blob: d17da8906d933fdf3933141e331725c6dc69c0f0 [file] [log] [blame]
/*
* Copyright (c) 2018, NXP
*
* Forked off the spi_mcux_lpi2c driver.
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT openisa_rv32m1_lpspi
#include <errno.h>
#include <zephyr/drivers/spi.h>
#include <zephyr/drivers/spi/rtio.h>
#include <zephyr/drivers/clock_control.h>
#include <fsl_lpspi.h>
#include <zephyr/drivers/pinctrl.h>
#define LOG_LEVEL CONFIG_SPI_LOG_LEVEL
#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
LOG_MODULE_REGISTER(spi_rv32m1_lpspi);
#include <soc.h>
#include "spi_context.h"
#define CHIP_SELECT_COUNT 4
#define MAX_DATA_WIDTH 4096
struct spi_mcux_config {
LPSPI_Type *base;
const struct device *clock_dev;
clock_control_subsys_t clock_subsys;
clock_ip_name_t clock_ip_name;
uint32_t clock_ip_src;
void (*irq_config_func)(const struct device *dev);
const struct pinctrl_dev_config *pincfg;
};
struct spi_mcux_data {
const struct device *dev;
lpspi_master_handle_t handle;
struct spi_context ctx;
size_t transfer_len;
};
static void spi_mcux_transfer_next_packet(const struct device *dev)
{
const struct spi_mcux_config *config = dev->config;
struct spi_mcux_data *data = dev->data;
LPSPI_Type *base = config->base;
struct spi_context *ctx = &data->ctx;
lpspi_transfer_t transfer;
status_t status;
if ((ctx->tx_len == 0) && (ctx->rx_len == 0)) {
/* nothing left to rx or tx, we're done! */
spi_context_cs_control(&data->ctx, false);
spi_context_complete(&data->ctx, dev, 0);
return;
}
transfer.configFlags = kLPSPI_MasterPcsContinuous |
(ctx->config->slave << LPSPI_MASTER_PCS_SHIFT);
if (ctx->tx_len == 0) {
/* rx only, nothing to tx */
transfer.txData = NULL;
transfer.rxData = ctx->rx_buf;
transfer.dataSize = ctx->rx_len;
} else if (ctx->rx_len == 0) {
/* tx only, nothing to rx */
transfer.txData = (uint8_t *) ctx->tx_buf;
transfer.rxData = NULL;
transfer.dataSize = ctx->tx_len;
} else if (ctx->tx_len == ctx->rx_len) {
/* rx and tx are the same length */
transfer.txData = (uint8_t *) ctx->tx_buf;
transfer.rxData = ctx->rx_buf;
transfer.dataSize = ctx->tx_len;
} else if (ctx->tx_len > ctx->rx_len) {
/* Break up the tx into multiple transfers so we don't have to
* rx into a longer intermediate buffer. Leave chip select
* active between transfers.
*/
transfer.txData = (uint8_t *) ctx->tx_buf;
transfer.rxData = ctx->rx_buf;
transfer.dataSize = ctx->rx_len;
transfer.configFlags |= kLPSPI_MasterPcsContinuous;
} else {
/* Break up the rx into multiple transfers so we don't have to
* tx from a longer intermediate buffer. Leave chip select
* active between transfers.
*/
transfer.txData = (uint8_t *) ctx->tx_buf;
transfer.rxData = ctx->rx_buf;
transfer.dataSize = ctx->tx_len;
transfer.configFlags |= kLPSPI_MasterPcsContinuous;
}
if (!(ctx->tx_count <= 1 && ctx->rx_count <= 1)) {
transfer.configFlags |= kLPSPI_MasterPcsContinuous;
}
data->transfer_len = transfer.dataSize;
status = LPSPI_MasterTransferNonBlocking(base, &data->handle,
&transfer);
if (status != kStatus_Success) {
LOG_ERR("Transfer could not start");
}
}
static void spi_mcux_isr(const struct device *dev)
{
const struct spi_mcux_config *config = dev->config;
struct spi_mcux_data *data = dev->data;
LPSPI_Type *base = config->base;
LPSPI_MasterTransferHandleIRQ(base, &data->handle);
}
static void spi_mcux_master_transfer_callback(LPSPI_Type *base,
lpspi_master_handle_t *handle,
status_t status, void *userData)
{
struct spi_mcux_data *data = userData;
spi_context_update_tx(&data->ctx, 1, data->transfer_len);
spi_context_update_rx(&data->ctx, 1, data->transfer_len);
spi_mcux_transfer_next_packet(data->dev);
}
static int spi_mcux_configure(const struct device *dev,
const struct spi_config *spi_cfg)
{
const struct spi_mcux_config *config = dev->config;
struct spi_mcux_data *data = dev->data;
LPSPI_Type *base = config->base;
lpspi_master_config_t master_config;
uint32_t clock_freq;
uint32_t word_size;
if (spi_context_configured(&data->ctx, spi_cfg)) {
/* This configuration is already in use */
return 0;
}
if (spi_cfg->operation & SPI_HALF_DUPLEX) {
LOG_ERR("Half-duplex not supported");
return -ENOTSUP;
}
LPSPI_MasterGetDefaultConfig(&master_config);
if (spi_cfg->slave > CHIP_SELECT_COUNT) {
LOG_ERR("Slave %d is greater than %d",
spi_cfg->slave,
CHIP_SELECT_COUNT);
return -EINVAL;
