_HOLD_ON_CS)) {
spi_context_cs_control(ctx, false);
}
spi_context_release(ctx, err);
return err;
}
static int qmspi_transceive_sync(const struct device *dev,
const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs)
{
return qmspi_transceive(dev, config, tx_bufs, rx_bufs, false, NULL, NULL);
}
#ifdef CONFIG_SPI_ASYNC
static int qmspi_transceive_async(const struct device *dev,
const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
spi_callback_t cb,
void *userdata)
{
return qmspi_transceive(dev, config, tx_bufs, rx_bufs, true, cb, userdata);
}
#endif /* CONFIG_SPI_ASYNC */
static int qmspi_release(const struct device *dev,
const struct spi_config *config)
{
struct spi_qmspi_data *data = dev->data;
const struct spi_qmspi_config *cfg = dev->config;
struct qmspi_regs *regs = cfg->regs;
int ret = 0;
int counter = 0;
if (regs->STS & MCHP_QMSPI_STS_ACTIVE_RO) {
/* Force CS# to de-assert on next unit boundary */
regs->EXE = MCHP_QMSPI_EXE_STOP;
while (regs->STS & MCHP_QMSPI_STS_ACTIVE_RO) {
ret = xec_qmspi_spin_yield(&counter, XEC_QMSPI_WAIT_COUNT);
if (ret != 0) {
break;
}
}
}
spi_context_unlock_unconditionally(&data->ctx);
return ret;
}
/* QMSPI interrupt handler called by Zephyr ISR
* All transfers use QMSPI Local-DMA specified by the Control register.
* QMSPI descriptor mode not used.
* Full-duplex always uses LDMA TX channel 0 and RX channel 0
* Half-duplex(dual/quad) use one of TX channel 0 or RX channel 0
*/
void qmspi_xec_isr(const struct device *dev)
{
const struct spi_qmspi_config *cfg = dev->config;
struct spi_qmspi_data *data = dev->data;
struct qmspi_regs *regs = cfg->regs;
uint32_t qstatus = regs->STS;
#ifdef CONFIG_SPI_ASYNC
struct spi_context *ctx = &data->ctx;
int xstatus = 0;
#endif
regs->IEN = 0;
data->qstatus = qstatus;
regs->STS = MCHP_QMSPI_STS_RW1C_MASK;
mchp_xec_ecia_girq_src_clr(cfg->girq, cfg->girq_pos);
#ifdef CONFIG_SPI_ASYNC
if (qstatus & XEC_QSPI_HW_ERRORS_ALL) {
xstatus = -EIO;
data->qstatus |= BIT(7);
regs->EXE = MCHP_QMSPI_EXE_STOP;
spi_context_cs_control(ctx, false);
spi_context_complete(ctx, dev, xstatus);
if (data->cb) {
data->cb(dev, xstatus, data->userdata);
}
return;
}
/* Clear Local-DMA enables in Mode and Control registers */
regs->MODE &= ~(MCHP_QMSPI_M_LDMA_RX_EN | MCHP_QMSPI_M_LDMA_TX_EN);
regs->CTRL &= MCHP_QMSPI_C_IFM_MASK;
spi_context_update_tx(ctx, 1, data->xfr_len);
spi_context_update_rx(ctx, 1, data->xfr_len);
data->xfr_len = q_ldma_cfg(dev);
if (data->xfr_len) {
regs->STS = 0xffffffffu;
regs->EXE = MCHP_QMSPI_EXE_START;
regs->IEN = MCHP_QMSPI_IEN_XFR_DONE | MCHP_QMSPI_IEN_PROG_ERR
| MCHP_QMSPI_IEN_LDMA_RX_ERR | MCHP_QMSPI_IEN_LDMA_TX_ERR;
return;
}
if (!(ctx->owner->operation & SPI_HOLD_ON_CS)) {
regs->EXE = MCHP_QMSPI_EXE_STOP;
spi_context_cs_control(&data->ctx, false);
}
spi_context_complete(&data->ctx, dev, xstatus);
if (data->cb) {
data->cb(dev, xstatus, data->userdata);
}
#endif /* CONFIG_SPI_ASYNC */
}
#ifdef CONFIG_PM_DEVICE
/* If the application wants the QMSPI pins to be disabled in suspend it must
* define pinctr-1 values for each pin in the app/project DT overlay.
