|  | /* | 
|  | * Copyright (c) 2010-2014 Wind River Systems, Inc. | 
|  | * | 
|  | * SPDX-License-Identifier: Apache-2.0 | 
|  | */ | 
|  |  | 
|  | /** | 
|  | * @file | 
|  | * @brief Kernel thread support | 
|  | * | 
|  | * This module provides general purpose thread support. | 
|  | */ | 
|  |  | 
|  | #include <zephyr/kernel.h> | 
|  | #include <zephyr/spinlock.h> | 
|  | #include <zephyr/sys/math_extras.h> | 
|  | #include <zephyr/sys_clock.h> | 
|  | #include <ksched.h> | 
|  | #include <wait_q.h> | 
|  | #include <zephyr/syscall_handler.h> | 
|  | #include <kernel_internal.h> | 
|  | #include <kswap.h> | 
|  | #include <zephyr/init.h> | 
|  | #include <zephyr/tracing/tracing.h> | 
|  | #include <string.h> | 
|  | #include <stdbool.h> | 
|  | #include <zephyr/irq_offload.h> | 
|  | #include <zephyr/sys/check.h> | 
|  | #include <zephyr/random/rand32.h> | 
|  | #include <zephyr/sys/atomic.h> | 
|  | #include <zephyr/logging/log.h> | 
|  | #include <zephyr/sys/iterable_sections.h> | 
|  |  | 
|  | LOG_MODULE_DECLARE(os, CONFIG_KERNEL_LOG_LEVEL); | 
|  |  | 
|  | #ifdef CONFIG_THREAD_MONITOR | 
|  | /* This lock protects the linked list of active threads; i.e. the | 
|  | * initial _kernel.threads pointer and the linked list made up of | 
|  | * thread->next_thread (until NULL) | 
|  | */ | 
|  | static struct k_spinlock z_thread_monitor_lock; | 
|  | #endif /* CONFIG_THREAD_MONITOR */ | 
|  |  | 
|  | #define _FOREACH_STATIC_THREAD(thread_data)              \ | 
|  | STRUCT_SECTION_FOREACH(_static_thread_data, thread_data) | 
|  |  | 
|  | void k_thread_foreach(k_thread_user_cb_t user_cb, void *user_data) | 
|  | { | 
|  | #if defined(CONFIG_THREAD_MONITOR) | 
|  | struct k_thread *thread; | 
|  | k_spinlock_key_t key; | 
|  |  | 
|  | __ASSERT(user_cb != NULL, "user_cb can not be NULL"); | 
|  |  | 
|  | /* | 
|  | * Lock is needed to make sure that the _kernel.threads is not being | 
|  | * modified by the user_cb either directly or indirectly. | 
|  | * The indirect ways are through calling k_thread_create and | 
|  | * k_thread_abort from user_cb. | 
|  | */ | 
|  | key = k_spin_lock(&z_thread_monitor_lock); | 
|  |  | 
|  | SYS_PORT_TRACING_FUNC_ENTER(k_thread, foreach); | 
|  |  | 
|  | for (thread = _kernel.threads; thread; thread = thread->next_thread) { | 
|  | user_cb(thread, user_data); | 
|  | } | 
|  |  | 
|  | SYS_PORT_TRACING_FUNC_EXIT(k_thread, foreach); | 
|  |  | 
|  | k_spin_unlock(&z_thread_monitor_lock, key); | 
|  | #else | 
|  | ARG_UNUSED(user_cb); | 
|  | ARG_UNUSED(user_data); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void k_thread_foreach_unlocked(k_thread_user_cb_t user_cb, void *user_data) | 
|  | { | 
|  | #if defined(CONFIG_THREAD_MONITOR) | 
|  | struct k_thread *thread; | 
|  | k_spinlock_key_t key; | 
|  |  | 
|  | __ASSERT(user_cb != NULL, "user_cb can not be NULL"); | 
|  |  | 
|  | key = k_spin_lock(&z_thread_monitor_lock); | 
|  |  | 
|  | SYS_PORT_TRACING_FUNC_ENTER(k_thread, foreach_unlocked); | 
|  |  | 
|  | for (thread = _kernel.threads; thread; thread = thread->next_thread) { | 
|  | k_spin_unlock(&z_thread_monitor_lock, key); | 
|  | user_cb(thread, user_data); | 
|  | key = k_spin_lock(&z_thread_monitor_lock); | 
|  | } | 
|  |  | 
|  | SYS_PORT_TRACING_FUNC_EXIT(k_thread, foreach_unlocked); | 
|  |  | 
|  | k_spin_unlock(&z_thread_monitor_lock, key); | 
|  | #else | 
|  | ARG_UNUSED(user_cb); | 
|  | ARG_UNUSED(user_data); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | bool k_is_in_isr(void) | 
|  | { | 
|  | return arch_is_in_isr(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function tags the current thread as essential to system operation. | 
|  | * Exceptions raised by this thread will be treated as a fatal system error. | 
|  | */ | 
|  | void z_thread_essential_set(void) | 
|  | { | 
|  | _current->base.user_options |= K_ESSENTIAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function tags the current thread as not essential to system operation. | 
|  | * Exceptions raised by this thread may be recoverable. | 
|  | * (This is the default tag for a thread.) | 
|  | */ | 
|  | void z_thread_essential_clear(void) | 
|  | { | 
|  | _current->base.user_options &= ~K_ESSENTIAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This routine indicates if the current thread is an essential system thread. | 
|  | * | 
|  | * Returns true if current thread is essential, false if it is not. | 
|  | */ | 
|  | bool z_is_thread_essential(void) | 
|  | { | 
|  | return (_current->base.user_options & K_ESSENTIAL) == K_ESSENTIAL; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_THREAD_CUSTOM_DATA | 
|  | void z_impl_k_thread_custom_data_set(void *value) | 
|  | { | 
|  | _current->custom_data = value; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_USERSPACE | 
