blob: d46f1175e08d8725b42df0e096bd7491f8af5f1a [file] [log] [blame]
/*
* Copyright (c) 2017 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/types.h>
#include <stdbool.h>
#include <stddef.h>
#include <string.h>
#include <errno.h>
#include <misc/printk.h>
#include <ztest.h>
#include <net/ethernet.h>
#include <net/buf.h>
#include <net/net_ip.h>
#include <net/net_if.h>
#include <net/dns_resolve.h>
#define NET_LOG_ENABLED 1
#include "net_private.h"
#if defined(CONFIG_NET_DEBUG_DNS_RESOLVE)
#define DBG(fmt, ...) printk(fmt, ##__VA_ARGS__)
#else
#define DBG(fmt, ...)
#endif
#define NAME4 "4.zephyr.test"
#define NAME6 "6.zephyr.test"
#define NAME_IPV4 "192.0.2.1"
#define NAME_IPV6 "2001:db8::1"
#define DNS_TIMEOUT 500 /* ms */
#if defined(CONFIG_NET_IPV6)
/* Interface 1 addresses */
static struct in6_addr my_addr1 = { { { 0x20, 0x01, 0x0d, 0xb8, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0x1 } } };
static struct in6_addr my_addr3 = { { { 0x20, 0x01, 0x0d, 0xb8, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0x1 } } };
/* Extra address is assigned to ll_addr */
static struct in6_addr ll_addr = { { { 0xfe, 0x80, 0x43, 0xb8, 0, 0, 0, 0,
0, 0, 0, 0xf2, 0xaa, 0x29, 0x02,
0x04 } } };
#endif
#if defined(CONFIG_NET_IPV4)
/* Interface 1 addresses */
static struct in_addr my_addr2 = { { { 192, 0, 2, 1 } } };
#endif
static struct net_if *iface1;
static bool test_failed;
static bool test_started;
static bool timeout_query;
static struct k_sem wait_data;
static struct k_sem wait_data2;
static u16_t current_dns_id;
static struct dns_addrinfo addrinfo;
/* this must be higher that the DNS_TIMEOUT */
#define WAIT_TIME (DNS_TIMEOUT + 300)
struct net_if_test {
u8_t idx;
u8_t mac_addr[sizeof(struct net_eth_addr)];
struct net_linkaddr ll_addr;
};
static int net_iface_dev_init(struct device *dev)
{
return 0;
}
static u8_t *net_iface_get_mac(struct device *dev)
{
struct net_if_test *data = dev->driver_data;
if (data->mac_addr[2] == 0x00) {
/* 00-00-5E-00-53-xx Documentation RFC 7042 */
data->mac_addr[0] = 0x00;
data->mac_addr[1] = 0x00;
data->mac_addr[2] = 0x5E;
data->mac_addr[3] = 0x00;
data->mac_addr[4] = 0x53;
data->mac_addr[5] = sys_rand32_get();
}
data->ll_addr.addr = data->mac_addr;
data->ll_addr.len = 6;
return data->mac_addr;
}
static void net_iface_init(struct net_if *iface)
{
u8_t *mac = net_iface_get_mac(net_if_get_device(iface));
net_if_set_link_addr(iface, mac, sizeof(struct net_eth_addr),
NET_LINK_ETHERNET);
}
static inline int get_slot_by_id(struct dns_resolve_context *ctx,
u16_t dns_id)
{
int i;
for (i = 0; i < CONFIG_DNS_NUM_CONCUR_QUERIES; i++) {
if (ctx->queries[i].cb && ctx->queries[i].id == dns_id) {
return i;
}
}
return -1;
}
static int sender_iface(struct net_if *iface, struct net_pkt *pkt)
{
if (!pkt->frags) {
DBG("No data to send!\n");
return -ENODATA;
}
if (!timeout_query) {
struct net_if_test *data = iface->dev->driver_data;
struct dns_resolve_context *ctx;
int slot;
DBG("Sending at iface %d %p\n", net_if_get_by_iface(iface),
iface);
if (net_pkt_iface(pkt) != iface) {
DBG("Invalid interface %p, expecting %p\n",
net_pkt_iface(pkt), iface);
test_failed = true;
}
if (net_if_get_by_iface(iface) != data->idx) {
DBG("Invalid interface %d index, expecting %d\n",
data->idx, net_if_get_by_iface(iface));
test_failed = true;
}
ctx = dns_resolve_get_default();
slot = get_slot_by_id(ctx, current_dns_id);
if (slot < 0) {
DBG("Skipping this query dns id %u\n", current_dns_id);
goto out;
}
/* We need to cancel the query manually so that we
* will not get a timeout.