*/
static int qmspi_xec_pm_action(const struct device *dev, enum pm_device_action action)
{
const struct spi_qmspi_config *devcfg = dev->config;
int ret;
switch (action) {
case PM_DEVICE_ACTION_RESUME:
ret = pinctrl_apply_state(devcfg->pcfg, PINCTRL_STATE_DEFAULT);
break;
case PM_DEVICE_ACTION_SUSPEND:
ret = pinctrl_apply_state(devcfg->pcfg, PINCTRL_STATE_SLEEP);
if (ret == -ENOENT) { /* pinctrl-1 does not exist */
ret = 0;
}
break;
default:
ret = -ENOTSUP;
}
return ret;
}
#endif /* CONFIG_PM_DEVICE */
/*
* Called for each QMSPI controller instance
* Initialize QMSPI controller.
* Disable sleep control.
* Disable and clear interrupt status.
* Initialize SPI context.
* QMSPI will be fully configured and enabled when the transceive API
* is called.
*/
static int qmspi_xec_init(const struct device *dev)
{
const struct spi_qmspi_config *cfg = dev->config;
struct spi_qmspi_data *qdata = dev->data;
struct qmspi_regs *regs = cfg->regs;
clock_control_subsys_t clkss = (clock_control_subsys_t)MCHP_XEC_PCR_CLK_PERIPH_FAST;
int ret = 0;
qdata->base_freq_hz = 0u;
qdata->qstatus = 0;
qdata->np = cfg->width;
#ifdef CONFIG_SPI_ASYNC
qdata->xfr_len = 0;
#endif
if (!cfg->clk_dev) {
LOG_ERR("XEC QMSPI-LDMA clock device not configured");
return -EINVAL;
}
ret = clock_control_on(cfg->clk_dev, (clock_control_subsys_t)&cfg->clksrc);
if (ret < 0) {
LOG_ERR("XEC QMSPI-LDMA enable clock source error %d", ret);
return ret;
}
ret = clock_control_get_rate(cfg->clk_dev, clkss, &qdata->base_freq_hz);
if (ret) {
LOG_ERR("XEC QMSPI-LDMA clock get rate error %d", ret);
return ret;
}
/* controller in known state before enabling pins */
qmspi_reset(regs);
mchp_xec_ecia_girq_src_clr(cfg->girq, cfg->girq_pos);
ret = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT);
if (ret != 0) {
LOG_ERR("XEC QMSPI-LDMA pinctrl setup failed (%d)", ret);
return ret;
}
/* default SPI Mode 0 signalling */
const struct spi_config spi_cfg = {
.frequency = cfg->clock_freq,
.operation = SPI_LINES_SINGLE | SPI_WORD_SET(8),
};
ret = qmspi_configure(dev, &spi_cfg);
if (ret) {
LOG_ERR("XEC QMSPI-LDMA init configure failed (%d)", ret);
return ret;
}
#ifdef CONFIG_SPI_ASYNC
cfg->irq_config_func();
mchp_xec_ecia_enable(cfg->girq, cfg->girq_pos);
#endif
spi_context_unlock_unconditionally(&qdata->ctx);
return 0;
}
static const struct spi_driver_api spi_qmspi_xec_driver_api = {
.transceive = qmspi_transceive_sync,
#ifdef CONFIG_SPI_ASYNC
.transceive_async = qmspi_transceive_async,
#endif
#ifdef CONFIG_SPI_RTIO
.iodev_submit = spi_rtio_iodev_default_submit,
#endif
.release = qmspi_release,
};
#define XEC_QMSPI_CS_TIMING_VAL(a, b, c, d) (((a) & 0xFu) \
