| /* |
| * Copyright (c) 2018 Kokoon Technology Limited |
| * Copyright (c) 2019 Song Qiang <songqiang1304521@gmail.com> |
| * Copyright (c) 2019 Endre Karlson |
| * Copyright (c) 2020 Teslabs Engineering S.L. |
| * Copyright (c) 2021 Marius Scholtz, RIC Electronics |
| * Copyright (c) 2023 Hein Wessels, Nobleo Technology |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| #define DT_DRV_COMPAT st_stm32_adc |
| |
| #include <errno.h> |
| |
| #include <zephyr/drivers/adc.h> |
| #include <zephyr/drivers/pinctrl.h> |
| #include <zephyr/device.h> |
| #include <zephyr/kernel.h> |
| #include <zephyr/init.h> |
| #include <soc.h> |
| #include <stm32_ll_adc.h> |
| #if defined(CONFIG_SOC_SERIES_STM32U5X) |
| #include <stm32_ll_pwr.h> |
| #endif /* CONFIG_SOC_SERIES_STM32U5X */ |
| |
| #define ADC_CONTEXT_USES_KERNEL_TIMER |
| #define ADC_CONTEXT_ENABLE_ON_COMPLETE |
| #include "adc_context.h" |
| |
| #define LOG_LEVEL CONFIG_ADC_LOG_LEVEL |
| #include <zephyr/logging/log.h> |
| LOG_MODULE_REGISTER(adc_stm32); |
| |
| #include <zephyr/drivers/clock_control/stm32_clock_control.h> |
| #include <zephyr/irq.h> |
| |
| #if defined(CONFIG_SOC_SERIES_STM32F3X) |
| #if defined(ADC1_V2_5) |
| #define STM32F3X_ADC_V2_5 |
| #elif defined(ADC5_V1_1) |
| #define STM32F3X_ADC_V1_1 |
| #endif |
| #endif |
| |
| /* reference voltage for the ADC */ |
| #define STM32_ADC_VREF_MV DT_INST_PROP(0, vref_mv) |
| |
| #if !defined(CONFIG_SOC_SERIES_STM32F0X) && \ |
| !defined(CONFIG_SOC_SERIES_STM32G0X) && \ |
| !defined(CONFIG_SOC_SERIES_STM32L0X) && \ |
| !defined(CONFIG_SOC_SERIES_STM32WLX) |
| #define RANK(n) LL_ADC_REG_RANK_##n |
| static const uint32_t table_rank[] = { |
| RANK(1), |
| RANK(2), |
| RANK(3), |
| RANK(4), |
| RANK(5), |
| RANK(6), |
| RANK(7), |
| RANK(8), |
| RANK(9), |
| RANK(10), |
| RANK(11), |
| RANK(12), |
| RANK(13), |
| RANK(14), |
| RANK(15), |
| RANK(16), |
| }; |
| |
| #define SEQ_LEN(n) LL_ADC_REG_SEQ_SCAN_ENABLE_##n##RANKS |
| /* Length of this array signifies the maximum sequence length */ |
| static const uint32_t table_seq_len[] = { |
| LL_ADC_REG_SEQ_SCAN_DISABLE, |
| SEQ_LEN(2), |
| SEQ_LEN(3), |
| SEQ_LEN(4), |
| SEQ_LEN(5), |
| SEQ_LEN(6), |
| SEQ_LEN(7), |
| SEQ_LEN(8), |
| SEQ_LEN(9), |
| SEQ_LEN(10), |
| SEQ_LEN(11), |
| SEQ_LEN(12), |
| SEQ_LEN(13), |
| SEQ_LEN(14), |
| SEQ_LEN(15), |
| SEQ_LEN(16), |
| }; |
| #endif |
| |
| #define RES(n) LL_ADC_RESOLUTION_##n##B |
| static const uint32_t table_resolution[] = { |
| #if defined(CONFIG_SOC_SERIES_STM32F1X) || \ |
| defined(STM32F3X_ADC_V2_5) |
| RES(12), |
| #elif defined(CONFIG_SOC_SERIES_STM32U5X) |
| RES(6), |
| RES(8), |
| RES(10), |
| RES(12), |
| RES(14), |
| #elif !defined(CONFIG_SOC_SERIES_STM32H7X) |
| RES(6), |
| RES(8), |
| RES(10), |
| RES(12), |
| #else |
| RES(8), |
| RES(10), |
| RES(12), |
| RES(14), |
| RES(16), |
| #endif |
| }; |
| |
| #define SMP_TIME(x, y) LL_ADC_SAMPLINGTIME_##x##CYCLE##y |
| |
| /* |
| * Conversion time in ADC cycles. Many values should have been 0.5 less, |
| * but the adc api system currently does not support describing 'half cycles'. |
| * So all half cycles are counted as one. |