*/
k_delayed_work_cancel(&ctx->queries[slot].timer);
DBG("Calling cb %p with user data %p\n",
ctx->queries[slot].cb,
ctx->queries[slot].user_data);
ctx->queries[slot].cb(DNS_EAI_INPROGRESS,
&addrinfo,
ctx->queries[slot].user_data);
ctx->queries[slot].cb(DNS_EAI_ALLDONE,
NULL,
ctx->queries[slot].user_data);
ctx->queries[slot].cb = NULL;
}
out:
net_pkt_unref(pkt);
return 0;
}
struct net_if_test net_iface1_data;
static struct net_if_api net_iface_api = {
.init = net_iface_init,
.send = sender_iface,
};
#define _ETH_L2_LAYER DUMMY_L2
#define _ETH_L2_CTX_TYPE NET_L2_GET_CTX_TYPE(DUMMY_L2)
NET_DEVICE_INIT_INSTANCE(net_iface1_test,
"iface1",
iface1,
net_iface_dev_init,
&net_iface1_data,
NULL,
CONFIG_KERNEL_INIT_PRIORITY_DEFAULT,
&net_iface_api,
_ETH_L2_LAYER,
_ETH_L2_CTX_TYPE,
127);
static void test_init(void)
{
struct net_if_addr *ifaddr;
/* The semaphore is there to wait the data to be received. */
k_sem_init(&wait_data, 0, UINT_MAX);
k_sem_init(&wait_data2, 0, UINT_MAX);
iface1 = net_if_get_by_index(0);
((struct net_if_test *)iface1->dev->driver_data)->idx = 0;
#if defined(CONFIG_NET_IPV6)
ifaddr = net_if_ipv6_addr_add(iface1, &my_addr1,
NET_ADDR_MANUAL, 0);
if (!ifaddr) {
DBG("Cannot add IPv6 address %s\n",
net_sprint_ipv6_addr(&my_addr1));
zassert_not_null(ifaddr, "addr1");
}
/* For testing purposes we need to set the adddresses preferred */
ifaddr->addr_state = NET_ADDR_PREFERRED;
ifaddr = net_if_ipv6_addr_add(iface1, &ll_addr,
NET_ADDR_MANUAL, 0);
if (!ifaddr) {
DBG("Cannot add IPv6 address %s\n",
net_sprint_ipv6_addr(&ll_addr));
zassert_not_null(ifaddr, "ll_addr");
return;
}
ifaddr->addr_state = NET_ADDR_PREFERRED;
#endif
#if defined(CONFIG_NET_IPV4)
ifaddr = net_if_ipv4_addr_add(iface1, &my_addr2,
NET_ADDR_MANUAL, 0);
if (!ifaddr) {
DBG("Cannot add IPv4 address %s\n",
net_sprint_ipv4_addr(&my_addr2));
zassert_not_null(ifaddr, "addr2");
return;
}
ifaddr->addr_state = NET_ADDR_PREFERRED;
#endif
net_if_up(iface1);
/* The interface might receive data which might fail the checks
* in the iface sending function, so we need to reset the failure
* flag.
