blob: 5c03febc29a7fab803d29a1aebc5926eb847060d [file] [log] [blame]
/*
* Copyright (c) 2021 Volvo Construction Equipment
* Copyright 2023 NXP
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT nxp_imx_flexspi_hyperflash
#include <zephyr/kernel.h>
#include <errno.h>
#include <zephyr/drivers/flash.h>
#include <zephyr/logging/log.h>
/*
* NOTE: If CONFIG_FLASH_MCUX_FLEXSPI_XIP is selected, Any external functions
* called while interacting with the flexspi MUST be relocated to SRAM or ITCM
* at runtime, so that the chip does not access the flexspi to read program
* instructions while it is being written to
*
* Additionally, no data used by this driver should be stored in flash.
*/
#if defined(CONFIG_FLASH_MCUX_FLEXSPI_XIP) && (CONFIG_FLASH_LOG_LEVEL > 0)
#warning "Enabling flash driver logging and XIP mode simultaneously can cause \
read-while-write hazards. This configuration is not recommended."
#endif
LOG_MODULE_REGISTER(flexspi_hyperflash, CONFIG_FLASH_LOG_LEVEL);
#ifdef CONFIG_HAS_MCUX_CACHE
#include <fsl_cache.h>
#endif
#include <zephyr/sys/util.h>
#include "memc_mcux_flexspi.h"
#define SPI_HYPERFLASH_SECTOR_SIZE (0x40000U)
#define SPI_HYPERFLASH_PAGE_SIZE (512U)
#define HYPERFLASH_ERASE_VALUE (0xFF)
#ifdef CONFIG_FLASH_MCUX_FLEXSPI_HYPERFLASH_WRITE_BUFFER
static uint8_t hyperflash_write_buf[SPI_HYPERFLASH_PAGE_SIZE];
#endif
enum {
/* Instructions matching with XIP layout */
READ_DATA = 0,
WRITE_DATA = 1,
READ_STATUS = 2,
WRITE_ENABLE = 4,
ERASE_SECTOR = 6,
PAGE_PROGRAM = 10,
ERASE_CHIP = 12,
};
#define CUSTOM_LUT_LENGTH 64
static const uint32_t flash_flexspi_hyperflash_lut[CUSTOM_LUT_LENGTH] = {
/* Read Data */
[4 * READ_DATA] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0xA0,
kFLEXSPI_Command_RADDR_DDR, kFLEXSPI_8PAD, 0x18),
[4 * READ_DATA + 1] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_CADDR_DDR, kFLEXSPI_8PAD, 0x10,
kFLEXSPI_Command_READ_DDR, kFLEXSPI_8PAD, 0x04),
/* Write Data */
[4 * WRITE_DATA] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x20,
kFLEXSPI_Command_RADDR_DDR, kFLEXSPI_8PAD, 0x18),
[4 * WRITE_DATA + 1] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_CADDR_DDR, kFLEXSPI_8PAD, 0x10,
kFLEXSPI_Command_WRITE_DDR, kFLEXSPI_8PAD, 0x02),
/* Read Status */
[4 * READ_STATUS] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00,
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00),
[4 * READ_STATUS + 1] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00,
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0xAA),
[4 * READ_STATUS + 2] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00,
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x05),
[4 * READ_STATUS + 3] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00,
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x70),
[4 * READ_STATUS + 4] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0xA0,
kFLEXSPI_Command_RADDR_DDR, kFLEXSPI_8PAD, 0x18),
[4 * READ_STATUS + 5] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_CADDR_DDR, kFLEXSPI_8PAD, 0x10,
kFLEXSPI_Command_DUMMY_RWDS_DDR, kFLEXSPI_8PAD, 0x0B),
[4 * READ_STATUS + 6] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_READ_DDR, kFLEXSPI_8PAD, 0x04,
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x0),
/* Write Enable */
[4 * WRITE_ENABLE] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x20,
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00),
[4 * WRITE_ENABLE + 1] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00,
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0xAA),
[4 * WRITE_ENABLE + 2] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00,
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x05),
[4 * WRITE_ENABLE + 3] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00,
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0xAA),
[4 * WRITE_ENABLE + 4] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x20,
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00),
[4 * WRITE_ENABLE + 5] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00,
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x55),
[4 * WRITE_ENABLE + 6] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00,
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x02),
[4 * WRITE_ENABLE + 7] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00,
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x55),
/* Erase Sector */
[4 * ERASE_SECTOR] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00,
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00),
[4 * ERASE_SECTOR + 1] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00,
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0xAA),
[4 * ERASE_SECTOR + 2] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00,