|  | static inline void z_vrfy_k_thread_custom_data_set(void *data) | 
|  | { | 
|  | z_impl_k_thread_custom_data_set(data); | 
|  | } | 
|  | #include <syscalls/k_thread_custom_data_set_mrsh.c> | 
|  | #endif | 
|  |  | 
|  | void *z_impl_k_thread_custom_data_get(void) | 
|  | { | 
|  | return _current->custom_data; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_USERSPACE | 
|  | static inline void *z_vrfy_k_thread_custom_data_get(void) | 
|  | { | 
|  | return z_impl_k_thread_custom_data_get(); | 
|  | } | 
|  | #include <syscalls/k_thread_custom_data_get_mrsh.c> | 
|  |  | 
|  | #endif /* CONFIG_USERSPACE */ | 
|  | #endif /* CONFIG_THREAD_CUSTOM_DATA */ | 
|  |  | 
|  | #if defined(CONFIG_THREAD_MONITOR) | 
|  | /* | 
|  | * Remove a thread from the kernel's list of active threads. | 
|  | */ | 
|  | void z_thread_monitor_exit(struct k_thread *thread) | 
|  | { | 
|  | k_spinlock_key_t key = k_spin_lock(&z_thread_monitor_lock); | 
|  |  | 
|  | if (thread == _kernel.threads) { | 
|  | _kernel.threads = _kernel.threads->next_thread; | 
|  | } else { | 
|  | struct k_thread *prev_thread; | 
|  |  | 
|  | prev_thread = _kernel.threads; | 
|  | while ((prev_thread != NULL) && | 
|  | (thread != prev_thread->next_thread)) { | 
|  | prev_thread = prev_thread->next_thread; | 
|  | } | 
|  | if (prev_thread != NULL) { | 
|  | prev_thread->next_thread = thread->next_thread; | 
|  | } | 
|  | } | 
|  |  | 
|  | k_spin_unlock(&z_thread_monitor_lock, key); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | int z_impl_k_thread_name_set(struct k_thread *thread, const char *value) | 
|  | { | 
|  | #ifdef CONFIG_THREAD_NAME | 
|  | if (thread == NULL) { | 
|  | thread = _current; | 
|  | } | 
|  |  | 
|  | strncpy(thread->name, value, CONFIG_THREAD_MAX_NAME_LEN - 1); | 
|  | thread->name[CONFIG_THREAD_MAX_NAME_LEN - 1] = '\0'; | 
|  |  | 
|  | SYS_PORT_TRACING_OBJ_FUNC(k_thread, name_set, thread, 0); | 
|  |  | 
|  | return 0; | 
|  | #else | 
|  | ARG_UNUSED(thread); | 
|  | ARG_UNUSED(value); | 
|  |  | 
|  | SYS_PORT_TRACING_OBJ_FUNC(k_thread, name_set, thread, -ENOSYS); | 
|  |  | 
|  | return -ENOSYS; | 
|  | #endif /* CONFIG_THREAD_NAME */ | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_USERSPACE | 
|  | static inline int z_vrfy_k_thread_name_set(struct k_thread *thread, const char *str) | 
|  | { | 
|  | #ifdef CONFIG_THREAD_NAME | 
|  | char name[CONFIG_THREAD_MAX_NAME_LEN]; | 
|  |  | 
|  | if (thread != NULL) { | 
|  | if (Z_SYSCALL_OBJ(thread, K_OBJ_THREAD) != 0) { | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* In theory we could copy directly into thread->name, but | 
|  | * the current z_vrfy / z_impl split does not provide a | 
|  | * means of doing so. | 
|  | */ | 
|  | if (z_user_string_copy(name, (char *)str, sizeof(name)) != 0) { | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | return z_impl_k_thread_name_set(thread, name); | 
|  | #else | 
|  | return -ENOSYS; | 
|  | #endif /* CONFIG_THREAD_NAME */ | 
|  | } | 
|  | #include <syscalls/k_thread_name_set_mrsh.c> | 
|  | #endif /* CONFIG_USERSPACE */ | 
|  |  | 
|  | const char *k_thread_name_get(struct k_thread *thread) | 
|  | { | 
|  | #ifdef CONFIG_THREAD_NAME | 
|  | return (const char *)thread->name; | 
|  | #else | 
|  | ARG_UNUSED(thread); | 
|  | return NULL; | 
|  | #endif /* CONFIG_THREAD_NAME */ | 
|  | } | 
|  |  | 
|  | int z_impl_k_thread_name_copy(k_tid_t thread, char *buf, size_t size) | 
|  | { | 
|  | #ifdef CONFIG_THREAD_NAME | 
|  | strncpy(buf, thread->name, size); | 
|  | return 0; | 
|  | #else | 
|  | ARG_UNUSED(thread); | 
|  | ARG_UNUSED(buf); | 
|  | ARG_UNUSED(size); | 
|  | return -ENOSYS; | 
|  | #endif /* CONFIG_THREAD_NAME */ | 
|  | } | 
|  |  | 
|  | static size_t copy_bytes(char *dest, size_t dest_size, const char *src, size_t src_size) | 
|  | { | 
|  | size_t  bytes_to_copy; | 
|  |  | 
|  | bytes_to_copy = MIN(dest_size, src_size); | 
|  | memcpy(dest, src, bytes_to_copy); | 
|  |  | 
|  | return bytes_to_copy; | 
|  | } | 
|  |  | 
|  | const char *k_thread_state_str(k_tid_t thread_id, char *buf, size_t buf_size) | 
|  | { | 
|  | size_t      off = 0; | 
|  | uint8_t     bit; | 
|  | uint8_t     thread_state = thread_id->base.thread_state; | 
|  | static const char  *states_str[8] = {"dummy", "pending", "prestart", | 
|  | "dead", "suspended", "aborting", | 
|  | "", "queued"}; | 
|  | static const size_t states_sz[8] = {5, 7, 8, 4, 9, 8, 0, 6}; | 
|  |  | 
|  | if ((buf == NULL) || (buf_size == 0)) { | 
|  | return ""; | 
|  | } | 
|  |  | 
|  | buf_size--;   /* Reserve 1 byte for end-of-string character */ | 
|  |  | 
|  | /* | 
|  | * Loop through each bit in the thread_state. Stop once all have | 
|  | * been processed. If more than one thread_state bit is set, then | 