*/
test_failed = false;
test_started = true;
}
void dns_result_cb_dummy(enum dns_resolve_status status,
struct dns_addrinfo *info,
void *user_data)
{
return;
}
static void dns_query_invalid_timeout(void)
{
int ret;
ret = dns_get_addr_info(NAME6,
DNS_QUERY_TYPE_AAAA,
NULL,
dns_result_cb_dummy,
NULL,
K_NO_WAIT);
zassert_equal(ret, -EINVAL, "Wrong return code for timeout");
}
static void dns_query_invalid_context(void)
{
int ret;
ret = dns_resolve_name(NULL,
NAME6,
DNS_QUERY_TYPE_AAAA,
NULL,
dns_result_cb_dummy,
NULL,
DNS_TIMEOUT);
zassert_equal(ret, -EINVAL, "Wrong return code for context");
}
static void dns_query_invalid_callback(void)
{
int ret;
ret = dns_get_addr_info(NAME6,
DNS_QUERY_TYPE_AAAA,
NULL,
NULL,
NULL,
DNS_TIMEOUT);
zassert_equal(ret, -EINVAL, "Wrong return code for callback");
}
static void dns_query_invalid_query(void)
{
int ret;
ret = dns_get_addr_info(NULL,
DNS_QUERY_TYPE_AAAA,
NULL,
dns_result_cb_dummy,
NULL,
DNS_TIMEOUT);
zassert_equal(ret, -EINVAL, "Wrong return code for query");
}
void dns_result_cb_timeout(enum dns_resolve_status status,
struct dns_addrinfo *info,
void *user_data)
{
int expected_status = POINTER_TO_INT(user_data);
if (expected_status != status) {
DBG("Result status %d\n", status);
DBG("Expected status %d\n", expected_status);
zassert_equal(expected_status, status, "Invalid status");
}
k_sem_give(&wait_data);
}
static void dns_query_server_count(void)
{
struct dns_resolve_context *ctx = dns_resolve_get_default();
int i, count = 0;
for (i = 0; i < CONFIG_DNS_RESOLVER_MAX_SERVERS; i++) {
if (!ctx->is_used) {
continue;
}
if (!ctx->servers[i].net_ctx) {
continue;
}
count++;
}
zassert_equal(count, CONFIG_DNS_RESOLVER_MAX_SERVERS,
"Invalid number of servers");
}
static void dns_query_ipv4_server_count(void)
{
struct dns_resolve_context *ctx = dns_resolve_get_default();
int i, count = 0, port = 0;
for (i = 0; i < CONFIG_DNS_RESOLVER_MAX_SERVERS; i++) {
if (!ctx->is_used) {
continue;
}
if (!ctx->servers[i].net_ctx) {
continue;
}
if (ctx->servers[i].dns_server.sa_family == AF_INET6) {
continue;
}
count++;
if (net_sin(&ctx->servers[i].dns_server)->sin_port ==
ntohs(53)) {
port++;
}
}
zassert_equal(count, 2, "Invalid number of IPv4 servers");
zassert_equal(port, 1, "Invalid number of IPv4 servers with port 53");
}
static void dns_query_ipv6_server_count(void)
{
struct dns_resolve_context *ctx = dns_resolve_get_default();
int i, count = 0, port = 0;
for (i = 0; i < CONFIG_DNS_RESOLVER_MAX_SERVERS; i++) {
if (!ctx->is_used) {
continue;
}
if (!ctx->servers[i].net_ctx) {
continue;
}
if (ctx->servers[i].dns_server.sa_family == AF_INET) {
continue;
}
count++;
if (net_sin6(&ctx->servers[i].dns_server)->sin6_port ==
ntohs(53)) {
port++;
}
}
#if defined(CONFIG_NET_IPV6)
zassert_equal(count, 2, "Invalid number of IPv6 servers");
zassert_equal(port, 1, "Invalid number of IPv6 servers with port 53");
#else
zassert_equal(count, 0, "Invalid number of IPv6 servers");
zassert_equal(port, 0, "Invalid number of IPv6 servers with port 53");
#endif
}
static void dns_query_too_many(void)
{
int expected_status = DNS_EAI_CANCELED;
int ret;
timeout_query = true;
ret = dns_get_addr_info(NAME4,
DNS_QUERY_TYPE_A,
NULL,
dns_result_cb_timeout,
INT_TO_POINTER(expected_status),
DNS_TIMEOUT);
zassert_equal(ret, 0, "Cannot create IPv4 query");
ret = dns_get_addr_info(NAME4,
DNS_QUERY_TYPE_A,
NULL,
dns_result_cb_dummy,
INT_TO_POINTER(expected_status),
DNS_TIMEOUT);
zassert_equal(ret, -EAGAIN, "Should have run out of space");
