| /* |
| * Copyright (c) 2023 Prevas A/S |
| * Copyright (c) 2023 Syslinbit |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| * |
| */ |
| |
| #define DT_DRV_COMPAT st_stm32_rtc |
| |
| #include <errno.h> |
| #include <zephyr/device.h> |
| #include <zephyr/kernel.h> |
| #include <zephyr/init.h> |
| #include <zephyr/devicetree.h> |
| #include <zephyr/drivers/rtc.h> |
| #include <zephyr/drivers/clock_control/stm32_clock_control.h> |
| #include <zephyr/drivers/clock_control.h> |
| #include <zephyr/sys/util.h> |
| #include <soc.h> |
| #include <stm32_ll_pwr.h> |
| #include <stm32_ll_rcc.h> |
| #include <stm32_ll_rtc.h> |
| #include <stm32_hsem.h> |
| |
| #include <zephyr/logging/log.h> |
| |
| #include <stdbool.h> |
| |
| LOG_MODULE_REGISTER(rtc_stm32, CONFIG_RTC_LOG_LEVEL); |
| |
| #if defined(CONFIG_SOC_SERIES_STM32L1X) && !defined(RTC_SUBSECOND_SUPPORT) |
| /* subsecond counting is not supported by some STM32L1x MCUs */ |
| #define HW_SUBSECOND_SUPPORT (0) |
| #else |
| #define HW_SUBSECOND_SUPPORT (1) |
| #endif |
| |
| /* RTC start time: 1st, Jan, 2000 */ |
| #define RTC_YEAR_REF 2000 |
| /* struct tm start time: 1st, Jan, 1900 */ |
| #define TM_YEAR_REF 1900 |
| |
| /* Convert part per billion calibration value to a number of clock pulses added or removed each |
| * 2^20 clock cycles so it is suitable for the CALR register fields |
| * |
| * nb_pulses = ppb * 2^20 / 10^9 = ppb * 2^11 / 5^9 = ppb * 2048 / 1953125 |
| */ |
| #define PPB_TO_NB_PULSES(ppb) DIV_ROUND_CLOSEST((ppb) * 2048, 1953125) |
| |
| /* Convert CALR register value (number of clock pulses added or removed each 2^20 clock cycles) |
| * to part ber billion calibration value |
| * |
| * ppb = nb_pulses * 10^9 / 2^20 = nb_pulses * 5^9 / 2^11 = nb_pulses * 1953125 / 2048 |
| */ |
| #define NB_PULSES_TO_PPB(pulses) DIV_ROUND_CLOSEST((pulses) * 1953125, 2048) |
| |
| /* CALP field can only be 512 or 0 as in reality CALP is a single bit field representing 512 pulses |
| * added every 2^20 clock cycles |
| */ |
| #define MAX_CALP (512) |
| #define MAX_CALM (511) |
| |
| #define MAX_PPB NB_PULSES_TO_PPB(MAX_CALP) |
| #define MIN_PPB -NB_PULSES_TO_PPB(MAX_CALM) |
| |
| /* Timeout in microseconds used to wait for flags */ |
| #define RTC_TIMEOUT 1000000 |
| |
| struct rtc_stm32_config { |
| uint32_t async_prescaler; |
| uint32_t sync_prescaler; |
| const struct stm32_pclken *pclken; |
| #if DT_INST_NODE_HAS_PROP(0, calib_out_freq) |
| uint32_t cal_out_freq; |
| #endif |
| }; |
| |
| struct rtc_stm32_data { |
| struct k_mutex lock; |
| }; |
| |
| static int rtc_stm32_configure(const struct device *dev) |
| { |
| const struct rtc_stm32_config *cfg = dev->config; |
| |
| int err = 0; |
| |
| uint32_t hour_format = LL_RTC_GetHourFormat(RTC); |
| uint32_t sync_prescaler = LL_RTC_GetSynchPrescaler(RTC); |