|  | * separate the descriptive strings with a '+'. | 
|  | */ | 
|  |  | 
|  | for (uint8_t index = 0; thread_state != 0; index++) { | 
|  | bit = BIT(index); | 
|  | if ((thread_state & bit) == 0) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | off += copy_bytes(buf + off, buf_size - off, | 
|  | states_str[index], states_sz[index]); | 
|  |  | 
|  | thread_state &= ~bit; | 
|  |  | 
|  | if (thread_state != 0) { | 
|  | off += copy_bytes(buf + off, buf_size - off, "+", 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | buf[off] = '\0'; | 
|  |  | 
|  | return (const char *)buf; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_USERSPACE | 
|  | static inline int z_vrfy_k_thread_name_copy(k_tid_t thread, | 
|  | char *buf, size_t size) | 
|  | { | 
|  | #ifdef CONFIG_THREAD_NAME | 
|  | size_t len; | 
|  | struct z_object *ko = z_object_find(thread); | 
|  |  | 
|  | /* Special case: we allow reading the names of initialized threads | 
|  | * even if we don't have permission on them | 
|  | */ | 
|  | if (thread == NULL || ko->type != K_OBJ_THREAD || | 
|  | (ko->flags & K_OBJ_FLAG_INITIALIZED) == 0) { | 
|  | return -EINVAL; | 
|  | } | 
|  | if (Z_SYSCALL_MEMORY_WRITE(buf, size) != 0) { | 
|  | return -EFAULT; | 
|  | } | 
|  | len = strlen(thread->name); | 
|  | if (len + 1 > size) { | 
|  | return -ENOSPC; | 
|  | } | 
|  |  | 
|  | return z_user_to_copy((void *)buf, thread->name, len + 1); | 
|  | #else | 
|  | ARG_UNUSED(thread); | 
|  | ARG_UNUSED(buf); | 
|  | ARG_UNUSED(size); | 
|  | return -ENOSYS; | 
|  | #endif /* CONFIG_THREAD_NAME */ | 
|  | } | 
|  | #include <syscalls/k_thread_name_copy_mrsh.c> | 
|  | #endif /* CONFIG_USERSPACE */ | 
|  |  | 
|  |  | 
|  | #ifdef CONFIG_MULTITHREADING | 
|  | #ifdef CONFIG_STACK_SENTINEL | 
|  | /* Check that the stack sentinel is still present | 
|  | * | 
|  | * The stack sentinel feature writes a magic value to the lowest 4 bytes of | 
|  | * the thread's stack when the thread is initialized. This value gets checked | 
|  | * in a few places: | 
|  | * | 
|  | * 1) In k_yield() if the current thread is not swapped out | 
|  | * 2) After servicing a non-nested interrupt | 
|  | * 3) In z_swap(), check the sentinel in the outgoing thread | 
|  | * | 
|  | * Item 2 requires support in arch/ code. | 
|  | * | 
|  | * If the check fails, the thread will be terminated appropriately through | 
|  | * the system fatal error handler. | 
|  | */ | 
|  | void z_check_stack_sentinel(void) | 
|  | { | 
|  | uint32_t *stack; | 
|  |  | 
|  | if ((_current->base.thread_state & _THREAD_DUMMY) != 0) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | stack = (uint32_t *)_current->stack_info.start; | 
|  | if (*stack != STACK_SENTINEL) { | 
|  | /* Restore it so further checks don't trigger this same error */ | 
|  | *stack = STACK_SENTINEL; | 
|  | z_except_reason(K_ERR_STACK_CHK_FAIL); | 
|  | } | 
|  | } | 
|  | #endif /* CONFIG_STACK_SENTINEL */ | 
|  |  | 
|  | void z_impl_k_thread_start(struct k_thread *thread) | 
|  | { | 
|  | SYS_PORT_TRACING_OBJ_FUNC(k_thread, start, thread); | 
|  |  | 
|  | z_sched_start(thread); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_USERSPACE | 
|  | static inline void z_vrfy_k_thread_start(struct k_thread *thread) | 
|  | { | 
|  | Z_OOPS(Z_SYSCALL_OBJ(thread, K_OBJ_THREAD)); | 
|  | return z_impl_k_thread_start(thread); | 
|  | } | 
|  | #include <syscalls/k_thread_start_mrsh.c> | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_MULTITHREADING | 
|  | static void schedule_new_thread(struct k_thread *thread, k_timeout_t delay) | 
|  | { | 
|  | #ifdef CONFIG_SYS_CLOCK_EXISTS | 
|  | if (K_TIMEOUT_EQ(delay, K_NO_WAIT)) { | 
|  | k_thread_start(thread); | 
|  | } else { | 
|  | z_add_thread_timeout(thread, delay); | 
|  | } | 
|  | #else | 
|  | ARG_UNUSED(delay); | 
|  | k_thread_start(thread); | 
|  | #endif | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if CONFIG_STACK_POINTER_RANDOM | 
|  | int z_stack_adjust_initialized; | 
|  |  | 
|  | static size_t random_offset(size_t stack_size) | 
|  | { | 
|  | size_t random_val; | 
|  |  | 
|  | if (!z_stack_adjust_initialized) { | 
|  | z_early_boot_rand_get((uint8_t *)&random_val, sizeof(random_val)); | 
|  | } else { | 
|  | sys_rand_get((uint8_t *)&random_val, sizeof(random_val)); | 
|  | } | 
|  |  | 
|  | /* Don't need to worry about alignment of the size here, | 
|  | * arch_new_thread() is required to do it. | 
|  | * | 
|  | * FIXME: Not the best way to get a random number in a range. | 
|  | * See #6493 | 
|  | */ | 
|  | const size_t fuzz = random_val % CONFIG_STACK_POINTER_RANDOM; | 
|  |  | 
|  | if (unlikely(fuzz * 2 > stack_size)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return fuzz; | 
|  | } | 
|  | #if defined(CONFIG_STACK_GROWS_UP) | 