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x05),
[4 * ERASE_SECTOR + 3] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00,
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x80),
[4 * ERASE_SECTOR + 4] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00,
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00),
[4 * ERASE_SECTOR + 5] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00,
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0xAA),
[4 * ERASE_SECTOR + 6] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00,
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x05),
[4 * ERASE_SECTOR + 7] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00,
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0xAA),
[4 * ERASE_SECTOR + 8] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00,
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00),
[4 * ERASE_SECTOR + 9] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00,
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x55),
[4 * ERASE_SECTOR + 10] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00,
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x02),
[4 * ERASE_SECTOR + 11] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00,
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x55),
[4 * ERASE_SECTOR + 12] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00,
kFLEXSPI_Command_RADDR_DDR, kFLEXSPI_8PAD, 0x18),
[4 * ERASE_SECTOR + 13] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_CADDR_DDR, kFLEXSPI_8PAD, 0x10,
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00),
[4 * ERASE_SECTOR + 14] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x30,
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x00),
/* program page with word program command sequence */
[4 * PAGE_PROGRAM] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x20,
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00),
[4 * PAGE_PROGRAM + 1] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00,
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0xAA),
[4 * PAGE_PROGRAM + 2] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00,
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x05),
[4 * PAGE_PROGRAM + 3] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00,
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0xA0),
[4 * PAGE_PROGRAM + 4] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x20,
kFLEXSPI_Command_RADDR_DDR, kFLEXSPI_8PAD, 0x18),
[4 * PAGE_PROGRAM + 5] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_CADDR_DDR, kFLEXSPI_8PAD, 0x10,
kFLEXSPI_Command_WRITE_DDR, kFLEXSPI_8PAD, 0x80),
/* Erase chip */
[4 * ERASE_CHIP] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00,
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00),
[4 * ERASE_CHIP + 1] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00,
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0xAA),
[4 * ERASE_CHIP + 2] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00,
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x05),
[4 * ERASE_CHIP + 3] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00,
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x80),
/* 1 */
[4 * ERASE_CHIP + 4] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00,
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00),
[4 * ERASE_CHIP + 5] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00,
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0xAA),
[4 * ERASE_CHIP + 6] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00,
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x05),
[4 * ERASE_CHIP + 7] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00,
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0xAA),
/* 2 */
[4 * ERASE_CHIP + 8] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00,
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00),
[4 * ERASE_CHIP + 9] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00,
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x55),
[4 * ERASE_CHIP + 10] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00,
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x02),
[4 * ERASE_CHIP + 11] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00,
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x55),
/* 3 */
[4 * ERASE_CHIP + 12] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00,
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00),
[4 * ERASE_CHIP + 13] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00,
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0xAA),
[4 * ERASE_CHIP + 14] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00,
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x05),
