blob: 3317534c212684866ffd445830b458221f2513a1 [file] [log] [blame]
/*
* Copyright (c) 2016-2017 Wind River Systems, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <kernel.h>
#include <kernel_structs.h>
#include <atomic.h>
#include <ksched.h>
#include <wait_q.h>
#include <misc/util.h>
#include <syscall_handler.h>
/* the only struct _kernel instance */
struct _kernel _kernel = {0};
/* set the bit corresponding to prio in ready q bitmap */
#ifdef CONFIG_MULTITHREADING
static void _set_ready_q_prio_bit(int prio)
{
int bmap_index = _get_ready_q_prio_bmap_index(prio);
u32_t *bmap = &_ready_q.prio_bmap[bmap_index];
*bmap |= _get_ready_q_prio_bit(prio);
}
#endif
/* clear the bit corresponding to prio in ready q bitmap */
#ifdef CONFIG_MULTITHREADING
static void _clear_ready_q_prio_bit(int prio)
{
int bmap_index = _get_ready_q_prio_bmap_index(prio);
u32_t *bmap = &_ready_q.prio_bmap[bmap_index];
*bmap &= ~_get_ready_q_prio_bit(prio);
}
#endif
#ifdef CONFIG_MULTITHREADING
/*
* Find the next thread to run when there is no thread in the cache and update
* the cache.
*/
static struct k_thread *_get_ready_q_head(void)
{
int prio = _get_highest_ready_prio();
int q_index = _get_ready_q_q_index(prio);
sys_dlist_t *list = &_ready_q.q[q_index];
__ASSERT(!sys_dlist_is_empty(list),
"no thread to run (prio: %d, queue index: %u)!\n",
prio, q_index);
struct k_thread *thread =
(struct k_thread *)sys_dlist_peek_head_not_empty(list);
return thread;
}
#endif
/*
* Add thread to the ready queue, in the slot for its priority; the thread
* must not be on a wait queue.
*
* This function, along with _move_thread_to_end_of_prio_q(), are the _only_
* places where a thread is put on the ready queue.
*
* Interrupts must be locked when calling this function.
*/
void _add_thread_to_ready_q(struct k_thread *thread)
{
#ifdef CONFIG_MULTITHREADING
int q_index = _get_ready_q_q_index(thread->base.prio);
sys_dlist_t *q = &_ready_q.q[q_index];
_set_ready_q_prio_bit(thread->base.prio);
sys_dlist_append(q, &thread->base.k_q_node);
struct k_thread **cache = &_ready_q.cache;
*cache = _is_t1_higher_prio_than_t2(thread, *cache) ? thread : *cache;
#else
sys_dlist_append(&_ready_q.q[0], &thread->base.k_q_node);
_ready_q.prio_bmap[0] = 1;
_ready_q.cache = thread;
#endif
}
/*
* This function, along with _move_thread_to_end_of_prio_q(), are the _only_
* places where a thread is taken off the ready queue.
*
* Interrupts must be locked when calling this function.
*/
void _remove_thread_from_ready_q(struct k_thread *thread)
{
#ifdef CONFIG_MULTITHREADING
int q_index = _get_ready_q_q_index(thread->base.prio);
sys_dlist_t *q = &_ready_q.q[q_index];
sys_dlist_remove(&thread->base.k_q_node);
if (sys_dlist_is_empty(q)) {
_clear_ready_q_prio_bit(thread->base.prio);
}
struct k_thread **cache = &_ready_q.cache;
*cache = *cache == thread ? _get_ready_q_head() : *cache;
#else
_ready_q.prio_bmap[0] = 0;
_ready_q.cache = NULL;
sys_dlist_remove(&thread->base.k_q_node);
#endif
}
/* reschedule threads if the scheduler is not locked */
/* not callable from ISR */
/* must be called with interrupts locked */
void _reschedule_threads(int key)
{
#ifdef CONFIG_PREEMPT_ENABLED
K_DEBUG("rescheduling threads\n");
if (_must_switch_threads()) {
K_DEBUG("context-switching out %p\n", _current);
_Swap(key);
} else {
irq_unlock(key);
}
#else
irq_unlock(key);
#endif
}
void k_sched_lock(void)
{
#ifdef CONFIG_PREEMPT_ENABLED
__ASSERT(_current->base.sched_locked != 1, "");
__ASSERT(!_is_in_isr(), "");
--_current->base.sched_locked;
/* Probably not needed since we're in a real function,
* but it doesn't hurt.