|  | /* This is so rare not bothering for now */ | 
|  | #error "Stack pointer randomization not implemented for upward growing stacks" | 
|  | #endif /* CONFIG_STACK_GROWS_UP */ | 
|  | #endif /* CONFIG_STACK_POINTER_RANDOM */ | 
|  |  | 
|  | static char *setup_thread_stack(struct k_thread *new_thread, | 
|  | k_thread_stack_t *stack, size_t stack_size) | 
|  | { | 
|  | size_t stack_obj_size, stack_buf_size; | 
|  | char *stack_ptr, *stack_buf_start; | 
|  | size_t delta = 0; | 
|  |  | 
|  | #ifdef CONFIG_USERSPACE | 
|  | if (z_stack_is_user_capable(stack)) { | 
|  | stack_obj_size = Z_THREAD_STACK_SIZE_ADJUST(stack_size); | 
|  | stack_buf_start = Z_THREAD_STACK_BUFFER(stack); | 
|  | stack_buf_size = stack_obj_size - K_THREAD_STACK_RESERVED; | 
|  | } else | 
|  | #endif | 
|  | { | 
|  | /* Object cannot host a user mode thread */ | 
|  | stack_obj_size = Z_KERNEL_STACK_SIZE_ADJUST(stack_size); | 
|  | stack_buf_start = Z_KERNEL_STACK_BUFFER(stack); | 
|  | stack_buf_size = stack_obj_size - K_KERNEL_STACK_RESERVED; | 
|  | } | 
|  |  | 
|  | /* Initial stack pointer at the high end of the stack object, may | 
|  | * be reduced later in this function by TLS or random offset | 
|  | */ | 
|  | stack_ptr = (char *)stack + stack_obj_size; | 
|  |  | 
|  | LOG_DBG("stack %p for thread %p: obj_size=%zu buf_start=%p " | 
|  | " buf_size %zu stack_ptr=%p", | 
|  | stack, new_thread, stack_obj_size, (void *)stack_buf_start, | 
|  | stack_buf_size, (void *)stack_ptr); | 
|  |  | 
|  | #ifdef CONFIG_INIT_STACKS | 
|  | memset(stack_buf_start, 0xaa, stack_buf_size); | 
|  | #endif | 
|  | #ifdef CONFIG_STACK_SENTINEL | 
|  | /* Put the stack sentinel at the lowest 4 bytes of the stack area. | 
|  | * We periodically check that it's still present and kill the thread | 
|  | * if it isn't. | 
|  | */ | 
|  | *((uint32_t *)stack_buf_start) = STACK_SENTINEL; | 
|  | #endif /* CONFIG_STACK_SENTINEL */ | 
|  | #ifdef CONFIG_THREAD_LOCAL_STORAGE | 
|  | /* TLS is always last within the stack buffer */ | 
|  | delta += arch_tls_stack_setup(new_thread, stack_ptr); | 
|  | #endif /* CONFIG_THREAD_LOCAL_STORAGE */ | 
|  | #ifdef CONFIG_THREAD_USERSPACE_LOCAL_DATA | 
|  | size_t tls_size = sizeof(struct _thread_userspace_local_data); | 
|  |  | 
|  | /* reserve space on highest memory of stack buffer for local data */ | 
|  | delta += tls_size; | 
|  | new_thread->userspace_local_data = | 
|  | (struct _thread_userspace_local_data *)(stack_ptr - delta); | 
|  | #endif | 
|  | #if CONFIG_STACK_POINTER_RANDOM | 
|  | delta += random_offset(stack_buf_size); | 
|  | #endif | 
|  | delta = ROUND_UP(delta, ARCH_STACK_PTR_ALIGN); | 
|  | #ifdef CONFIG_THREAD_STACK_INFO | 
|  | /* Initial values. Arches which implement MPU guards that "borrow" | 
|  | * memory from the stack buffer (not tracked in K_THREAD_STACK_RESERVED) | 
|  | * will need to appropriately update this. | 
|  | * | 
|  | * The bounds tracked here correspond to the area of the stack object | 
|  | * that the thread can access, which includes TLS. | 
|  | */ | 
|  | new_thread->stack_info.start = (uintptr_t)stack_buf_start; | 
|  | new_thread->stack_info.size = stack_buf_size; | 
|  | new_thread->stack_info.delta = delta; | 
|  | #endif | 
|  | stack_ptr -= delta; | 
|  |  | 
|  | return stack_ptr; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The provided stack_size value is presumed to be either the result of | 
|  | * K_THREAD_STACK_SIZEOF(stack), or the size value passed to the instance | 
|  | * of K_THREAD_STACK_DEFINE() which defined 'stack'. | 
|  | */ | 
|  | char *z_setup_new_thread(struct k_thread *new_thread, | 
|  | k_thread_stack_t *stack, size_t stack_size, | 
|  | k_thread_entry_t entry, | 
|  | void *p1, void *p2, void *p3, | 
|  | int prio, uint32_t options, const char *name) | 
|  | { | 
|  | char *stack_ptr; | 
|  |  | 
|  | Z_ASSERT_VALID_PRIO(prio, entry); | 
|  |  | 
|  | #ifdef CONFIG_USERSPACE | 
|  | __ASSERT((options & K_USER) == 0U || z_stack_is_user_capable(stack), | 
|  | "user thread %p with kernel-only stack %p", | 
|  | new_thread, stack); | 
|  | z_object_init(new_thread); | 
|  | z_object_init(stack); | 
|  | new_thread->stack_obj = stack; | 
|  | new_thread->syscall_frame = NULL; | 
|  |  | 
|  | /* Any given thread has access to itself */ | 
|  | k_object_access_grant(new_thread, new_thread); | 
|  | #endif | 
|  | z_waitq_init(&new_thread->join_queue); | 
|  |  | 
|  | /* Initialize various struct k_thread members */ | 
|  | z_init_thread_base(&new_thread->base, prio, _THREAD_PRESTART, options); | 
|  | stack_ptr = setup_thread_stack(new_thread, stack, stack_size); | 
|  |  | 
|  | #ifdef CONFIG_KERNEL_COHERENCE | 
|  | /* Check that the thread object is safe, but that the stack is | 
|  | * still cached! | 
|  | */ | 