[4 * ERASE_CHIP + 15] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00,
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x10),
};
struct flash_flexspi_hyperflash_config {
const struct device *controller;
};
/* Device variables used in critical sections should be in this structure */
struct flash_flexspi_hyperflash_data {
struct device controller;
flexspi_device_config_t config;
flexspi_port_t port;
struct flash_pages_layout layout;
struct flash_parameters flash_parameters;
};
static int flash_flexspi_hyperflash_wait_bus_busy(const struct device *dev)
{
struct flash_flexspi_hyperflash_data *data = dev->data;
flexspi_transfer_t transfer;
int ret;
bool is_busy;
uint32_t read_value;
transfer.deviceAddress = 0;
transfer.port = data->port;
transfer.cmdType = kFLEXSPI_Read;
transfer.SeqNumber = 2;
transfer.seqIndex = READ_STATUS;
transfer.data = &read_value;
transfer.dataSize = 2;
do {
ret = memc_flexspi_transfer(&data->controller, &transfer);
if (ret != 0) {
return ret;
}
is_busy = !(read_value & 0x8000);
if (read_value & 0x3200) {
ret = -EINVAL;
break;
}
} while (is_busy);
return ret;
}
static int flash_flexspi_hyperflash_write_enable(const struct device *dev, uint32_t address)
{
struct flash_flexspi_hyperflash_data *data = dev->data;
flexspi_transfer_t transfer;
int ret;
transfer.deviceAddress = address;
transfer.port = data->port;
transfer.cmdType = kFLEXSPI_Command;
transfer.SeqNumber = 2;
transfer.seqIndex = WRITE_ENABLE;
ret = memc_flexspi_transfer(&data->controller, &transfer);
return ret;
}
static int flash_flexspi_hyperflash_check_vendor_id(const struct device *dev)
{
struct flash_flexspi_hyperflash_data *data = dev->data;
uint8_t writebuf[4] = {0x00, 0x98};
uint32_t buffer[2];
int ret;
flexspi_transfer_t transfer;
transfer.deviceAddress = (0x555 * 2);
transfer.port = data->port;
transfer.cmdType = kFLEXSPI_Write;
transfer.SeqNumber = 1;
transfer.seqIndex = WRITE_DATA;
transfer.data = (uint32_t *)writebuf;
transfer.dataSize = 2;
LOG_DBG("Reading id");
ret = memc_flexspi_transfer(&data->controller, &transfer);
if (ret != 0) {
LOG_ERR("failed to CFI");
return ret;
}
transfer.deviceAddress = (0x10 * 2);
transfer.port = data->port;
transfer.cmdType = kFLEXSPI_Read;
transfer.SeqNumber = 1;
transfer.seqIndex = READ_DATA;
transfer.data = buffer;
transfer.dataSize = 8;
ret = memc_flexspi_transfer(&data->controller, &transfer);
if (ret != 0) {
LOG_ERR("failed to read id");
return ret;
}
buffer[1] &= 0xFFFF;
/* Check that the data read out is unicode "QRY" in big-endian order */
if ((buffer[0] != 0x52005100) || (buffer[1] != 0x5900)) {
LOG_ERR("data read out is wrong!");
return -EINVAL;
}
writebuf[1] = 0xF0;
transfer.deviceAddress = 0;
transfer.port = data->port;
transfer.cmdType = kFLEXSPI_Write;
transfer.SeqNumber = 1;
transfer.seqIndex = WRITE_DATA;
transfer.data = (uint32_t *)writebuf;
transfer.dataSize = 2;
ret = memc_flexspi_transfer(&data->controller, &transfer);
if (ret != 0) {
LOG_ERR("failed to exit");
return ret;
}
memc_flexspi_reset(&data->controller);
return ret;
}
static int flash_flexspi_hyperflash_page_program(const struct device *dev, off_t
offset, const void *buffer, size_t len)
{
struct flash_flexspi_hyperflash_data *data = dev->data;
flexspi_transfer_t transfer = {
.deviceAddress = offset,
.port = data->port,
.cmdType = kFLEXSPI_Write,
.SeqNumber = 2,
.seqIndex = PAGE_PROGRAM,
.data = (uint32_t *)buffer,
.dataSize = len,
};
LOG_DBG("Page programming %d bytes to 0x%08lx", len, offset);
return memc_flexspi_transfer(&data->controller, &transfer);
}
static int flash_flexspi_hyperflash_read(const struct device *dev, off_t offset,
void *buffer, size_t len)
{
struct flash_flexspi_hyperflash_data *data = dev->data;
uint8_t *src = memc_flexspi_get_ahb_address(&data->controller,
data->port,
offset);
if (!src) {
return -EINVAL;
}
memcpy(buffer, src, len);
return 0;
}
static int flash_flexspi_hyperflash_write(const struct device *dev, off_t offset,
const void *buffer, size_t len)
{
struct flash_flexspi_hyperflash_data *data = dev->data;
size_t size = len;
uint8_t *src = (uint8_t *)buffer;
unsigned int key = 0;
int i, j;
int ret = -1;
uint8_t *dst = memc_flexspi_get_ahb_address(&data->controller,
data->port,
offset);
if (!dst) {
return -EINVAL;
}
if (memc_flexspi_is_running_xip(&data->controller)) {
/*
* ==== ENTER CRITICAL SECTION ====
* No flash access should be performed in critical section. All
* code and data accessed must reside in ram.
*/
key = irq_lock();
}
/* Clock FlexSPI at 84 MHZ (42MHz SCLK in DDR mode) */
(void)memc_flexspi_update_clock(&data->controller, &data->config,
data->port, MHZ(84));
while (len) {
/* Writing between two page sizes crashes the platform so we
* have to write the part that fits in the first page and then
* update the offset.