if (k_sem_take(&wait_data, WAIT_TIME)) {
zassert_true(false, "Timeout while waiting data");
}
timeout_query = false;
}
static void dns_query_ipv4_timeout(void)
{
int expected_status = DNS_EAI_CANCELED;
int ret;
timeout_query = true;
ret = dns_get_addr_info(NAME4,
DNS_QUERY_TYPE_A,
NULL,
dns_result_cb_timeout,
INT_TO_POINTER(expected_status),
DNS_TIMEOUT);
zassert_equal(ret, 0, "Cannot create IPv4 query");
if (k_sem_take(&wait_data, WAIT_TIME)) {
zassert_true(false, "Timeout while waiting data");
}
timeout_query = false;
}
static void dns_query_ipv6_timeout(void)
{
int expected_status = DNS_EAI_CANCELED;
int ret;
timeout_query = true;
ret = dns_get_addr_info(NAME6,
DNS_QUERY_TYPE_AAAA,
NULL,
dns_result_cb_timeout,
INT_TO_POINTER(expected_status),
DNS_TIMEOUT);
zassert_equal(ret, 0, "Cannot create IPv6 query");
if (k_sem_take(&wait_data, WAIT_TIME)) {
zassert_true(false, "Timeout while waiting data");
}
timeout_query = false;
}
static void verify_cancelled(void)
{
struct dns_resolve_context *ctx = dns_resolve_get_default();
int i, count = 0, timer_not_stopped = 0;
for (i = 0; i < CONFIG_DNS_NUM_CONCUR_QUERIES; i++) {
if (ctx->queries[i].cb) {
count++;
}
if (k_delayed_work_remaining_get(&ctx->queries[i].timer) > 0) {
timer_not_stopped++;
}
}
zassert_equal(count, 0, "Not all pending queries vere cancelled");
zassert_equal(timer_not_stopped, 0, "Not all timers vere cancelled");
}
static void dns_query_ipv4_cancel(void)
{
int expected_status = DNS_EAI_CANCELED;
u16_t dns_id;
int ret;
timeout_query = true;
ret = dns_get_addr_info(NAME4,
DNS_QUERY_TYPE_A,
&dns_id,
dns_result_cb_timeout,
INT_TO_POINTER(expected_status),
DNS_TIMEOUT);
zassert_equal(ret, 0, "Cannot create IPv4 query");
ret = dns_cancel_addr_info(dns_id);
zassert_equal(ret, 0, "Cannot cancel IPv4 query");
if (k_sem_take(&wait_data, WAIT_TIME)) {
zassert_true(false, "Timeout while waiting data");
}
verify_cancelled();
}
static void dns_query_ipv6_cancel(void)
{
int expected_status = DNS_EAI_CANCELED;
u16_t dns_id;
int ret;
timeout_query = true;
ret = dns_get_addr_info(NAME6,
DNS_QUERY_TYPE_AAAA,
&dns_id,
dns_result_cb_timeout,
INT_TO_POINTER(expected_status),
DNS_TIMEOUT);
zassert_equal(ret, 0, "Cannot create IPv6 query");
ret = dns_cancel_addr_info(dns_id);
zassert_equal(ret, 0, "Cannot cancel IPv6 query");
if (k_sem_take(&wait_data, WAIT_TIME)) {
zassert_true(false, "Timeout while waiting data");
}
verify_cancelled();
}
struct expected_status {
int status1;
int status2;
const char *caller;
};
void dns_result_cb(enum dns_resolve_status status,
struct dns_addrinfo *info,
void *user_data)
{
struct expected_status *expected = user_data;
if (status != expected->status1 && status != expected->status2) {
DBG("Result status %d\n", status);
DBG("Expected status1 %d\n", expected->status1);
DBG("Expected status2 %d\n", expected->status2);
DBG("Caller %s\n", expected->caller);
zassert_true(false, "Invalid status");
}
k_sem_give(&wait_data2);
}
static void dns_query_ipv4(void)
{
struct expected_status status = {
.status1 = DNS_EAI_INPROGRESS,
.status2 = DNS_EAI_ALLDONE,
.caller = __func__,
};
int ret;
timeout_query = false;
ret = dns_get_addr_info(NAME4,
DNS_QUERY_TYPE_A,
&current_dns_id,
dns_result_cb,
&status,
DNS_TIMEOUT);
zassert_equal(ret, 0, "Cannot create IPv4 query");
DBG("Query id %u\n", current_dns_id);
k_yield(); /* mandatory so that net_if send func gets to run */
if (k_sem_take(&wait_data2, WAIT_TIME)) {