| uint32_t async_prescaler = LL_RTC_GetAsynchPrescaler(RTC); |
| |
| LL_RTC_DisableWriteProtection(RTC); |
| |
| /* configuration process requires to stop the RTC counter so do it |
| * only if needed to avoid inducing time drift at each reset |
| */ |
| if ((hour_format != LL_RTC_HOURFORMAT_24HOUR) || |
| (sync_prescaler != cfg->sync_prescaler) || |
| (async_prescaler != cfg->async_prescaler)) { |
| ErrorStatus status = LL_RTC_EnterInitMode(RTC); |
| |
| if (status == SUCCESS) { |
| LL_RTC_SetHourFormat(RTC, LL_RTC_HOURFORMAT_24HOUR); |
| LL_RTC_SetSynchPrescaler(RTC, cfg->sync_prescaler); |
| LL_RTC_SetAsynchPrescaler(RTC, cfg->async_prescaler); |
| } else { |
| err = -EIO; |
| } |
| |
| LL_RTC_DisableInitMode(RTC); |
| } |
| |
| #if DT_INST_NODE_HAS_PROP(0, calib_out_freq) |
| LL_RTC_CAL_SetOutputFreq(RTC, cfg->cal_out_freq); |
| #else |
| LL_RTC_CAL_SetOutputFreq(RTC, LL_RTC_CALIB_OUTPUT_NONE); |
| #endif |
| |
| #ifdef RTC_CR_BYPSHAD |
| LL_RTC_EnableShadowRegBypass(RTC); |
| #endif /* RTC_CR_BYPSHAD */ |
| |
| LL_RTC_EnableWriteProtection(RTC); |
| |
| return err; |
| } |
| |
| static int rtc_stm32_init(const struct device *dev) |
| { |
| const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE); |
| const struct rtc_stm32_config *cfg = dev->config; |
| struct rtc_stm32_data *data = dev->data; |
| |
| int err = 0; |
| |
| if (!device_is_ready(clk)) { |
| LOG_ERR("clock control device not ready"); |
| return -ENODEV; |
| } |
| |
| /* Enable RTC bus clock */ |
| if (clock_control_on(clk, (clock_control_subsys_t)&cfg->pclken[0]) != 0) { |
| LOG_ERR("clock op failed\n"); |
| return -EIO; |
| } |
| |
| k_mutex_init(&data->lock); |
| |
| /* Enable Backup access */ |
| #if defined(PWR_CR_DBP) || defined(PWR_CR1_DBP) || defined(PWR_DBPCR_DBP) || defined(PWR_DBPR_DBP) |
| LL_PWR_EnableBkUpAccess(); |
| #endif /* PWR_CR_DBP || PWR_CR1_DBP || PWR_DBPR_DBP */ |
| |
| /* Enable RTC clock source */ |
| if (clock_control_configure(clk, (clock_control_subsys_t)&cfg->pclken[1], NULL) != 0) { |
| LOG_ERR("clock configure failed\n"); |
| return -EIO; |
| } |
| |
| z_stm32_hsem_lock(CFG_HW_RCC_SEMID, HSEM_LOCK_DEFAULT_RETRY); |
| |
| LL_RCC_EnableRTC(); |
| |
| z_stm32_hsem_unlock(CFG_HW_RCC_SEMID); |
| |
| err = rtc_stm32_configure(dev); |
| |
| #if defined(PWR_CR_DBP) || defined(PWR_CR1_DBP) || defined(PWR_DBPCR_DBP) || defined(PWR_DBPR_DBP) |
| LL_PWR_DisableBkUpAccess(); |
| #endif /* PWR_CR_DBP || PWR_CR1_DBP || PWR_DBPR_DBP */ |
| |
| return err; |
| } |
| |
| static int rtc_stm32_set_time(const struct device *dev, const struct rtc_time *timeptr) |
| { |
| struct rtc_stm32_data *data = dev->data; |
| |
| uint32_t real_year = timeptr->tm_year + TM_YEAR_REF; |
| |
| int err = 0; |
| |
| if (real_year < RTC_YEAR_REF) { |
