|  | /* | 
|  | * Copyright (c) 2016-2017 Wind River Systems, Inc. | 
|  | * | 
|  | * SPDX-License-Identifier: Apache-2.0 | 
|  | */ | 
|  |  | 
|  | #ifndef ZEPHYR_KERNEL_INCLUDE_KSCHED_H_ | 
|  | #define ZEPHYR_KERNEL_INCLUDE_KSCHED_H_ | 
|  |  | 
|  | #include <kernel_structs.h> | 
|  | #include <kernel_internal.h> | 
|  | #include <timeout_q.h> | 
|  | #include <tracing/tracing.h> | 
|  | #include <stdbool.h> | 
|  |  | 
|  | BUILD_ASSERT(K_LOWEST_APPLICATION_THREAD_PRIO | 
|  | >= K_HIGHEST_APPLICATION_THREAD_PRIO); | 
|  |  | 
|  | #ifdef CONFIG_MULTITHREADING | 
|  | #define Z_VALID_PRIO(prio, entry_point)				     \ | 
|  | (((prio) == K_IDLE_PRIO && z_is_idle_thread_entry(entry_point)) || \ | 
|  | ((K_LOWEST_APPLICATION_THREAD_PRIO			     \ | 
|  | >= K_HIGHEST_APPLICATION_THREAD_PRIO)		     \ | 
|  | && (prio) >= K_HIGHEST_APPLICATION_THREAD_PRIO	     \ | 
|  | && (prio) <= K_LOWEST_APPLICATION_THREAD_PRIO)) | 
|  |  | 
|  | #define Z_ASSERT_VALID_PRIO(prio, entry_point) do { \ | 
|  | __ASSERT(Z_VALID_PRIO((prio), (entry_point)), \ | 
|  | "invalid priority (%d); allowed range: %d to %d", \ | 
|  | (prio), \ | 
|  | K_LOWEST_APPLICATION_THREAD_PRIO, \ | 
|  | K_HIGHEST_APPLICATION_THREAD_PRIO); \ | 
|  | } while (false) | 
|  | #else | 
|  | #define Z_VALID_PRIO(prio, entry_point) ((prio) == -1) | 
|  | #define Z_ASSERT_VALID_PRIO(prio, entry_point) __ASSERT((prio) == -1, "") | 
|  | #endif | 
|  |  | 
|  | void z_sched_init(void); | 
|  | void z_move_thread_to_end_of_prio_q(struct k_thread *thread); | 
|  | int z_is_thread_time_slicing(struct k_thread *thread); | 
|  | void z_unpend_thread_no_timeout(struct k_thread *thread); | 
|  | struct k_thread *z_unpend1_no_timeout(_wait_q_t *wait_q); | 
|  | int z_pend_curr(struct k_spinlock *lock, k_spinlock_key_t key, | 
|  | _wait_q_t *wait_q, k_timeout_t timeout); | 
|  | int z_pend_curr_irqlock(uint32_t key, _wait_q_t *wait_q, k_timeout_t timeout); | 
|  | void z_pend_thread(struct k_thread *thread, _wait_q_t *wait_q, | 
|  | k_timeout_t timeout); | 
|  | void z_reschedule(struct k_spinlock *lock, k_spinlock_key_t key); | 
|  | void z_reschedule_irqlock(uint32_t key); | 
|  | struct k_thread *z_unpend_first_thread(_wait_q_t *wait_q); | 
|  | void z_unpend_thread(struct k_thread *thread); | 
|  | int z_unpend_all(_wait_q_t *wait_q); | 
|  | void z_thread_priority_set(struct k_thread *thread, int prio); | 
|  | bool z_set_prio(struct k_thread *thread, int prio); | 
|  | void *z_get_next_switch_handle(void *interrupted); | 
|  | void idle(void *unused1, void *unused2, void *unused3); | 
|  | void z_time_slice(int ticks); | 
|  | void z_reset_time_slice(void); | 
|  | void z_sched_abort(struct k_thread *thread); | 
|  | void z_sched_ipi(void); | 
|  | void z_sched_start(struct k_thread *thread); | 
|  | void z_ready_thread(struct k_thread *thread); | 
|  | void z_requeue_current(struct k_thread *curr); | 
|  | struct k_thread *z_swap_next_thread(void); | 
|  | void z_thread_abort(struct k_thread *thread); | 
|  |  | 
|  | static inline void z_pend_curr_unlocked(_wait_q_t *wait_q, k_timeout_t timeout) | 
|  | { | 
|  | (void) z_pend_curr_irqlock(arch_irq_lock(), wait_q, timeout); | 
|  | } | 
|  |  | 
|  | static inline void z_reschedule_unlocked(void) | 
|  | { | 
|  | (void) z_reschedule_irqlock(arch_irq_lock()); | 
|  | } | 
|  |  | 
|  | static inline bool z_is_idle_thread_entry(void *entry_point) | 