|  | __ASSERT_NO_MSG(arch_mem_coherent(new_thread)); | 
|  | __ASSERT_NO_MSG(!arch_mem_coherent(stack)); | 
|  | #endif | 
|  |  | 
|  | arch_new_thread(new_thread, stack, stack_ptr, entry, p1, p2, p3); | 
|  |  | 
|  | /* static threads overwrite it afterwards with real value */ | 
|  | new_thread->init_data = NULL; | 
|  |  | 
|  | #ifdef CONFIG_USE_SWITCH | 
|  | /* switch_handle must be non-null except when inside z_swap() | 
|  | * for synchronization reasons.  Historically some notional | 
|  | * USE_SWITCH architectures have actually ignored the field | 
|  | */ | 
|  | __ASSERT(new_thread->switch_handle != NULL, | 
|  | "arch layer failed to initialize switch_handle"); | 
|  | #endif | 
|  | #ifdef CONFIG_THREAD_CUSTOM_DATA | 
|  | /* Initialize custom data field (value is opaque to kernel) */ | 
|  | new_thread->custom_data = NULL; | 
|  | #endif | 
|  | #ifdef CONFIG_EVENTS | 
|  | new_thread->no_wake_on_timeout = false; | 
|  | #endif | 
|  | #ifdef CONFIG_THREAD_MONITOR | 
|  | new_thread->entry.pEntry = entry; | 
|  | new_thread->entry.parameter1 = p1; | 
|  | new_thread->entry.parameter2 = p2; | 
|  | new_thread->entry.parameter3 = p3; | 
|  |  | 
|  | k_spinlock_key_t key = k_spin_lock(&z_thread_monitor_lock); | 
|  |  | 
|  | new_thread->next_thread = _kernel.threads; | 
|  | _kernel.threads = new_thread; | 
|  | k_spin_unlock(&z_thread_monitor_lock, key); | 
|  | #endif | 
|  | #ifdef CONFIG_THREAD_NAME | 
|  | if (name != NULL) { | 
|  | strncpy(new_thread->name, name, | 
|  | CONFIG_THREAD_MAX_NAME_LEN - 1); | 
|  | /* Ensure NULL termination, truncate if longer */ | 
|  | new_thread->name[CONFIG_THREAD_MAX_NAME_LEN - 1] = '\0'; | 
|  | } else { | 
|  | new_thread->name[0] = '\0'; | 
|  | } | 
|  | #endif | 
|  | #ifdef CONFIG_SCHED_CPU_MASK | 
|  | if (IS_ENABLED(CONFIG_SCHED_CPU_MASK_PIN_ONLY)) { | 
|  | new_thread->base.cpu_mask = 1; /* must specify only one cpu */ | 
|  | } else { | 
|  | new_thread->base.cpu_mask = -1; /* allow all cpus */ | 
|  | } | 
|  | #endif | 
|  | #ifdef CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN | 
|  | /* _current may be null if the dummy thread is not used */ | 
|  | if (!_current) { | 
|  | new_thread->resource_pool = NULL; | 
|  | return stack_ptr; | 
|  | } | 
|  | #endif | 
|  | #ifdef CONFIG_USERSPACE | 
|  | z_mem_domain_init_thread(new_thread); | 
|  |  | 
|  | if ((options & K_INHERIT_PERMS) != 0U) { | 
|  | z_thread_perms_inherit(_current, new_thread); | 
|  | } | 
|  | #endif | 
|  | #ifdef CONFIG_SCHED_DEADLINE | 
|  | new_thread->base.prio_deadline = 0; | 
|  | #endif | 
|  | new_thread->resource_pool = _current->resource_pool; | 
|  |  | 
|  | #ifdef CONFIG_SCHED_THREAD_USAGE | 
|  | new_thread->base.usage = (struct k_cycle_stats) {}; | 
|  | new_thread->base.usage.track_usage = | 
|  | CONFIG_SCHED_THREAD_USAGE_AUTO_ENABLE; | 
|  | #endif | 
|  |  | 
|  | SYS_PORT_TRACING_OBJ_FUNC(k_thread, create, new_thread); | 
|  |  | 
|  | return stack_ptr; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MULTITHREADING | 
|  | k_tid_t z_impl_k_thread_create(struct k_thread *new_thread, | 
|  | k_thread_stack_t *stack, | 
|  | size_t stack_size, k_thread_entry_t entry, | 
|  | void *p1, void *p2, void *p3, | 
|  | int prio, uint32_t options, k_timeout_t delay) | 
|  | { | 
|  | __ASSERT(!arch_is_in_isr(), "Threads may not be created in ISRs"); | 
|  |  | 
|  | z_setup_new_thread(new_thread, stack, stack_size, entry, p1, p2, p3, | 
|  | prio, options, NULL); | 
|  |  | 
|  | if (!K_TIMEOUT_EQ(delay, K_FOREVER)) { | 
|  | schedule_new_thread(new_thread, delay); | 
|  | } | 
|  |  | 
|  | return new_thread; | 
|  | } | 
|  |  | 
|  |  | 
|  | #ifdef CONFIG_USERSPACE | 
|  | bool z_stack_is_user_capable(k_thread_stack_t *stack) | 
|  | { | 
|  | return z_object_find(stack) != NULL; | 
|  | } | 
|  |  | 
|  | k_tid_t z_vrfy_k_thread_create(struct k_thread *new_thread, | 
|  | k_thread_stack_t *stack, | 
|  | size_t stack_size, k_thread_entry_t entry, | 
|  | void *p1, void *p2, void *p3, | 
|  | int prio, uint32_t options, k_timeout_t delay) | 
|  | { | 
|  | size_t total_size, stack_obj_size; | 
|  | struct z_object *stack_object; | 
|  |  | 
|  | /* The thread and stack objects *must* be in an uninitialized state */ | 
|  | Z_OOPS(Z_SYSCALL_OBJ_NEVER_INIT(new_thread, K_OBJ_THREAD)); | 
|  |  | 
|  | /* No need to check z_stack_is_user_capable(), it won't be in the | 
|  | * object table if it isn't | 
|  | */ | 
|  | stack_object = z_object_find(stack); | 
|  | Z_OOPS(Z_SYSCALL_VERIFY_MSG(z_obj_validation_check(stack_object, stack, | 
|  | K_OBJ_THREAD_STACK_ELEMENT, | 
|  | _OBJ_INIT_FALSE) == 0, | 
|  | "bad stack object")); | 
|  |  | 
|  | /* Verify that the stack size passed in is OK by computing the total | 
|  | * size and comparing it with the size value in the object metadata | 