| /* RTC does not support years before 2000 */ |
| return -EINVAL; |
| } |
| |
| if (timeptr->tm_wday == -1) { |
| /* day of the week is expected */ |
| return -EINVAL; |
| } |
| |
| err = k_mutex_lock(&data->lock, K_NO_WAIT); |
| if (err) { |
| return err; |
| } |
| |
| LOG_INF("Setting clock"); |
| |
| #if defined(PWR_CR_DBP) || defined(PWR_CR1_DBP) || defined(PWR_DBPCR_DBP) || defined(PWR_DBPR_DBP) |
| LL_PWR_EnableBkUpAccess(); |
| #endif /* PWR_CR_DBP || PWR_CR1_DBP || PWR_DBPR_DBP */ |
| |
| LL_RTC_DisableWriteProtection(RTC); |
| |
| ErrorStatus status = LL_RTC_EnterInitMode(RTC); |
| |
| if (status != SUCCESS) { |
| #if defined(PWR_CR_DBP) || defined(PWR_CR1_DBP) || defined(PWR_DBPCR_DBP) || defined(PWR_DBPR_DBP) |
| LL_PWR_DisableBkUpAccess(); |
| #endif /* PWR_CR_DBP || PWR_CR1_DBP || PWR_DBPR_DBP */ |
| k_mutex_unlock(&data->lock); |
| return -EIO; |
| } |
| |
| LL_RTC_DATE_SetYear(RTC, bin2bcd(real_year - RTC_YEAR_REF)); |
| LL_RTC_DATE_SetMonth(RTC, bin2bcd(timeptr->tm_mon + 1)); |
| LL_RTC_DATE_SetDay(RTC, bin2bcd(timeptr->tm_mday)); |
| |
| if (timeptr->tm_wday == 0) { |
| /* sunday (tm_wday = 0) is not represented by the same value in hardware */ |
| LL_RTC_DATE_SetWeekDay(RTC, LL_RTC_WEEKDAY_SUNDAY); |
| } else { |
| /* all the other values are consistent with what is expected by hardware */ |
| LL_RTC_DATE_SetWeekDay(RTC, timeptr->tm_wday); |
| } |
| |
| |
| LL_RTC_TIME_SetHour(RTC, bin2bcd(timeptr->tm_hour)); |
| LL_RTC_TIME_SetMinute(RTC, bin2bcd(timeptr->tm_min)); |
| LL_RTC_TIME_SetSecond(RTC, bin2bcd(timeptr->tm_sec)); |
| |
| LL_RTC_DisableInitMode(RTC); |
| |
| LL_RTC_EnableWriteProtection(RTC); |
| |
| #if defined(PWR_CR_DBP) || defined(PWR_CR1_DBP) || defined(PWR_DBPCR_DBP) || defined(PWR_DBPR_DBP) |
| LL_PWR_DisableBkUpAccess(); |
| #endif /* PWR_CR_DBP || PWR_CR1_DBP || PWR_DBPR_DBP */ |
| |
| k_mutex_unlock(&data->lock); |
| |
| return err; |
| } |
| |
| static int rtc_stm32_get_time(const struct device *dev, struct rtc_time *timeptr) |
| { |
| struct rtc_stm32_data *data = dev->data; |
| |
| uint32_t rtc_date, rtc_time; |
| |
| #if HW_SUBSECOND_SUPPORT |
| const struct rtc_stm32_config *cfg = dev->config; |
| uint32_t rtc_subsecond; |
| #endif |
| |
| int err = k_mutex_lock(&data->lock, K_NO_WAIT); |
| |
| if (err) { |
| return err; |
| } |
| |
| if (!LL_RTC_IsActiveFlag_INITS(RTC)) { |
| /* INITS flag is set when the calendar has been initialiazed. This flag is |
| * reset only on backup domain reset, so it can be read after a system |
| * reset to check if the calendar has been initialized. |
| */ |
| k_mutex_unlock(&data->lock); |
| return -ENODATA; |
| } |
| |
| do { |
| /* read date, time and subseconds and relaunch if a day increment occurred |
| * while doing so as it will result in an erroneous result otherwise |