*/
compiler_barrier();
K_DEBUG("scheduler locked (%p:%d)\n",
_current, _current->base.sched_locked);
#endif
}
void k_sched_unlock(void)
{
#ifdef CONFIG_PREEMPT_ENABLED
__ASSERT(_current->base.sched_locked != 0, "");
__ASSERT(!_is_in_isr(), "");
int key = irq_lock();
/* compiler_barrier() not needed, comes from irq_lock() */
++_current->base.sched_locked;
K_DEBUG("scheduler unlocked (%p:%d)\n",
_current, _current->base.sched_locked);
_reschedule_threads(key);
#endif
}
/* convert milliseconds to ticks */
#ifdef _NON_OPTIMIZED_TICKS_PER_SEC
s32_t _ms_to_ticks(s32_t ms)
{
s64_t ms_ticks_per_sec = (s64_t)ms * sys_clock_ticks_per_sec;
return (s32_t)ceiling_fraction(ms_ticks_per_sec, MSEC_PER_SEC);
}
#endif
/* pend the specified thread: it must *not* be in the ready queue */
/* must be called with interrupts locked */
void _pend_thread(struct k_thread *thread, _wait_q_t *wait_q, s32_t timeout)
{
#ifdef CONFIG_MULTITHREADING
sys_dlist_t *wait_q_list = (sys_dlist_t *)wait_q;
struct k_thread *pending;
SYS_DLIST_FOR_EACH_CONTAINER(wait_q_list, pending, base.k_q_node) {
if (_is_t1_higher_prio_than_t2(thread, pending)) {
sys_dlist_insert_before(wait_q_list,
&pending->base.k_q_node,
&thread->base.k_q_node);
goto inserted;
}
}
sys_dlist_append(wait_q_list, &thread->base.k_q_node);
inserted:
_mark_thread_as_pending(thread);
if (timeout != K_FOREVER) {
s32_t ticks = _TICK_ALIGN + _ms_to_ticks(timeout);
_add_thread_timeout(thread, wait_q, ticks);
}
#endif
}
/* pend the current thread */
/* must be called with interrupts locked */
void _pend_current_thread(_wait_q_t *wait_q, s32_t timeout)
{
_remove_thread_from_ready_q(_current);
_pend_thread(_current, wait_q, timeout);
}
#if defined(CONFIG_PREEMPT_ENABLED) && defined(CONFIG_KERNEL_DEBUG)
/* debug aid */
static void _dump_ready_q(void)
{
K_DEBUG("bitmaps: ");
for (int bitmap = 0; bitmap < K_NUM_PRIO_BITMAPS; bitmap++) {
K_DEBUG("%x", _ready_q.prio_bmap[bitmap]);
}
K_DEBUG("\n");
for (int prio = 0; prio < K_NUM_PRIORITIES; prio++) {
K_DEBUG("prio: %d, head: %p\n",
prio - _NUM_COOP_PRIO,
sys_dlist_peek_head(&_ready_q.q[prio]));
}
}
#endif /* CONFIG_PREEMPT_ENABLED && CONFIG_KERNEL_DEBUG */
/*
* Check if there is a thread of higher prio than the current one. Should only
* be called if we already know that the current thread is preemptible.
*/
int __must_switch_threads(void)
{
#ifdef CONFIG_PREEMPT_ENABLED
K_DEBUG("current prio: %d, highest prio: %d\n",
_current->base.prio, _get_highest_ready_prio());
#ifdef CONFIG_KERNEL_DEBUG
_dump_ready_q();
#endif /* CONFIG_KERNEL_DEBUG */
return _is_prio_higher(_get_highest_ready_prio(), _current->base.prio);
#else
return 0;
#endif
}
int _impl_k_thread_priority_get(k_tid_t thread)
{
return thread->base.prio;
}
#ifdef CONFIG_USERSPACE
_SYSCALL_HANDLER1_SIMPLE(k_thread_priority_get, K_OBJ_THREAD,
struct k_thread *);
#endif
void _impl_k_thread_priority_set(k_tid_t tid, int prio)
{
/*
* Use NULL, since we cannot know what the entry point is (we do not
* keep track of it) and idle cannot change its priority.
*/
_ASSERT_VALID_PRIO(prio, NULL);
__ASSERT(!_is_in_isr(), "");
struct k_thread *thread = (struct k_thread *)tid;
int key = irq_lock();
_thread_priority_set(thread, prio);
_reschedule_threads(key);
}
#ifdef CONFIG_USERSPACE
_SYSCALL_HANDLER(k_thread_priority_set, thread_p, prio)
{
struct k_thread *thread = (struct k_thread *)thread_p;
_SYSCALL_OBJ(thread, K_OBJ_THREAD);
_SYSCALL_VERIFY_MSG(_VALID_PRIO(prio, NULL),
"invalid thread priority %d", (int)prio);
_SYSCALL_VERIFY_MSG(prio >= thread->base.prio,
"thread priority may only be downgraded (%d < %d)",
prio, thread->base.prio);
_impl_k_thread_priority_set((k_tid_t)thread, prio);
return 0;
}
#endif
/*
* Interrupts must be locked when calling this function.
*
* This function, along with _add_thread_to_ready_q() and
* _remove_thread_from_ready_q(), are the _only_ places where a thread is
* taken off or put on the ready queue.