|  | */ | 
|  | Z_OOPS(Z_SYSCALL_VERIFY_MSG(!size_add_overflow(K_THREAD_STACK_RESERVED, | 
|  | stack_size, &total_size), | 
|  | "stack size overflow (%zu+%zu)", | 
|  | stack_size, | 
|  | K_THREAD_STACK_RESERVED)); | 
|  |  | 
|  | /* Testing less-than-or-equal since additional room may have been | 
|  | * allocated for alignment constraints | 
|  | */ | 
|  | #ifdef CONFIG_GEN_PRIV_STACKS | 
|  | stack_obj_size = stack_object->data.stack_data->size; | 
|  | #else | 
|  | stack_obj_size = stack_object->data.stack_size; | 
|  | #endif | 
|  | Z_OOPS(Z_SYSCALL_VERIFY_MSG(total_size <= stack_obj_size, | 
|  | "stack size %zu is too big, max is %zu", | 
|  | total_size, stack_obj_size)); | 
|  |  | 
|  | /* User threads may only create other user threads and they can't | 
|  | * be marked as essential | 
|  | */ | 
|  | Z_OOPS(Z_SYSCALL_VERIFY(options & K_USER)); | 
|  | Z_OOPS(Z_SYSCALL_VERIFY(!(options & K_ESSENTIAL))); | 
|  |  | 
|  | /* Check validity of prio argument; must be the same or worse priority | 
|  | * than the caller | 
|  | */ | 
|  | Z_OOPS(Z_SYSCALL_VERIFY(_is_valid_prio(prio, NULL))); | 
|  | Z_OOPS(Z_SYSCALL_VERIFY(z_is_prio_lower_or_equal(prio, | 
|  | _current->base.prio))); | 
|  |  | 
|  | z_setup_new_thread(new_thread, stack, stack_size, | 
|  | entry, p1, p2, p3, prio, options, NULL); | 
|  |  | 
|  | if (!K_TIMEOUT_EQ(delay, K_FOREVER)) { | 
|  | schedule_new_thread(new_thread, delay); | 
|  | } | 
|  |  | 
|  | return new_thread; | 
|  | } | 
|  | #include <syscalls/k_thread_create_mrsh.c> | 
|  | #endif /* CONFIG_USERSPACE */ | 
|  | #endif /* CONFIG_MULTITHREADING */ | 
|  |  | 
|  | #ifdef CONFIG_MULTITHREADING | 
|  | #ifdef CONFIG_USERSPACE | 
|  |  | 
|  | static void grant_static_access(void) | 
|  | { | 
|  | STRUCT_SECTION_FOREACH(z_object_assignment, pos) { | 
|  | for (int i = 0; pos->objects[i] != NULL; i++) { | 
|  | k_object_access_grant(pos->objects[i], | 
|  | pos->thread); | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif /* CONFIG_USERSPACE */ | 
|  |  | 
|  | void z_init_static_threads(void) | 
|  | { | 
|  | _FOREACH_STATIC_THREAD(thread_data) { | 
|  | z_setup_new_thread( | 
|  | thread_data->init_thread, | 
|  | thread_data->init_stack, | 
|  | thread_data->init_stack_size, | 
|  | thread_data->init_entry, | 
|  | thread_data->init_p1, | 
|  | thread_data->init_p2, | 
|  | thread_data->init_p3, | 
|  | thread_data->init_prio, | 
|  | thread_data->init_options, | 
|  | thread_data->init_name); | 
|  |  | 
|  | thread_data->init_thread->init_data = thread_data; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_USERSPACE | 
|  | grant_static_access(); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Non-legacy static threads may be started immediately or | 
|  | * after a previously specified delay. Even though the | 
|  | * scheduler is locked, ticks can still be delivered and | 
|  | * processed. Take a sched lock to prevent them from running | 
|  | * until they are all started. | 
|  | * | 
|  | * Note that static threads defined using the legacy API have a | 
|  | * delay of K_FOREVER. | 
|  | */ | 
|  | k_sched_lock(); | 
|  | _FOREACH_STATIC_THREAD(thread_data) { | 
|  | if (!K_TIMEOUT_EQ(thread_data->init_delay, K_FOREVER)) { | 
|  | schedule_new_thread(thread_data->init_thread, | 
|  | thread_data->init_delay); | 
|  | } | 
|  | } | 
|  | k_sched_unlock(); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void z_init_thread_base(struct _thread_base *thread_base, int priority, | 
|  | uint32_t initial_state, unsigned int options) | 
|  | { | 
|  | /* k_q_node is initialized upon first insertion in a list */ | 
|  | thread_base->pended_on = NULL; | 
|  | thread_base->user_options = (uint8_t)options; | 
|  | thread_base->thread_state = (uint8_t)initial_state; | 
|  |  | 
|  | thread_base->prio = priority; | 
|  |  | 
|  | thread_base->sched_locked = 0U; | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | thread_base->is_idle = 0; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_TIMESLICE_PER_THREAD | 
|  | thread_base->slice_ticks = 0; | 
|  | thread_base->slice_expired = NULL; | 
|  | #endif | 
|  |  | 
|  | /* swap_data does not need to be initialized */ | 
|  |  | 
|  | z_init_thread_timeout(thread_base); | 
|  | } | 
|  |  | 
|  | FUNC_NORETURN void k_thread_user_mode_enter(k_thread_entry_t entry, | 
|  | void *p1, void *p2, void *p3) | 
|  | { | 
|  | SYS_PORT_TRACING_FUNC(k_thread, user_mode_enter); | 
|  |  | 
|  | _current->base.user_options |= K_USER; | 
|  | z_thread_essential_clear(); | 
|  | #ifdef CONFIG_THREAD_MONITOR | 
|  | _current->entry.pEntry = entry; | 
|  | _current->entry.parameter1 = p1; | 
|  | _current->entry.parameter2 = p2; | 
|  | _current->entry.parameter3 = p3; | 
|  | #endif | 
|  | #ifdef CONFIG_USERSPACE | 