| */ |
| rtc_date = LL_RTC_DATE_Get(RTC); |
| do { |
| /* read time and subseconds and relaunch if a second increment occurred |
| * while doing so as it will result in an erroneous result otherwise |
| */ |
| rtc_time = LL_RTC_TIME_Get(RTC); |
| #if HW_SUBSECOND_SUPPORT |
| rtc_subsecond = LL_RTC_TIME_GetSubSecond(RTC); |
| #endif |
| } while (rtc_time != LL_RTC_TIME_Get(RTC)); |
| } while (rtc_date != LL_RTC_DATE_Get(RTC)); |
| |
| k_mutex_unlock(&data->lock); |
| |
| timeptr->tm_year = bcd2bin(__LL_RTC_GET_YEAR(rtc_date)) + RTC_YEAR_REF - TM_YEAR_REF; |
| /* tm_mon allowed values are 0-11 */ |
| timeptr->tm_mon = bcd2bin(__LL_RTC_GET_MONTH(rtc_date)) - 1; |
| timeptr->tm_mday = bcd2bin(__LL_RTC_GET_DAY(rtc_date)); |
| |
| int hw_wday = __LL_RTC_GET_WEEKDAY(rtc_date); |
| |
| if (hw_wday == LL_RTC_WEEKDAY_SUNDAY) { |
| /* LL_RTC_WEEKDAY_SUNDAY = 7 but a 0 is expected in tm_wday for sunday */ |
| timeptr->tm_wday = 0; |
| } else { |
| /* all other values are consistent between hardware and rtc_time structure */ |
| timeptr->tm_wday = hw_wday; |
| } |
| |
| timeptr->tm_hour = bcd2bin(__LL_RTC_GET_HOUR(rtc_time)); |
| timeptr->tm_min = bcd2bin(__LL_RTC_GET_MINUTE(rtc_time)); |
| timeptr->tm_sec = bcd2bin(__LL_RTC_GET_SECOND(rtc_time)); |
| |
| #if HW_SUBSECOND_SUPPORT |
| uint64_t temp = ((uint64_t)(cfg->sync_prescaler - rtc_subsecond)) * 1000000000L; |
| |
| timeptr->tm_nsec = DIV_ROUND_CLOSEST(temp, cfg->sync_prescaler + 1); |
| #else |
| timeptr->tm_nsec = 0; |
| #endif |
| |
| /* unknown values */ |
| timeptr->tm_yday = -1; |
| timeptr->tm_isdst = -1; |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_RTC_CALIBRATION |
| #if !defined(CONFIG_SOC_SERIES_STM32F2X) && \ |
| !(defined(CONFIG_SOC_SERIES_STM32L1X) && !defined(RTC_SMOOTHCALIB_SUPPORT)) |
| static int rtc_stm32_set_calibration(const struct device *dev, int32_t calibration) |
| { |
| ARG_UNUSED(dev); |
| |
| /* Note : calibration is considered here to be ppb value to apply |
| * on clock period (not frequency) but with an opposite sign |
| */ |
| |
| if ((calibration > MAX_PPB) || (calibration < MIN_PPB)) { |
| /* out of supported range */ |
| return -EINVAL; |
| } |
| |
| int32_t nb_pulses = PPB_TO_NB_PULSES(calibration); |
| |
| /* we tested calibration against supported range |
| * so theoretically nb_pulses is also within range |
| */ |
| __ASSERT_NO_MSG(nb_pulses <= MAX_CALP); |
| __ASSERT_NO_MSG(nb_pulses >= -MAX_CALM); |
| |
| uint32_t calp, calm; |
| |
| if (nb_pulses > 0) { |
| calp = LL_RTC_CALIB_INSERTPULSE_SET; |
| calm = MAX_CALP - nb_pulses; |
| } else { |
| calp = LL_RTC_CALIB_INSERTPULSE_NONE; |
| calm = -nb_pulses; |
| } |
| |
| /* wait for recalibration to be ok if a previous recalibration occurred */ |
