blob: 48b90dc26a431b61c1a72f08a5802d19b77bdab0 [file] [log] [blame]
/*
* Copyright (c) 2023-2024 Analog Devices, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/drivers/uart.h>
#include <zephyr/kernel.h>
#include <zephyr/logging/log.h>
#include <zephyr/drivers/clock_control/adi_max32_clock_control.h>
#include <wrap_max32_uart.h>
#define DT_DRV_COMPAT adi_max32_uart
LOG_MODULE_REGISTER(uart_max32, CONFIG_UART_LOG_LEVEL);
struct max32_uart_config {
mxc_uart_regs_t *regs;
const struct pinctrl_dev_config *pctrl;
const struct device *clock;
struct max32_perclk perclk;
struct uart_config uart_conf;
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
uart_irq_config_func_t irq_config_func;
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
};
struct max32_uart_data {
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
uart_irq_callback_user_data_t cb; /* Interrupt callback */
void *cb_data; /* Interrupt callback arg */
uint32_t flags; /* Cached interrupt flags */
uint32_t status; /* Cached status flags */
#endif
struct uart_config conf; /* baudrate, stopbits, ... */
};
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static void uart_max32_isr(const struct device *dev);
#endif
static void api_poll_out(const struct device *dev, unsigned char c)
{
const struct max32_uart_config *cfg = dev->config;
MXC_UART_WriteCharacter(cfg->regs, c);
}
static int api_poll_in(const struct device *dev, unsigned char *c)
{
int val;
const struct max32_uart_config *cfg = dev->config;
val = MXC_UART_ReadCharacterRaw(cfg->regs);
if (val >= 0) {
*c = (unsigned char)val;
} else {
return -1;
}
return 0;
}
static int api_err_check(const struct device *dev)
{
int err = 0;
uint32_t flags;
const struct max32_uart_config *cfg = dev->config;
flags = MXC_UART_GetFlags(cfg->regs);
if (flags & ADI_MAX32_UART_ERROR_FRAMING) {
err |= UART_ERROR_FRAMING;
}
if (flags & ADI_MAX32_UART_ERROR_PARITY) {
err |= UART_ERROR_PARITY;
}
if (flags & ADI_MAX32_UART_ERROR_OVERRUN) {
err |= UART_ERROR_OVERRUN;
}
return err;
}
static int api_configure(const struct device *dev, const struct uart_config *uart_cfg)
{
int err;
const struct max32_uart_config *const cfg = dev->config;
mxc_uart_regs_t *regs = cfg->regs;
struct max32_uart_data *data = dev->data;
/*
* Set parity
*/
if (data->conf.parity != uart_cfg->parity) {
mxc_uart_parity_t mxc_parity;
switch (uart_cfg->parity) {
case UART_CFG_PARITY_NONE:
mxc_parity = ADI_MAX32_UART_CFG_PARITY_NONE;
break;
case UART_CFG_PARITY_ODD:
mxc_parity = ADI_MAX32_UART_CFG_PARITY_ODD;
break;
case UART_CFG_PARITY_EVEN:
mxc_parity = ADI_MAX32_UART_CFG_PARITY_EVEN;
break;
case UART_CFG_PARITY_MARK:
#if defined(ADI_MAX32_UART_CFG_PARITY_MARK)
mxc_parity = ADI_MAX32_UART_CFG_PARITY_MARK;
break;
#else
return -ENOTSUP;
#endif
case UART_CFG_PARITY_SPACE:
#if defined(ADI_MAX32_UART_CFG_PARITY_SPACE)
mxc_parity = ADI_MAX32_UART_CFG_PARITY_SPACE;
break;
#else
return -ENOTSUP;
#endif
default:
return -EINVAL;
}
err = MXC_UART_SetParity(regs, mxc_parity);
if (err < 0) {
return -ENOTSUP;
}
/* incase of success keep configuration */
data->conf.parity = uart_cfg->parity;
}
/*
* Set stop bit
*/
if (data->conf.stop_bits != uart_cfg->stop_bits) {
if (uart_cfg->stop_bits == UART_CFG_STOP_BITS_1) {
err = MXC_UART_SetStopBits(regs, MXC_UART_STOP_1);
} else if (uart_cfg->stop_bits == UART_CFG_STOP_BITS_2) {
err = MXC_UART_SetStopBits(regs, MXC_UART_STOP_2);
} else {
return -ENOTSUP;
}
if (err < 0) {
return -ENOTSUP;
}
/* incase of success keep configuration */
data->conf.stop_bits = uart_cfg->stop_bits;
}
/*
* Set data bit
* Valid data for MAX32 is 5-6-7-8
* Valid data for Zepyhr is 0-1-2-3
* Added +5 to index match.