|  | __ASSERT(z_stack_is_user_capable(_current->stack_obj), | 
|  | "dropping to user mode with kernel-only stack object"); | 
|  | #ifdef CONFIG_THREAD_USERSPACE_LOCAL_DATA | 
|  | memset(_current->userspace_local_data, 0, | 
|  | sizeof(struct _thread_userspace_local_data)); | 
|  | #endif | 
|  | #ifdef CONFIG_THREAD_LOCAL_STORAGE | 
|  | arch_tls_stack_setup(_current, | 
|  | (char *)(_current->stack_info.start + | 
|  | _current->stack_info.size)); | 
|  | #endif | 
|  | arch_user_mode_enter(entry, p1, p2, p3); | 
|  | #else | 
|  | /* XXX In this case we do not reset the stack */ | 
|  | z_thread_entry(entry, p1, p2, p3); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* These spinlock assertion predicates are defined here because having | 
|  | * them in spinlock.h is a giant header ordering headache. | 
|  | */ | 
|  | #ifdef CONFIG_SPIN_VALIDATE | 
|  | bool z_spin_lock_valid(struct k_spinlock *l) | 
|  | { | 
|  | uintptr_t thread_cpu = l->thread_cpu; | 
|  |  | 
|  | if (thread_cpu != 0U) { | 
|  | if ((thread_cpu & 3U) == _current_cpu->id) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool z_spin_unlock_valid(struct k_spinlock *l) | 
|  | { | 
|  | if (l->thread_cpu != (_current_cpu->id | (uintptr_t)_current)) { | 
|  | return false; | 
|  | } | 
|  | l->thread_cpu = 0; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void z_spin_lock_set_owner(struct k_spinlock *l) | 
|  | { | 
|  | l->thread_cpu = _current_cpu->id | (uintptr_t)_current; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_KERNEL_COHERENCE | 
|  | bool z_spin_lock_mem_coherent(struct k_spinlock *l) | 
|  | { | 
|  | return arch_mem_coherent((void *)l); | 
|  | } | 
|  | #endif /* CONFIG_KERNEL_COHERENCE */ | 
|  |  | 
|  | #endif /* CONFIG_SPIN_VALIDATE */ | 
|  |  | 
|  | int z_impl_k_float_disable(struct k_thread *thread) | 
|  | { | 
|  | #if defined(CONFIG_FPU) && defined(CONFIG_FPU_SHARING) | 
|  | return arch_float_disable(thread); | 
|  | #else | 
|  | ARG_UNUSED(thread); | 
|  | return -ENOTSUP; | 
|  | #endif /* CONFIG_FPU && CONFIG_FPU_SHARING */ | 
|  | } | 
|  |  | 
|  | int z_impl_k_float_enable(struct k_thread *thread, unsigned int options) | 
|  | { | 
|  | #if defined(CONFIG_FPU) && defined(CONFIG_FPU_SHARING) | 
|  | return arch_float_enable(thread, options); | 
|  | #else | 
|  | ARG_UNUSED(thread); | 
|  | ARG_UNUSED(options); | 
|  | return -ENOTSUP; | 
|  | #endif /* CONFIG_FPU && CONFIG_FPU_SHARING */ | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_USERSPACE | 
|  | static inline int z_vrfy_k_float_disable(struct k_thread *thread) | 
|  | { | 
|  | Z_OOPS(Z_SYSCALL_OBJ(thread, K_OBJ_THREAD)); | 
|  | return z_impl_k_float_disable(thread); | 
|  | } | 
|  | #include <syscalls/k_float_disable_mrsh.c> | 
|  | #endif /* CONFIG_USERSPACE */ | 
|  |  | 
|  | #ifdef CONFIG_IRQ_OFFLOAD | 
|  | /* Make offload_sem visible outside under testing, in order to release | 
|  | * it outside when error happened. | 
|  | */ | 
|  | K_SEM_DEFINE(offload_sem, 1, 1); | 
|  |  | 
|  | void irq_offload(irq_offload_routine_t routine, const void *parameter) | 
|  | { | 
|  | #ifdef CONFIG_IRQ_OFFLOAD_NESTED | 
|  | arch_irq_offload(routine, parameter); | 
|  | #else | 
|  | k_sem_take(&offload_sem, K_FOREVER); | 
|  | arch_irq_offload(routine, parameter); | 
|  | k_sem_give(&offload_sem); | 
|  | #endif | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if defined(CONFIG_INIT_STACKS) && defined(CONFIG_THREAD_STACK_INFO) | 
|  | #ifdef CONFIG_STACK_GROWS_UP | 
|  | #error "Unsupported configuration for stack analysis" | 
|  | #endif | 
|  |  | 
|  | int z_stack_space_get(const uint8_t *stack_start, size_t size, size_t *unused_ptr) | 
|  | { | 
|  | size_t unused = 0; | 
|  | const uint8_t *checked_stack = stack_start; | 
|  | /* Take the address of any local variable as a shallow bound for the | 
|  | * stack pointer.  Addresses above it are guaranteed to be | 
|  | * accessible. | 
|  | */ | 
|  | const uint8_t *stack_pointer = (const uint8_t *)&stack_start; | 
|  |  | 
|  | /* If we are currently running on the stack being analyzed, some | 
|  | * memory management hardware will generate an exception if we | 
|  | * read unused stack memory. | 
|  | * | 
|  | * This never happens when invoked from user mode, as user mode | 
|  | * will always run this function on the privilege elevation stack. | 
|  | */ | 
|  | if ((stack_pointer > stack_start) && (stack_pointer <= (stack_start + size)) && | 
|  | IS_ENABLED(CONFIG_NO_UNUSED_STACK_INSPECTION)) { | 
|  | /* TODO: We could add an arch_ API call to temporarily | 
|  | * disable the stack checking in the CPU, but this would | 
|  | * need to be properly managed wrt context switches/interrupts | 
|  | */ | 
|  | return -ENOTSUP; | 