| (((b) & 0xFu) << 8) \
| (((c) & 0xFu) << 16) \
| (((d) & 0xFu) << 24))
#define XEC_QMSPI_TAPS_ADJ_VAL(a, b) (((a) & 0xffu) | (((b) & 0xffu) << 8))
#define XEC_QMSPI_CS_TIMING(i) XEC_QMSPI_CS_TIMING_VAL( \
DT_INST_PROP_OR(i, dcsckon, 6), \
DT_INST_PROP_OR(i, dckcsoff, 4), \
DT_INST_PROP_OR(i, dldh, 6), \
DT_INST_PROP_OR(i, dcsda, 6))
#define XEC_QMSPI_TAPS_ADJ(i) XEC_QMSPI_TAPS_ADJ_VAL( \
DT_INST_PROP_OR(i, tctradj, 0), \
DT_INST_PROP_OR(i, tsckadj, 0))
#define XEC_QMSPI_GIRQ(i) \
MCHP_XEC_ECIA_GIRQ(DT_INST_PROP_BY_IDX(i, girqs, 0))
#define XEC_QMSPI_GIRQ_POS(i) \
MCHP_XEC_ECIA_GIRQ_POS(DT_INST_PROP_BY_IDX(i, girqs, 0))
#define XEC_QMSPI_NVIC_AGGR(i) \
MCHP_XEC_ECIA_NVIC_AGGR(DT_INST_PROP_BY_IDX(i, girqs, 0))
#define XEC_QMSPI_NVIC_DIRECT(i) \
MCHP_XEC_ECIA_NVIC_DIRECT(DT_INST_PROP_BY_IDX(i, girqs, 0))
#define XEC_QMSPI_PCR_INFO(i) \
MCHP_XEC_PCR_SCR_ENCODE(DT_INST_CLOCKS_CELL(i, regidx), \
DT_INST_CLOCKS_CELL(i, bitpos), \
DT_INST_CLOCKS_CELL(i, domain))
/*
* The instance number, i is not related to block ID's rather the
* order the DT tools process all DT files in a build.
*/
#define QMSPI_XEC_DEVICE(i) \
\
PINCTRL_DT_INST_DEFINE(i); \
\
static void qmspi_xec_irq_config_func_##i(void) \
{ \
IRQ_CONNECT(DT_INST_IRQN(i), \
DT_INST_IRQ(i, priority), \
qmspi_xec_isr, \
DEVICE_DT_INST_GET(i), 0); \
irq_enable(DT_INST_IRQN(i)); \
} \
\
static struct spi_qmspi_data qmspi_xec_data_##i = { \
SPI_CONTEXT_INIT_LOCK(qmspi_xec_data_##i, ctx), \
SPI_CONTEXT_INIT_SYNC(qmspi_xec_data_##i, ctx), \
}; \
static const struct spi_qmspi_config qmspi_xec_config_##i = { \
.regs = (struct qmspi_regs *) DT_INST_REG_ADDR(i), \
.clk_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(i)), \
.clksrc = { .pcr_info = XEC_QMSPI_PCR_INFO(i), }, \
.clock_freq = DT_INST_PROP_OR(i, clock_frequency, MHZ(12)), \
.cs1_freq = DT_INST_PROP_OR(i, cs1_freq, 0), \
.cs_timing = XEC_QMSPI_CS_TIMING(i), \
.taps_adj = XEC_QMSPI_TAPS_ADJ(i), \
.girq = XEC_QMSPI_GIRQ(i), \
.girq_pos = XEC_QMSPI_GIRQ_POS(i), \
.girq_nvic_aggr = XEC_QMSPI_NVIC_AGGR(i), \
.girq_nvic_direct = XEC_QMSPI_NVIC_DIRECT(i), \
.irq_pri = DT_INST_IRQ(i, priority), \
.chip_sel = DT_INST_PROP_OR(i, chip_select, 0), \
.width = DT_INST_PROP_OR(0, lines, 1), \
.irq_config_func = qmspi_xec_irq_config_func_##i, \
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(i), \
}; \
PM_DEVICE_DT_INST_DEFINE(i, qmspi_xec_pm_action); \
DEVICE_DT_INST_DEFINE(i, qmspi_xec_init, \
PM_DEVICE_DT_INST_GET(i), \
&qmspi_xec_data_##i, &qmspi_xec_config_##i, \
POST_KERNEL, CONFIG_SPI_INIT_PRIORITY, \
&spi_qmspi_xec_driver_api);
DT_INST_FOREACH_STATUS_OKAY(QMSPI_XEC_DEVICE)