|  | { | 
|  | return entry_point == idle; | 
|  | } | 
|  |  | 
|  | static inline bool z_is_idle_thread_object(struct k_thread *thread) | 
|  | { | 
|  | #ifdef CONFIG_MULTITHREADING | 
|  | #ifdef CONFIG_SMP | 
|  | return thread->base.is_idle; | 
|  | #else | 
|  | return thread == &z_idle_threads[0]; | 
|  | #endif | 
|  | #else | 
|  | return false; | 
|  | #endif /* CONFIG_MULTITHREADING */ | 
|  | } | 
|  |  | 
|  | static inline bool z_is_thread_suspended(struct k_thread *thread) | 
|  | { | 
|  | return (thread->base.thread_state & _THREAD_SUSPENDED) != 0U; | 
|  | } | 
|  |  | 
|  | static inline bool z_is_thread_pending(struct k_thread *thread) | 
|  | { | 
|  | return (thread->base.thread_state & _THREAD_PENDING) != 0U; | 
|  | } | 
|  |  | 
|  | static inline bool z_is_thread_prevented_from_running(struct k_thread *thread) | 
|  | { | 
|  | uint8_t state = thread->base.thread_state; | 
|  |  | 
|  | return (state & (_THREAD_PENDING | _THREAD_PRESTART | _THREAD_DEAD | | 
|  | _THREAD_DUMMY | _THREAD_SUSPENDED)) != 0U; | 
|  |  | 
|  | } | 
|  |  | 
|  | static inline bool z_is_thread_timeout_active(struct k_thread *thread) | 
|  | { | 
|  | return !z_is_inactive_timeout(&thread->base.timeout); | 
|  | } | 
|  |  | 
|  | static inline bool z_is_thread_ready(struct k_thread *thread) | 
|  | { | 
|  | return !((z_is_thread_prevented_from_running(thread)) != 0U || | 
|  | z_is_thread_timeout_active(thread)); | 
|  | } | 
|  |  | 
|  | static inline bool z_has_thread_started(struct k_thread *thread) | 
|  | { | 
|  | return (thread->base.thread_state & _THREAD_PRESTART) == 0U; | 
|  | } | 
|  |  | 
|  | static inline bool z_is_thread_state_set(struct k_thread *thread, uint32_t state) | 
|  | { | 
|  | return (thread->base.thread_state & state) != 0U; | 
|  | } | 
|  |  | 
|  | static inline bool z_is_thread_queued(struct k_thread *thread) | 
|  | { | 
|  | return z_is_thread_state_set(thread, _THREAD_QUEUED); | 
|  | } | 
|  |  | 
|  | static inline void z_mark_thread_as_suspended(struct k_thread *thread) | 
|  | { | 
|  | thread->base.thread_state |= _THREAD_SUSPENDED; | 
|  |  | 
|  | SYS_PORT_TRACING_FUNC(k_thread, sched_suspend, thread); | 
|  | } | 
|  |  | 
|  | static inline void z_mark_thread_as_not_suspended(struct k_thread *thread) | 
|  | { | 
|  | thread->base.thread_state &= ~_THREAD_SUSPENDED; | 
|  |  | 
|  | SYS_PORT_TRACING_FUNC(k_thread, sched_resume, thread); | 
|  | } | 
|  |  | 
|  | static inline void z_mark_thread_as_started(struct k_thread *thread) | 
|  | { | 
|  | thread->base.thread_state &= ~_THREAD_PRESTART; | 
|  | } | 
|  |  | 
|  | static inline void z_mark_thread_as_pending(struct k_thread *thread) | 
|  | { | 
|  | thread->base.thread_state |= _THREAD_PENDING; | 
|  | } | 
|  |  | 
|  | static inline void z_mark_thread_as_not_pending(struct k_thread *thread) | 
|  | { | 
|  | thread->base.thread_state &= ~_THREAD_PENDING; | 
|  | } | 
|  |  | 
|  | static inline void z_set_thread_states(struct k_thread *thread, uint32_t states) | 
|  | { | 
|  | thread->base.thread_state |= states; | 
|  | } | 
|  |  | 
|  | static inline void z_reset_thread_states(struct k_thread *thread, | 
|  | uint32_t states) | 
|  | { | 
|  | thread->base.thread_state &= ~states; | 
|  | } | 
|  |  | 
|  | static inline bool z_is_under_prio_ceiling(int prio) | 
|  | { | 
|  | return prio >= CONFIG_PRIORITY_CEILING; | 