zassert_true(false, "Timeout while waiting data");
}
}
static void dns_query_ipv6(void)
{
struct expected_status status = {
.status1 = DNS_EAI_INPROGRESS,
.status2 = DNS_EAI_ALLDONE,
.caller = __func__,
};
int ret;
timeout_query = false;
ret = dns_get_addr_info(NAME6,
DNS_QUERY_TYPE_AAAA,
&current_dns_id,
dns_result_cb,
&status,
DNS_TIMEOUT);
zassert_equal(ret, 0, "Cannot create IPv6 query");
DBG("Query id %u\n", current_dns_id);
k_yield(); /* mandatory so that net_if send func gets to run */
if (k_sem_take(&wait_data2, WAIT_TIME)) {
zassert_true(false, "Timeout while waiting data");
}
}
struct expected_addr_status {
struct sockaddr addr;
int status1;
int status2;
const char *caller;
};
void dns_result_numeric_cb(enum dns_resolve_status status,
struct dns_addrinfo *info,
void *user_data)
{
struct expected_addr_status *expected = user_data;
if (status != expected->status1 && status != expected->status2) {
DBG("Result status %d\n", status);
DBG("Expected status1 %d\n", expected->status1);
DBG("Expected status2 %d\n", expected->status2);
DBG("Caller %s\n", expected->caller);
zassert_true(false, "Invalid status");
}
if (info && info->ai_family == AF_INET) {
if (net_ipv4_addr_cmp(&net_sin(&info->ai_addr)->sin_addr,
&my_addr2) != true) {
zassert_true(false, "IPv4 address does not match");
}
}
if (info && info->ai_family == AF_INET6) {
#if defined(CONFIG_NET_IPV6)
if (net_ipv6_addr_cmp(&net_sin6(&info->ai_addr)->sin6_addr,
&my_addr3) != true) {
zassert_true(false, "IPv6 address does not match");
}
#endif
}
k_sem_give(&wait_data2);
}
static void dns_query_ipv4_numeric(void)
{
struct expected_addr_status status = {
.status1 = DNS_EAI_INPROGRESS,
.status2 = DNS_EAI_ALLDONE,
.caller = __func__,
};
int ret;
timeout_query = false;
ret = dns_get_addr_info(NAME_IPV4,
DNS_QUERY_TYPE_A,
&current_dns_id,
dns_result_numeric_cb,
&status,
DNS_TIMEOUT);
zassert_equal(ret, 0, "Cannot create IPv4 numeric query");
DBG("Query id %u\n", current_dns_id);
k_yield(); /* mandatory so that net_if send func gets to run */
if (k_sem_take(&wait_data2, WAIT_TIME)) {
zassert_true(false, "Timeout while waiting data");
}
}
static void dns_query_ipv6_numeric(void)
{
struct expected_addr_status status = {
.status1 = DNS_EAI_INPROGRESS,
.status2 = DNS_EAI_ALLDONE,
.caller = __func__,
};
int ret;
timeout_query = false;
ret = dns_get_addr_info(NAME_IPV6,
DNS_QUERY_TYPE_AAAA,
&current_dns_id,
dns_result_numeric_cb,
&status,
DNS_TIMEOUT);
zassert_equal(ret, 0, "Cannot create IPv6 query");
DBG("Query id %u\n", current_dns_id);
k_yield(); /* mandatory so that net_if send func gets to run */
if (k_sem_take(&wait_data2, WAIT_TIME)) {
zassert_true(false, "Timeout while waiting data");
}
}
void test_main(void)
{
ztest_test_suite(dns_tests,
ztest_unit_test(test_init),
ztest_unit_test(dns_query_invalid_timeout),
ztest_unit_test(dns_query_invalid_context),
ztest_unit_test(dns_query_invalid_callback),
ztest_unit_test(dns_query_invalid_query),
ztest_unit_test(dns_query_too_many),
ztest_unit_test(dns_query_server_count),
ztest_unit_test(dns_query_ipv4_server_count),
ztest_unit_test(dns_query_ipv6_server_count),
ztest_unit_test(dns_query_ipv4_timeout),
ztest_unit_test(dns_query_ipv6_timeout),
ztest_unit_test(dns_query_ipv4_cancel),
ztest_unit_test(dns_query_ipv6_cancel),
ztest_unit_test(dns_query_ipv4),
ztest_unit_test(dns_query_ipv6),
ztest_unit_test(dns_query_ipv4_numeric),
ztest_unit_test(dns_query_ipv6_numeric));
ztest_run_test_suite(dns_tests);
}