*/
i = MIN(SPI_HYPERFLASH_PAGE_SIZE - (offset %
SPI_HYPERFLASH_PAGE_SIZE), len);
#ifdef CONFIG_FLASH_MCUX_FLEXSPI_HYPERFLASH_WRITE_BUFFER
for (j = 0; j < i; j++) {
hyperflash_write_buf[j] = src[j];
}
#endif
ret = flash_flexspi_hyperflash_write_enable(dev, offset);
if (ret != 0) {
LOG_ERR("failed to enable write");
break;
}
#ifdef CONFIG_FLASH_MCUX_FLEXSPI_HYPERFLASH_WRITE_BUFFER
ret = flash_flexspi_hyperflash_page_program(dev, offset,
hyperflash_write_buf, i);
#else
ret = flash_flexspi_hyperflash_page_program(dev, offset, src, i);
#endif
if (ret != 0) {
LOG_ERR("failed to write");
break;
}
ret = flash_flexspi_hyperflash_wait_bus_busy(dev);
if (ret != 0) {
LOG_ERR("failed to wait bus busy");
break;
}
/* Do software reset. */
memc_flexspi_reset(&data->controller);
src += i;
offset += i;
len -= i;
}
/* Clock FlexSPI at 332 MHZ (166 MHz SCLK in DDR mode) */
(void)memc_flexspi_update_clock(&data->controller, &data->config,
data->port, MHZ(332));
#ifdef CONFIG_HAS_MCUX_CACHE
DCACHE_InvalidateByRange((uint32_t) dst, size);
#endif
if (memc_flexspi_is_running_xip(&data->controller)) {
/* ==== EXIT CRITICAL SECTION ==== */
irq_unlock(key);
}
return ret;
}
static int flash_flexspi_hyperflash_erase(const struct device *dev, off_t offset, size_t size)
{
struct flash_flexspi_hyperflash_data *data = dev->data;
flexspi_transfer_t transfer;
int ret = -1;
int i;
unsigned int key = 0;
int num_sectors = size / SPI_HYPERFLASH_SECTOR_SIZE;
uint8_t *dst = memc_flexspi_get_ahb_address(&data->controller,
data->port,
offset);
if (!dst) {
return -EINVAL;
}
if (offset % SPI_HYPERFLASH_SECTOR_SIZE) {
LOG_ERR("Invalid offset");
return -EINVAL;
}
if (size % SPI_HYPERFLASH_SECTOR_SIZE) {
LOG_ERR("Invalid offset");
return -EINVAL;
}
if (memc_flexspi_is_running_xip(&data->controller)) {
/*
* ==== ENTER CRITICAL SECTION ====
* No flash access should be performed in critical section. All
* code and data accessed must reside in ram.
*/
key = irq_lock();
}
for (i = 0; i < num_sectors; i++) {
ret = flash_flexspi_hyperflash_write_enable(dev, offset);
if (ret != 0) {
LOG_ERR("failed to write_enable");
break;
}
LOG_DBG("Erasing sector at 0x%08lx", offset);
transfer.deviceAddress = offset;
transfer.port = data->port;
transfer.cmdType = kFLEXSPI_Command;
transfer.SeqNumber = 4;
transfer.seqIndex = ERASE_SECTOR;
ret = memc_flexspi_transfer(&data->controller, &transfer);
if (ret != 0) {
LOG_ERR("failed to erase");
break;
}
/* wait bus busy */
ret = flash_flexspi_hyperflash_wait_bus_busy(dev);
if (ret != 0) {
LOG_ERR("failed to wait bus busy");
break;
}
/* Do software reset. */
memc_flexspi_reset(&data->controller);
offset += SPI_HYPERFLASH_SECTOR_SIZE;
}
#ifdef CONFIG_HAS_MCUX_CACHE
DCACHE_InvalidateByRange((uint32_t) dst, size);
#endif
if (memc_flexspi_is_running_xip(&data->controller)) {
/* ==== EXIT CRITICAL SECTION ==== */
irq_unlock(key);
}
return ret;
}
static const struct flash_parameters *flash_flexspi_hyperflash_get_parameters(
const struct device *dev)
{
struct flash_flexspi_hyperflash_data *data = dev->data;
return &data->flash_parameters;
}
static void flash_flexspi_hyperflash_pages_layout(const struct device *dev,
const struct flash_pages_layout **layout,
size_t *layout_size)
{
struct flash_flexspi_hyperflash_data *data = dev->data;
*layout = &data->layout;
*layout_size = 1;
}