|  | } | 
|  |  | 
|  | static inline int z_get_new_prio_with_ceiling(int prio) | 
|  | { | 
|  | return z_is_under_prio_ceiling(prio) ? prio : CONFIG_PRIORITY_CEILING; | 
|  | } | 
|  |  | 
|  | static inline bool z_is_prio1_higher_than_or_equal_to_prio2(int prio1, int prio2) | 
|  | { | 
|  | return prio1 <= prio2; | 
|  | } | 
|  |  | 
|  | static inline bool z_is_prio_higher_or_equal(int prio1, int prio2) | 
|  | { | 
|  | return z_is_prio1_higher_than_or_equal_to_prio2(prio1, prio2); | 
|  | } | 
|  |  | 
|  | static inline bool z_is_prio1_lower_than_or_equal_to_prio2(int prio1, int prio2) | 
|  | { | 
|  | return prio1 >= prio2; | 
|  | } | 
|  |  | 
|  | static inline bool z_is_prio1_higher_than_prio2(int prio1, int prio2) | 
|  | { | 
|  | return prio1 < prio2; | 
|  | } | 
|  |  | 
|  | static inline bool z_is_prio_higher(int prio, int test_prio) | 
|  | { | 
|  | return z_is_prio1_higher_than_prio2(prio, test_prio); | 
|  | } | 
|  |  | 
|  | static inline bool z_is_prio_lower_or_equal(int prio1, int prio2) | 
|  | { | 
|  | return z_is_prio1_lower_than_or_equal_to_prio2(prio1, prio2); | 
|  | } | 
|  |  | 
|  | int32_t z_sched_prio_cmp(struct k_thread *thread_1, struct k_thread *thread_2); | 
|  |  | 
|  | static inline bool _is_valid_prio(int prio, void *entry_point) | 
|  | { | 
|  | if (prio == K_IDLE_PRIO && z_is_idle_thread_entry(entry_point)) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!z_is_prio_higher_or_equal(prio, | 
|  | K_LOWEST_APPLICATION_THREAD_PRIO)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!z_is_prio_lower_or_equal(prio, | 
|  | K_HIGHEST_APPLICATION_THREAD_PRIO)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static inline void _ready_one_thread(_wait_q_t *wq) | 
|  | { | 
|  | struct k_thread *thread = z_unpend_first_thread(wq); | 
|  |  | 
|  | if (thread != NULL) { | 
|  | z_ready_thread(thread); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void z_sched_lock(void) | 
|  | { | 
|  | __ASSERT(!arch_is_in_isr(), ""); | 
|  | __ASSERT(_current->base.sched_locked != 1U, ""); | 
|  |  | 
|  | --_current->base.sched_locked; | 
|  |  | 
|  | compiler_barrier(); | 
|  | } | 
|  |  | 
|  | static ALWAYS_INLINE void z_sched_unlock_no_reschedule(void) | 
|  | { | 
|  | __ASSERT(!arch_is_in_isr(), ""); | 
|  | __ASSERT(_current->base.sched_locked != 0U, ""); | 
|  |  | 
|  | compiler_barrier(); | 
|  |  | 
|  | ++_current->base.sched_locked; | 
|  | } | 
|  |  | 
|  | static ALWAYS_INLINE bool z_is_thread_timeout_expired(struct k_thread *thread) | 
|  | { | 
|  | #ifdef CONFIG_SYS_CLOCK_EXISTS | 
|  | return thread->base.timeout.dticks == _EXPIRED; | 
|  | #else | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * APIs for working with the Zephyr kernel scheduler. Intended for use in | 
|  | * management of IPC objects, either in the core kernel or other IPC | 
|  | * implemented by OS compatibility layers, providing basic wait/wake operations | 
|  | * with spinlocks used for synchronization. | 
|  | * | 
|  | * These APIs are public and will be treated as contract, even if the | 
|  | * underlying scheduler implementation changes. | 
|  | */ | 
|  |  | 
|  | /** | 
|  | * Wake up a thread pending on the provided wait queue | 
|  | * | 
|  | * Given a wait_q, wake up the highest priority thread on the queue. If the | 
|  | * queue was empty just return false. | 
|  | * | 