}
word_size = SPI_WORD_SIZE_GET(spi_cfg->operation);
if (word_size > MAX_DATA_WIDTH) {
LOG_ERR("Word size %d is greater than %d",
word_size, MAX_DATA_WIDTH);
return -EINVAL;
}
master_config.bitsPerFrame = word_size;
master_config.cpol =
(SPI_MODE_GET(spi_cfg->operation) & SPI_MODE_CPOL)
? kLPSPI_ClockPolarityActiveLow
: kLPSPI_ClockPolarityActiveHigh;
master_config.cpha =
(SPI_MODE_GET(spi_cfg->operation) & SPI_MODE_CPHA)
? kLPSPI_ClockPhaseSecondEdge
: kLPSPI_ClockPhaseFirstEdge;
master_config.direction =
(spi_cfg->operation & SPI_TRANSFER_LSB)
? kLPSPI_LsbFirst
: kLPSPI_MsbFirst;
master_config.baudRate = spi_cfg->frequency;
if (!device_is_ready(config->clock_dev)) {
LOG_ERR("clock control device not ready");
return -ENODEV;
}
if (clock_control_get_rate(config->clock_dev, config->clock_subsys,
&clock_freq)) {
return -EINVAL;
}
LPSPI_MasterInit(base, &master_config, clock_freq);
LPSPI_MasterTransferCreateHandle(base, &data->handle,
spi_mcux_master_transfer_callback,
data);
LPSPI_SetDummyData(base, 0);
data->ctx.config = spi_cfg;
return 0;
}
static int transceive(const struct device *dev,
const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
bool asynchronous,
spi_callback_t cb,
void *userdata)
{
struct spi_mcux_data *data = dev->data;
int ret;
spi_context_lock(&data->ctx, asynchronous, cb, userdata, spi_cfg);
ret = spi_mcux_configure(dev, spi_cfg);
if (ret) {
goto out;
}
spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1);
spi_context_cs_control(&data->ctx, true);
spi_mcux_transfer_next_packet(dev);
ret = spi_context_wait_for_completion(&data->ctx);
out:
spi_context_release(&data->ctx, ret);
return ret;
}
static int spi_mcux_transceive(const struct device *dev,
const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs)
{
return transceive(dev, spi_cfg, tx_bufs, rx_bufs, false, NULL, NULL);
}
#ifdef CONFIG_SPI_ASYNC
static int spi_mcux_transceive_async(const struct device *dev,
const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
spi_callback_t cb,
void *userdata)
{
return transceive(dev, spi_cfg, tx_bufs, rx_bufs, true, cb, userdata);
}
#endif /* CONFIG_SPI_ASYNC */
static int spi_mcux_release(const struct device *dev,
const struct spi_config *spi_cfg)
{
struct spi_mcux_data *data = dev->data;
spi_context_unlock_unconditionally(&data->ctx);
return 0;
}
static int spi_mcux_init(const struct device *dev)
{
int err;
const struct spi_mcux_config *config = dev->config;
struct spi_mcux_data *data = dev->data;
CLOCK_SetIpSrc(config->clock_ip_name, config->clock_ip_src);
config->irq_config_func(dev);
data->dev = dev;
err = spi_context_cs_configure_all(&data->ctx);
if (err < 0) {
return err;
}
err = pinctrl_apply_state(config->pincfg, PINCTRL_STATE_DEFAULT);
if (err != 0) {
return err;
}
spi_context_unlock_unconditionally(&data->ctx);
return 0;
}
static const struct spi_driver_api spi_mcux_driver_api = {
.transceive = spi_mcux_transceive,
#ifdef CONFIG_SPI_ASYNC
.transceive_async = spi_mcux_transceive_async,
#endif
#ifdef CONFIG_SPI_RTIO
.iodev_submit = spi_rtio_iodev_default_submit,
#endif
.release = spi_mcux_release,
};
#define SPI_RV32M1_INIT(n) \
PINCTRL_DT_INST_DEFINE(n); \
\
static void spi_mcux_config_func_##n(const struct device *dev); \
\
static const struct spi_mcux_config spi_mcux_config_##n = { \
.base = (LPSPI_Type *) DT_INST_REG_ADDR(n), \
.clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(n)), \
.clock_subsys = (clock_control_subsys_t) \
DT_INST_CLOCKS_CELL(n, name), \
.irq_config_func = spi_mcux_config_func_##n, \
.clock_ip_name = INST_DT_CLOCK_IP_NAME(n), \
.clock_ip_src = kCLOCK_IpSrcFircAsync, \
.pincfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \
}; \
\
static struct spi_mcux_data spi_mcux_data_##n = { \
SPI_CONTEXT_INIT_LOCK(spi_mcux_data_##n, ctx), \
SPI_CONTEXT_INIT_SYNC(spi_mcux_data_##n, ctx), \
SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(n), ctx) \
}; \
\
DEVICE_DT_INST_DEFINE(n, spi_mcux_init, NULL, \
&spi_mcux_data_##n, \
&spi_mcux_config_##n, \
POST_KERNEL, \
CONFIG_SPI_INIT_PRIORITY, \
&spi_mcux_driver_api); \
\
static void spi_mcux_config_func_##n(const struct device *dev) \
{ \
IRQ_CONNECT(DT_INST_IRQN(n), \
0, \
spi_mcux_isr, DEVICE_DT_INST_GET(n), 0); \
irq_enable(DT_INST_IRQN(n)); \
}
DT_INST_FOREACH_STATUS_OKAY(SPI_RV32M1_INIT)