|  | } | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_STACK_SENTINEL)) { | 
|  | /* First 4 bytes of the stack buffer reserved for the | 
|  | * sentinel value, it won't be 0xAAAAAAAA for thread | 
|  | * stacks. | 
|  | * | 
|  | * FIXME: thread->stack_info.start ought to reflect | 
|  | * this! | 
|  | */ | 
|  | checked_stack += 4; | 
|  | size -= 4; | 
|  | } | 
|  |  | 
|  | for (size_t i = 0; i < size; i++) { | 
|  | if ((checked_stack[i]) == 0xaaU) { | 
|  | unused++; | 
|  | } else { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | *unused_ptr = unused; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int z_impl_k_thread_stack_space_get(const struct k_thread *thread, | 
|  | size_t *unused_ptr) | 
|  | { | 
|  | return z_stack_space_get((const uint8_t *)thread->stack_info.start, | 
|  | thread->stack_info.size, unused_ptr); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_USERSPACE | 
|  | int z_vrfy_k_thread_stack_space_get(const struct k_thread *thread, | 
|  | size_t *unused_ptr) | 
|  | { | 
|  | size_t unused; | 
|  | int ret; | 
|  |  | 
|  | ret = Z_SYSCALL_OBJ(thread, K_OBJ_THREAD); | 
|  | CHECKIF(ret != 0) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = z_impl_k_thread_stack_space_get(thread, &unused); | 
|  | CHECKIF(ret != 0) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = z_user_to_copy(unused_ptr, &unused, sizeof(size_t)); | 
|  | CHECKIF(ret != 0) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #include <syscalls/k_thread_stack_space_get_mrsh.c> | 
|  | #endif /* CONFIG_USERSPACE */ | 
|  | #endif /* CONFIG_INIT_STACKS && CONFIG_THREAD_STACK_INFO */ | 
|  |  | 
|  | #ifdef CONFIG_USERSPACE | 
|  | static inline k_ticks_t z_vrfy_k_thread_timeout_remaining_ticks( | 
|  | const struct k_thread *t) | 
|  | { | 
|  | Z_OOPS(Z_SYSCALL_OBJ(t, K_OBJ_THREAD)); | 
|  | return z_impl_k_thread_timeout_remaining_ticks(t); | 
|  | } | 
|  | #include <syscalls/k_thread_timeout_remaining_ticks_mrsh.c> | 
|  |  | 
|  | static inline k_ticks_t z_vrfy_k_thread_timeout_expires_ticks( | 
|  | const struct k_thread *t) | 
|  | { | 
|  | Z_OOPS(Z_SYSCALL_OBJ(t, K_OBJ_THREAD)); | 
|  | return z_impl_k_thread_timeout_expires_ticks(t); | 
|  | } | 
|  | #include <syscalls/k_thread_timeout_expires_ticks_mrsh.c> | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_INSTRUMENT_THREAD_SWITCHING | 
|  | void z_thread_mark_switched_in(void) | 
|  | { | 
|  | #if defined(CONFIG_SCHED_THREAD_USAGE) && !defined(CONFIG_USE_SWITCH) | 
|  | z_sched_usage_start(_current); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_TRACING | 
|  | SYS_PORT_TRACING_FUNC(k_thread, switched_in); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void z_thread_mark_switched_out(void) | 
|  | { | 
|  | #if defined(CONFIG_SCHED_THREAD_USAGE) && !defined(CONFIG_USE_SWITCH) | 
|  | z_sched_usage_stop(); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_TRACING | 
|  | #ifdef CONFIG_THREAD_LOCAL_STORAGE | 
|  | /* Dummy thread won't have TLS set up to run arbitrary code */ | 
|  | if (!_current_cpu->current || | 
|  | (_current_cpu->current->base.thread_state & _THREAD_DUMMY) != 0) | 
|  | return; | 
|  | #endif | 
|  | SYS_PORT_TRACING_FUNC(k_thread, switched_out); | 
|  | #endif | 
|  | } | 
|  | #endif /* CONFIG_INSTRUMENT_THREAD_SWITCHING */ | 
|  |  | 
|  | int k_thread_runtime_stats_get(k_tid_t thread, | 
|  | k_thread_runtime_stats_t *stats) | 
|  | { | 
|  | if ((thread == NULL) || (stats == NULL)) { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SCHED_THREAD_USAGE | 
|  | z_sched_thread_usage(thread, stats); | 
|  | #else | 
|  | *stats = (k_thread_runtime_stats_t) {}; | 
|  | #endif | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int k_thread_runtime_stats_all_get(k_thread_runtime_stats_t *stats) | 
|  | { | 
|  | #ifdef CONFIG_SCHED_THREAD_USAGE_ALL | 
|  | k_thread_runtime_stats_t  tmp_stats; | 
|  | #endif | 
|  |  | 
|  | if (stats == NULL) { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | *stats = (k_thread_runtime_stats_t) {}; | 
|  |  | 
|  | #ifdef CONFIG_SCHED_THREAD_USAGE_ALL | 
|  | /* Retrieve the usage stats for each core and amalgamate them. */ | 
|  |  | 
|  | unsigned int num_cpus = arch_num_cpus(); | 
|  |  | 
|  | for (uint8_t i = 0; i < num_cpus; i++) { | 
|  | z_sched_cpu_usage(i, &tmp_stats); | 
|  |  | 
|  | stats->execution_cycles += tmp_stats.execution_cycles; | 
|  | stats->total_cycles     += tmp_stats.total_cycles; | 
|  | #ifdef CONFIG_SCHED_THREAD_USAGE_ANALYSIS | 
|  | stats->current_cycles   += tmp_stats.current_cycles; | 
|  | stats->peak_cycles      += tmp_stats.peak_cycles; | 
|  | stats->average_cycles   += tmp_stats.average_cycles; | 
|  | #endif | 
|  | stats->idle_cycles      += tmp_stats.idle_cycles; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | return 0; | 
|  | } |