|  | * Otherwise, do the following, in order,  holding sched_spinlock the entire | 
|  | * time so that the thread state is guaranteed not to change: | 
|  | * - Set the thread's swap return values to swap_retval and swap_data | 
|  | * - un-pend and ready the thread, but do not invoke the scheduler. | 
|  | * | 
|  | * Repeated calls to this function until it returns false is a suitable | 
|  | * way to wake all threads on the queue. | 
|  | * | 
|  | * It is up to the caller to implement locking such that the return value of | 
|  | * this function (whether a thread was woken up or not) does not immediately | 
|  | * become stale. Calls to wait and wake on the same wait_q object must have | 
|  | * synchronization. Calling this without holding any spinlock is a sign that | 
|  | * this API is not being used properly. | 
|  | * | 
|  | * @param wait_q Wait queue to wake up the highest prio thread | 
|  | * @param swap_retval Swap return value for woken thread | 
|  | * @param swap_data Data return value to supplement swap_retval. May be NULL. | 
|  | * @retval true If a thread was woken up | 
|  | * @retval false If the wait_q was empty | 
|  | */ | 
|  | bool z_sched_wake(_wait_q_t *wait_q, int swap_retval, void *swap_data); | 
|  |  | 
|  | /** | 
|  | * Wake up all threads pending on the provided wait queue | 
|  | * | 
|  | * Convenience function to invoke z_sched_wake() on all threads in the queue | 
|  | * until there are no more to wake up. | 
|  | * | 
|  | * @param wait_q Wait queue to wake up the highest prio thread | 
|  | * @param swap_retval Swap return value for woken thread | 
|  | * @param swap_data Data return value to supplement swap_retval. May be NULL. | 
|  | * @retval true If any threads were woken up | 
|  | * @retval false If the wait_q was empty | 
|  | */ | 
|  | static inline bool z_sched_wake_all(_wait_q_t *wait_q, int swap_retval, | 
|  | void *swap_data) | 
|  | { | 
|  | bool woken = false; | 
|  |  | 
|  | while (z_sched_wake(wait_q, swap_retval, swap_data)) { | 
|  | woken = true; | 
|  | } | 
|  |  | 
|  | /* True if we woke at least one thread up */ | 
|  | return woken; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Atomically put the current thread to sleep on a wait queue, with timeout | 
|  | * | 
|  | * The thread will be added to the provided waitqueue. The lock, which should | 
|  | * be held by the caller with the provided key, will be released once this is | 
|  | * completely done and we have swapped out. | 
|  | * | 
|  | * The return value and data pointer is set by whoever woke us up via | 
|  | * z_sched_wake. | 
|  | * | 
|  | * @param lock Address of spinlock to release when we swap out | 
|  | * @param key Key to the provided spinlock when it was locked | 
|  | * @param wait_q Wait queue to go to sleep on | 
|  | * @param timeout Waiting period to be woken up, or K_FOREVER to wait | 
|  | *                indefinitely. | 
|  | * @param data Storage location for data pointer set when thread was woken up. | 
|  | *             May be NULL if not used. | 
|  | * @retval Return value set by whatever woke us up, or -EAGAIN if the timeout | 
|  | *         expired without being woken up. | 
|  | */ | 
|  | int z_sched_wait(struct k_spinlock *lock, k_spinlock_key_t key, | 
|  | _wait_q_t *wait_q, k_timeout_t timeout, void **data); | 
|  |  | 
|  | #endif /* ZEPHYR_KERNEL_INCLUDE_KSCHED_H_ */ |