| if (!WAIT_FOR(LL_RTC_IsActiveFlag_RECALP(RTC) == 0, 100000, k_msleep(1))) { |
| return -EIO; |
| } |
| |
| #if defined(PWR_CR_DBP) || defined(PWR_CR1_DBP) || defined(PWR_DBPCR_DBP) || defined(PWR_DBPR_DBP) |
| LL_PWR_EnableBkUpAccess(); |
| #endif /* PWR_CR_DBP || PWR_CR1_DBP || PWR_DBPR_DBP */ |
| |
| LL_RTC_DisableWriteProtection(RTC); |
| |
| MODIFY_REG(RTC->CALR, RTC_CALR_CALP | RTC_CALR_CALM, calp | calm); |
| |
| LL_RTC_EnableWriteProtection(RTC); |
| |
| #if defined(PWR_CR_DBP) || defined(PWR_CR1_DBP) || defined(PWR_DBPCR_DBP) || defined(PWR_DBPR_DBP) |
| LL_PWR_DisableBkUpAccess(); |
| #endif /* PWR_CR_DBP || PWR_CR1_DBP || PWR_DBPR_DBP */ |
| |
| return 0; |
| } |
| |
| static int rtc_stm32_get_calibration(const struct device *dev, int32_t *calibration) |
| { |
| ARG_UNUSED(dev); |
| |
| uint32_t calr = sys_read32((mem_addr_t) &RTC->CALR); |
| |
| bool calp_enabled = READ_BIT(calr, RTC_CALR_CALP); |
| uint32_t calm = READ_BIT(calr, RTC_CALR_CALM); |
| |
| int32_t nb_pulses = -((int32_t) calm); |
| |
| if (calp_enabled) { |
| nb_pulses += MAX_CALP; |
| } |
| |
| *calibration = NB_PULSES_TO_PPB(nb_pulses); |
| |
| return 0; |
| } |
| #endif |
| #endif /* CONFIG_RTC_CALIBRATION */ |
| |
| static const struct rtc_driver_api rtc_stm32_driver_api = { |
| .set_time = rtc_stm32_set_time, |
| .get_time = rtc_stm32_get_time, |
| /* RTC_ALARM not supported */ |
| /* RTC_UPDATE not supported */ |
| #ifdef CONFIG_RTC_CALIBRATION |
| #if !defined(CONFIG_SOC_SERIES_STM32F2X) && \ |
| !(defined(CONFIG_SOC_SERIES_STM32L1X) && !defined(RTC_SMOOTHCALIB_SUPPORT)) |
| .set_calibration = rtc_stm32_set_calibration, |
| .get_calibration = rtc_stm32_get_calibration, |
| #else |
| #error RTC calibration for devices without smooth calibration feature is not supported yet |
| #endif |
| #endif /* CONFIG_RTC_CALIBRATION */ |
| }; |
| |
| static const struct stm32_pclken rtc_clk[] = STM32_DT_INST_CLOCKS(0); |
| |
| BUILD_ASSERT(DT_INST_CLOCKS_HAS_IDX(0, 1), "RTC source clock not defined in the device tree"); |
| |
| static const struct rtc_stm32_config rtc_config = { |
| #if DT_INST_CLOCKS_CELL_BY_IDX(0, 1, bus) == STM32_SRC_LSI |
| /* prescaler values for LSI @ 32 KHz */ |
| .async_prescaler = 0x7F, |
| .sync_prescaler = 0x00F9, |
| #else /* DT_INST_CLOCKS_CELL_BY_IDX(0, 1, bus) == STM32_SRC_LSE */ |
| /* prescaler values for LSE @ 32768 Hz */ |
| .async_prescaler = 0x7F, |
| .sync_prescaler = 0x00FF, |
| #endif |
| .pclken = rtc_clk, |
| #if DT_INST_NODE_HAS_PROP(0, calib_out_freq) |
| .cal_out_freq = _CONCAT(_CONCAT(LL_RTC_CALIB_OUTPUT_, DT_INST_PROP(0, calib_out_freq)), HZ), |
| #endif |
| }; |
| |
| static struct rtc_stm32_data rtc_data; |
| |
| DEVICE_DT_INST_DEFINE(0, &rtc_stm32_init, NULL, &rtc_data, &rtc_config, PRE_KERNEL_1, |
| CONFIG_RTC_INIT_PRIORITY, &rtc_stm32_driver_api); |