static int flash_flexspi_hyperflash_init(const struct device *dev)
{
const struct flash_flexspi_hyperflash_config *config = dev->config;
struct flash_flexspi_hyperflash_data *data = dev->data;
/* Since the controller variable may be used in critical sections,
* copy the device pointer into a variable stored in RAM
*/
memcpy(&data->controller, config->controller, sizeof(struct device));
if (!device_is_ready(&data->controller)) {
LOG_ERR("Controller device not ready");
return -ENODEV;
}
memc_flexspi_wait_bus_idle(&data->controller);
if (memc_flexspi_is_running_xip(&data->controller)) {
/* Wait for bus idle before configuring */
memc_flexspi_wait_bus_idle(&data->controller);
}
if (memc_flexspi_set_device_config(&data->controller, &data->config,
(const uint32_t *)flash_flexspi_hyperflash_lut,
sizeof(flash_flexspi_hyperflash_lut) / MEMC_FLEXSPI_CMD_SIZE,
data->port)) {
LOG_ERR("Could not set device configuration");
return -EINVAL;
}
memc_flexspi_reset(&data->controller);
if (flash_flexspi_hyperflash_check_vendor_id(dev)) {
LOG_ERR("Could not read vendor id");
return -EIO;
}
return 0;
}
static const struct flash_driver_api flash_flexspi_hyperflash_api = {
.read = flash_flexspi_hyperflash_read,
.write = flash_flexspi_hyperflash_write,
.erase = flash_flexspi_hyperflash_erase,
.get_parameters = flash_flexspi_hyperflash_get_parameters,
#if defined(CONFIG_FLASH_PAGE_LAYOUT)
.page_layout = flash_flexspi_hyperflash_pages_layout,
#endif
};
#define CONCAT3(x, y, z) x ## y ## z
#define CS_INTERVAL_UNIT(unit) \
CONCAT3(kFLEXSPI_CsIntervalUnit, unit, SckCycle)
#define AHB_WRITE_WAIT_UNIT(unit) \
CONCAT3(kFLEXSPI_AhbWriteWaitUnit, unit, AhbCycle)
#define FLASH_FLEXSPI_DEVICE_CONFIG(n) \
{ \
.flexspiRootClk = MHZ(42), \
.flashSize = DT_INST_PROP(n, size) / 8 / KB(1), \
.CSIntervalUnit = \
CS_INTERVAL_UNIT( \
DT_INST_PROP(n, cs_interval_unit)), \
.CSInterval = DT_INST_PROP(n, cs_interval), \
.CSHoldTime = DT_INST_PROP(n, cs_hold_time), \
.CSSetupTime = DT_INST_PROP(n, cs_setup_time), \
.dataValidTime = DT_INST_PROP(n, data_valid_time), \
.columnspace = DT_INST_PROP(n, column_space), \
.enableWordAddress = DT_INST_PROP(n, word_addressable), \
.AWRSeqIndex = WRITE_DATA, \
.AWRSeqNumber = 1, \
.ARDSeqIndex = READ_DATA, \
.ARDSeqNumber = 1, \
.AHBWriteWaitUnit = \
AHB_WRITE_WAIT_UNIT( \
DT_INST_PROP(n, ahb_write_wait_unit)), \
.AHBWriteWaitInterval = \
DT_INST_PROP(n, ahb_write_wait_interval), \
} \
#define FLASH_FLEXSPI_HYPERFLASH(n) \
static struct flash_flexspi_hyperflash_config \
flash_flexspi_hyperflash_config_##n = { \
.controller = DEVICE_DT_GET(DT_INST_BUS(n)), \
}; \
static struct flash_flexspi_hyperflash_data \
flash_flexspi_hyperflash_data_##n = { \
.config = FLASH_FLEXSPI_DEVICE_CONFIG(n), \
.port = DT_INST_REG_ADDR(n), \
.layout = { \
.pages_count = DT_INST_PROP(n, size) / 8 \
/ SPI_HYPERFLASH_SECTOR_SIZE, \
.pages_size = SPI_HYPERFLASH_SECTOR_SIZE, \
}, \
.flash_parameters = { \
.write_block_size = DT_INST_PROP(n, write_block_size), \
.erase_value = HYPERFLASH_ERASE_VALUE, \
}, \
}; \
\
DEVICE_DT_INST_DEFINE(n, \
flash_flexspi_hyperflash_init, \
NULL, \
&flash_flexspi_hyperflash_data_##n, \
&flash_flexspi_hyperflash_config_##n, \
POST_KERNEL, \
CONFIG_FLASH_INIT_PRIORITY, \
&flash_flexspi_hyperflash_api);
DT_INST_FOREACH_STATUS_OKAY(FLASH_FLEXSPI_HYPERFLASH)