*/
if (data->conf.data_bits != uart_cfg->data_bits) {
err = MXC_UART_SetDataSize(regs, (5 + uart_cfg->data_bits));
if (err < 0) {
return -ENOTSUP;
}
/* incase of success keep configuration */
data->conf.data_bits = uart_cfg->data_bits;
}
/*
* Set flow control
* Flow control not implemented yet so that only support no flow mode
*/
if (data->conf.flow_ctrl != uart_cfg->flow_ctrl) {
if (uart_cfg->flow_ctrl != UART_CFG_FLOW_CTRL_NONE) {
return -ENOTSUP;
}
data->conf.flow_ctrl = uart_cfg->flow_ctrl;
}
/*
* Set baudrate
*/
if (data->conf.baudrate != uart_cfg->baudrate) {
err = Wrap_MXC_UART_SetFrequency(regs, uart_cfg->baudrate, cfg->perclk.clk_src);
if (err < 0) {
return -ENOTSUP;
}
/* In case of success keep configuration */
data->conf.baudrate = uart_cfg->baudrate;
}
return 0;
}
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
static int api_config_get(const struct device *dev, struct uart_config *uart_cfg)
{
struct max32_uart_data *data = dev->data;
/* copy configs from global setting */
*uart_cfg = data->conf;
return 0;
}
#endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */
static int uart_max32_init(const struct device *dev)
{
int ret;
const struct max32_uart_config *const cfg = dev->config;
mxc_uart_regs_t *regs = cfg->regs;
if (!device_is_ready(cfg->clock)) {
LOG_ERR("Clock control device not ready");
return -ENODEV;
}
ret = MXC_UART_Shutdown(regs);
if (ret) {
return ret;
}
ret = clock_control_on(cfg->clock, (clock_control_subsys_t)&cfg->perclk);
if (ret != 0) {
LOG_ERR("Cannot enable UART clock");
return ret;
}
ret = pinctrl_apply_state(cfg->pctrl, PINCTRL_STATE_DEFAULT);
if (ret) {
return ret;
}
ret = api_configure(dev, &cfg->uart_conf);
if (ret) {
return ret;
}
ret = Wrap_MXC_UART_Init(regs);
if (ret) {
return ret;
}
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
/* Clear any pending UART RX/TX interrupts */
MXC_UART_ClearFlags(regs, (ADI_MAX32_UART_INT_RX | ADI_MAX32_UART_INT_TX));
cfg->irq_config_func(dev);
#endif
return ret;
}
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static int api_fifo_fill(const struct device *dev, const uint8_t *tx_data, int size)
{
unsigned int num_tx = 0;
const struct max32_uart_config *cfg = dev->config;
num_tx = MXC_UART_WriteTXFIFO(cfg->regs, (unsigned char *)tx_data, size);
return (int)num_tx;
}
static int api_fifo_read(const struct device *dev, uint8_t *rx_data, const int size)
{
unsigned int num_rx = 0;
const struct max32_uart_config *cfg = dev->config;
num_rx = MXC_UART_ReadRXFIFO(cfg->regs, (unsigned char *)rx_data, size);
if (num_rx == 0) {
MXC_UART_ClearFlags(cfg->regs, ADI_MAX32_UART_INT_RX);
}
return num_rx;
}
static void api_irq_tx_enable(const struct device *dev)
{
const struct max32_uart_config *cfg = dev->config;
unsigned int key;
MXC_UART_EnableInt(cfg->regs, ADI_MAX32_UART_INT_TX | ADI_MAX32_UART_INT_TX_OEM);
key = irq_lock();
uart_max32_isr(dev);
irq_unlock(key);
}
static void api_irq_tx_disable(const struct device *dev)
{
const struct max32_uart_config *cfg = dev->config;
MXC_UART_DisableInt(cfg->regs, ADI_MAX32_UART_INT_TX | ADI_MAX32_UART_INT_TX_OEM);
}
static int api_irq_tx_ready(const struct device *dev)
{
struct max32_uart_data *const data = dev->data;
const struct max32_uart_config *cfg = dev->config;
uint32_t inten = Wrap_MXC_UART_GetRegINTEN(cfg->regs);
return ((inten & (ADI_MAX32_UART_INT_TX | ADI_MAX32_UART_INT_TX_OEM)) &&
!(data->status & MXC_F_UART_STATUS_TX_FULL));
}
static void api_irq_rx_enable(const struct device *dev)
{
const struct max32_uart_config *cfg = dev->config;
MXC_UART_EnableInt(cfg->regs, ADI_MAX32_UART_INT_RX);
}
static void api_irq_rx_disable(const struct device *dev)
{
const struct max32_uart_config *cfg = dev->config;
MXC_UART_DisableInt(cfg->regs, ADI_MAX32_UART_INT_RX);
}
static int api_irq_tx_complete(const struct device *dev)
{
const struct max32_uart_config *cfg = dev->config;
if (MXC_UART_GetActive(cfg->regs) == E_BUSY) {
return 0;
} else {
return 1; /* transmission completed */
}
}