| */ |
| #if defined(CONFIG_SOC_SERIES_STM32F0X) || defined(CONFIG_SOC_SERIES_STM32F1X) |
| static const uint16_t acq_time_tbl[8] = {2, 8, 14, 29, 42, 56, 72, 240}; |
| static const uint32_t table_samp_time[] = { |
| SMP_TIME(1, _5), |
| SMP_TIME(7, S_5), |
| SMP_TIME(13, S_5), |
| SMP_TIME(28, S_5), |
| SMP_TIME(41, S_5), |
| SMP_TIME(55, S_5), |
| SMP_TIME(71, S_5), |
| SMP_TIME(239, S_5), |
| }; |
| #elif defined(CONFIG_SOC_SERIES_STM32F2X) || \ |
| defined(CONFIG_SOC_SERIES_STM32F4X) || \ |
| defined(CONFIG_SOC_SERIES_STM32F7X) |
| static const uint16_t acq_time_tbl[8] = {3, 15, 28, 56, 84, 112, 144, 480}; |
| static const uint32_t table_samp_time[] = { |
| SMP_TIME(3, S), |
| SMP_TIME(15, S), |
| SMP_TIME(28, S), |
| SMP_TIME(56, S), |
| SMP_TIME(84, S), |
| SMP_TIME(112, S), |
| SMP_TIME(144, S), |
| SMP_TIME(480, S), |
| }; |
| #elif defined(CONFIG_SOC_SERIES_STM32F3X) |
| #ifdef ADC5_V1_1 |
| static const uint16_t acq_time_tbl[8] = {2, 3, 5, 8, 20, 62, 182, 602}; |
| static const uint32_t table_samp_time[] = { |
| SMP_TIME(1, _5), |
| SMP_TIME(2, S_5), |
| SMP_TIME(4, S_5), |
| SMP_TIME(7, S_5), |
| SMP_TIME(19, S_5), |
| SMP_TIME(61, S_5), |
| SMP_TIME(181, S_5), |
| SMP_TIME(601, S_5), |
| }; |
| #else |
| static const uint16_t acq_time_tbl[8] = {2, 8, 14, 29, 42, 56, 72, 240}; |
| static const uint32_t table_samp_time[] = { |
| SMP_TIME(1, _5), |
| SMP_TIME(7, S_5), |
| SMP_TIME(13, S_5), |
| SMP_TIME(28, S_5), |
| SMP_TIME(41, S_5), |
| SMP_TIME(55, S_5), |
| SMP_TIME(71, S_5), |
| SMP_TIME(239, S_5), |
| }; |
| #endif /* ADC5_V1_1 */ |
| #elif defined(CONFIG_SOC_SERIES_STM32L0X) || \ |
| defined(CONFIG_SOC_SERIES_STM32G0X) || \ |
| defined(CONFIG_SOC_SERIES_STM32WLX) |
| static const uint16_t acq_time_tbl[8] = {2, 4, 8, 13, 20, 40, 80, 161}; |
| static const uint32_t table_samp_time[] = { |
| SMP_TIME(1, _5), |
| SMP_TIME(3, S_5), |
| SMP_TIME(7, S_5), |
| SMP_TIME(12, S_5), |
| SMP_TIME(19, S_5), |
| SMP_TIME(39, S_5), |
| SMP_TIME(79, S_5), |
| SMP_TIME(160, S_5), |
| }; |
| #elif defined(CONFIG_SOC_SERIES_STM32L4X) || \ |
| defined(CONFIG_SOC_SERIES_STM32L5X) || \ |
| defined(CONFIG_SOC_SERIES_STM32WBX) || \ |
| defined(CONFIG_SOC_SERIES_STM32G4X) |
| static const uint16_t acq_time_tbl[8] = {3, 7, 13, 25, 48, 93, 248, 641}; |
| static const uint32_t table_samp_time[] = { |
| SMP_TIME(2, S_5), |
| SMP_TIME(6, S_5), |
| SMP_TIME(12, S_5), |
| SMP_TIME(24, S_5), |
| SMP_TIME(47, S_5), |
| SMP_TIME(92, S_5), |
| SMP_TIME(247, S_5), |
| SMP_TIME(640, S_5), |
| }; |
| #elif defined(CONFIG_SOC_SERIES_STM32L1X) |
| static const uint16_t acq_time_tbl[8] = {5, 10, 17, 25, 49, 97, 193, 385}; |
| static const uint32_t table_samp_time[] = { |
| SMP_TIME(4, S), |
| SMP_TIME(9, S), |
| SMP_TIME(16, S), |
| SMP_TIME(24, S), |
| SMP_TIME(48, S), |
| SMP_TIME(96, S), |
| SMP_TIME(192, S), |
| SMP_TIME(384, S), |
| }; |
| #elif defined(CONFIG_SOC_SERIES_STM32H7X) |
| static const uint16_t acq_time_tbl[8] = {2, 3, 9, 17, 33, 65, 388, 811}; |
| static const uint32_t table_samp_time[] = { |
| SMP_TIME(1, _5), |
| SMP_TIME(2, S_5), |
| SMP_TIME(8, S_5), |
| SMP_TIME(16, S_5), |
| SMP_TIME(32, S_5), |