*/
void _move_thread_to_end_of_prio_q(struct k_thread *thread)
{
#ifdef CONFIG_MULTITHREADING
int q_index = _get_ready_q_q_index(thread->base.prio);
sys_dlist_t *q = &_ready_q.q[q_index];
if (sys_dlist_is_tail(q, &thread->base.k_q_node)) {
return;
}
sys_dlist_remove(&thread->base.k_q_node);
sys_dlist_append(q, &thread->base.k_q_node);
struct k_thread **cache = &_ready_q.cache;
*cache = *cache == thread ? _get_ready_q_head() : *cache;
#endif
}
void _impl_k_yield(void)
{
__ASSERT(!_is_in_isr(), "");
int key = irq_lock();
_move_thread_to_end_of_prio_q(_current);
if (_current == _get_next_ready_thread()) {
irq_unlock(key);
#ifdef CONFIG_STACK_SENTINEL
_check_stack_sentinel();
#endif
} else {
_Swap(key);
}
}
#ifdef CONFIG_USERSPACE
_SYSCALL_HANDLER0_SIMPLE_VOID(k_yield);
#endif
void _impl_k_sleep(s32_t duration)
{
#ifdef CONFIG_MULTITHREADING
/* volatile to guarantee that irq_lock() is executed after ticks is
* populated
*/
volatile s32_t ticks;
unsigned int key;
__ASSERT(!_is_in_isr(), "");
__ASSERT(duration != K_FOREVER, "");
K_DEBUG("thread %p for %d ns\n", _current, duration);
/* wait of 0 ms is treated as a 'yield' */
if (duration == 0) {
k_yield();
return;
}
ticks = _TICK_ALIGN + _ms_to_ticks(duration);
key = irq_lock();
_remove_thread_from_ready_q(_current);
_add_thread_timeout(_current, NULL, ticks);
_Swap(key);
#endif
}
#ifdef CONFIG_USERSPACE
_SYSCALL_HANDLER(k_sleep, duration)
{
/* FIXME there were some discussions recently on whether we should
* relax this, thread would be unscheduled until k_wakeup issued
*/
_SYSCALL_VERIFY_MSG(duration != K_FOREVER,
"sleeping forever not allowed");
_impl_k_sleep(duration);
return 0;
}
#endif
void _impl_k_wakeup(k_tid_t thread)
{
int key = irq_lock();
/* verify first if thread is not waiting on an object */
if (_is_thread_pending(thread)) {
irq_unlock(key);
return;
}
if (_abort_thread_timeout(thread) == _INACTIVE) {
irq_unlock(key);
return;
}
_ready_thread(thread);
if (_is_in_isr()) {
irq_unlock(key);
} else {
_reschedule_threads(key);
}
}
#ifdef CONFIG_USERSPACE
_SYSCALL_HANDLER1_SIMPLE_VOID(k_wakeup, K_OBJ_THREAD, k_tid_t);
#endif
k_tid_t _impl_k_current_get(void)
{
return _current;
}
#ifdef CONFIG_USERSPACE
_SYSCALL_HANDLER0_SIMPLE(k_current_get);
#endif
#ifdef CONFIG_TIMESLICING
extern s32_t _time_slice_duration; /* Measured in ms */
extern s32_t _time_slice_elapsed; /* Measured in ms */
extern int _time_slice_prio_ceiling;
void k_sched_time_slice_set(s32_t duration_in_ms, int prio)
{
__ASSERT(duration_in_ms >= 0, "");
__ASSERT((prio >= 0) && (prio < CONFIG_NUM_PREEMPT_PRIORITIES), "");
_time_slice_duration = duration_in_ms;
_time_slice_elapsed = 0;
_time_slice_prio_ceiling = prio;
}
int _is_thread_time_slicing(struct k_thread *thread)
{
/*
* Time slicing is done on the thread if following conditions are met
*
* Time slice duration should be set > 0
* Should not be the idle thread
* Priority should be higher than time slice priority ceiling
* There should be multiple threads active with same priority
*/
if (!(_time_slice_duration > 0) || (_is_idle_thread_ptr(thread))
|| _is_prio_higher(thread->base.prio, _time_slice_prio_ceiling)) {
return 0;
}
int q_index = _get_ready_q_q_index(thread->base.prio);
sys_dlist_t *q = &_ready_q.q[q_index];
return sys_dlist_has_multiple_nodes(q);
}
/* Must be called with interrupts locked */
/* Should be called only immediately before a thread switch */
void _update_time_slice_before_swap(void)
{
#ifdef CONFIG_TICKLESS_KERNEL
if (!_is_thread_time_slicing(_get_next_ready_thread())) {
return;
}
u32_t remaining = _get_remaining_program_time();
if (!remaining || (_time_slice_duration < remaining)) {
_set_time(_time_slice_duration);
} else {
/* Account previous elapsed time and reprogram
* timer with remaining time
*/
_set_time(remaining);
}
#endif
/* Restart time slice count at new thread switch */
_time_slice_elapsed = 0;
}
#endif /* CONFIG_TIMESLICING */
int _impl_k_is_preempt_thread(void)
{
return !_is_in_isr() && _is_preempt(_current);
}
#ifdef CONFIG_USERSPACE
_SYSCALL_HANDLER0_SIMPLE(k_is_preempt_thread);
#endif