static int api_irq_rx_ready(const struct device *dev)
{
struct max32_uart_data *const data = dev->data;
const struct max32_uart_config *cfg = dev->config;
uint32_t inten = Wrap_MXC_UART_GetRegINTEN(cfg->regs);
return ((inten & ADI_MAX32_UART_INT_RX) && !(data->status & ADI_MAX32_UART_RX_EMPTY));
}
static void api_irq_err_enable(const struct device *dev)
{
const struct max32_uart_config *cfg = dev->config;
MXC_UART_EnableInt(cfg->regs, ADI_MAX32_UART_ERROR_INTERRUPTS);
}
static void api_irq_err_disable(const struct device *dev)
{
const struct max32_uart_config *cfg = dev->config;
MXC_UART_DisableInt(cfg->regs, ADI_MAX32_UART_ERROR_INTERRUPTS);
}
static int api_irq_is_pending(const struct device *dev)
{
struct max32_uart_data *const data = dev->data;
return (data->flags & (ADI_MAX32_UART_INT_RX | ADI_MAX32_UART_INT_TX));
}
static int api_irq_update(const struct device *dev)
{
struct max32_uart_data *const data = dev->data;
const struct max32_uart_config *const cfg = dev->config;
data->flags = MXC_UART_GetFlags(cfg->regs);
data->status = MXC_UART_GetStatus(cfg->regs);
MXC_UART_ClearFlags(cfg->regs, data->flags);
return 1;
}
static void api_irq_callback_set(const struct device *dev, uart_irq_callback_user_data_t cb,
void *cb_data)
{
struct max32_uart_data *const data = dev->data;
data->cb = cb;
data->cb_data = cb_data;
}
static void uart_max32_isr(const struct device *dev)
{
struct max32_uart_data *data = dev->data;
if (data->cb) {
data->cb(dev, data->cb_data);
}
}
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
static const struct uart_driver_api uart_max32_driver_api = {
.poll_in = api_poll_in,
.poll_out = api_poll_out,
.err_check = api_err_check,
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
.configure = api_configure,
.config_get = api_config_get,
#endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.fifo_fill = api_fifo_fill,
.fifo_read = api_fifo_read,
.irq_tx_enable = api_irq_tx_enable,
.irq_tx_disable = api_irq_tx_disable,
.irq_tx_ready = api_irq_tx_ready,
.irq_rx_enable = api_irq_rx_enable,
.irq_rx_disable = api_irq_rx_disable,
.irq_tx_complete = api_irq_tx_complete,
.irq_rx_ready = api_irq_rx_ready,
.irq_err_enable = api_irq_err_enable,
.irq_err_disable = api_irq_err_disable,
.irq_is_pending = api_irq_is_pending,
.irq_update = api_irq_update,
.irq_callback_set = api_irq_callback_set,
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
};
#define MAX32_UART_INIT(_num) \
PINCTRL_DT_INST_DEFINE(_num); \
IF_ENABLED(CONFIG_UART_INTERRUPT_DRIVEN, \
(static void uart_max32_irq_init_##_num(const struct device *dev) \
{ \
IRQ_CONNECT(DT_INST_IRQN(_num), DT_INST_IRQ(_num, priority), \
uart_max32_isr, DEVICE_DT_INST_GET(_num), 0); \
irq_enable(DT_INST_IRQN(_num)); \
})); \
static const struct max32_uart_config max32_uart_config_##_num = { \
.regs = (mxc_uart_regs_t *)DT_INST_REG_ADDR(_num), \
.pctrl = PINCTRL_DT_INST_DEV_CONFIG_GET(_num), \
.clock = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(_num)), \
.perclk.bus = DT_INST_CLOCKS_CELL(_num, offset), \
.perclk.bit = DT_INST_CLOCKS_CELL(_num, bit), \
.perclk.clk_src = \
DT_INST_PROP_OR(_num, clock_source, ADI_MAX32_PRPH_CLK_SRC_PCLK), \
.uart_conf.baudrate = DT_INST_PROP_OR(_num, current_speed, 115200), \
.uart_conf.parity = DT_INST_ENUM_IDX_OR(_num, parity, UART_CFG_PARITY_NONE), \
.uart_conf.data_bits = DT_INST_ENUM_IDX_OR(_num, data_bits, UART_CFG_DATA_BITS_8), \
.uart_conf.stop_bits = DT_INST_ENUM_IDX_OR(_num, stop_bits, UART_CFG_STOP_BITS_1), \
.uart_conf.flow_ctrl = \
DT_INST_PROP_OR(_num, hw_flow_control, UART_CFG_FLOW_CTRL_NONE), \
IF_ENABLED(CONFIG_UART_INTERRUPT_DRIVEN, \
(.irq_config_func = uart_max32_irq_init_##_num,))}; \
static struct max32_uart_data max32_uart_data##_num = { \
IF_ENABLED(CONFIG_UART_INTERRUPT_DRIVEN, (.cb = NULL,))}; \
DEVICE_DT_INST_DEFINE(_num, uart_max32_init, NULL, &max32_uart_data##_num, \
&max32_uart_config_##_num, PRE_KERNEL_1, \
CONFIG_SERIAL_INIT_PRIORITY, (void *)&uart_max32_driver_api);
DT_INST_FOREACH_STATUS_OKAY(MAX32_UART_INIT)