| SMP_TIME(64, S_5), |
| SMP_TIME(387, S_5), |
| SMP_TIME(810, S_5), |
| }; |
| #elif defined(CONFIG_SOC_SERIES_STM32U5X) |
| static const uint16_t acq_time_tbl[8] = {5, 6, 12, 20, 36, 68, 391, 814}; |
| static const uint32_t table_samp_time[] = { |
| SMP_TIME(5,), |
| SMP_TIME(6, S), |
| SMP_TIME(12, S), |
| SMP_TIME(20, S), |
| SMP_TIME(36, S), |
| SMP_TIME(68, S), |
| SMP_TIME(391, S_5), |
| SMP_TIME(814, S), |
| }; |
| #endif |
| |
| /* External channels (maximum). */ |
| #define STM32_CHANNEL_COUNT 20 |
| |
| struct adc_stm32_data { |
| struct adc_context ctx; |
| const struct device *dev; |
| uint16_t *buffer; |
| uint16_t *repeat_buffer; |
| |
| uint8_t resolution; |
| uint32_t channels; |
| uint8_t channel_count; |
| uint8_t samples_count; |
| #if defined(CONFIG_SOC_SERIES_STM32F0X) || \ |
| defined(CONFIG_SOC_SERIES_STM32G0X) || \ |
| defined(CONFIG_SOC_SERIES_STM32L0X) |
| int8_t acq_time_index; |
| #endif |
| }; |
| |
| struct adc_stm32_cfg { |
| ADC_TypeDef *base; |
| void (*irq_cfg_func)(void); |
| struct stm32_pclken pclken; |
| const struct pinctrl_dev_config *pcfg; |
| bool has_temp_channel; |
| bool has_vref_channel; |
| bool has_vbat_channel; |
| int8_t temp_channel; |
| int8_t vref_channel; |
| int8_t vbat_channel; |
| }; |
| |
| #ifdef CONFIG_ADC_STM32_SHARED_IRQS |
| static bool init_irq = true; |
| #endif |
| |
| static int check_buffer_size(const struct adc_sequence *sequence, |
| uint8_t active_channels) |
| { |
| size_t needed_buffer_size; |
| |
| needed_buffer_size = active_channels * sizeof(uint16_t); |
| |
| if (sequence->options) { |
| needed_buffer_size *= (1 + sequence->options->extra_samplings); |
| } |
| |
| if (sequence->buffer_size < needed_buffer_size) { |
| LOG_ERR("Provided buffer is too small (%u/%u)", |
| sequence->buffer_size, needed_buffer_size); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| static void adc_stm32_start_conversion(const struct device *dev) |
| { |
| const struct adc_stm32_cfg *config = dev->config; |
| ADC_TypeDef *adc = (ADC_TypeDef *)config->base; |
| |
| LOG_DBG("Starting conversion"); |
| |
| #if defined(CONFIG_SOC_SERIES_STM32F0X) || \ |
| defined(CONFIG_SOC_SERIES_STM32F3X) || \ |
| defined(CONFIG_SOC_SERIES_STM32L0X) || \ |
| defined(CONFIG_SOC_SERIES_STM32L4X) || \ |
| defined(CONFIG_SOC_SERIES_STM32L5X) || \ |
| defined(CONFIG_SOC_SERIES_STM32WBX) || \ |
| defined(CONFIG_SOC_SERIES_STM32G0X) || \ |
| defined(CONFIG_SOC_SERIES_STM32G4X) || \ |
| defined(CONFIG_SOC_SERIES_STM32H7X) || \ |
| defined(CONFIG_SOC_SERIES_STM32U5X) || \ |
| defined(CONFIG_SOC_SERIES_STM32WLX) |
| LL_ADC_REG_StartConversion(adc); |
| #else |
| LL_ADC_REG_StartConversionSWStart(adc); |
| #endif |
| } |
| |
| #if !defined(CONFIG_SOC_SERIES_STM32F2X) && \ |
| !defined(CONFIG_SOC_SERIES_STM32F4X) && \ |
| !defined(CONFIG_SOC_SERIES_STM32F7X) && \ |
| !defined(CONFIG_SOC_SERIES_STM32F1X) && \ |
| !defined(STM32F3X_ADC_V2_5) && \ |
| !defined(CONFIG_SOC_SERIES_STM32L1X) |
| static void adc_stm32_calib(const struct device *dev) |
| { |
| const struct adc_stm32_cfg *config = |
| (const struct adc_stm32_cfg *)dev->config; |
| ADC_TypeDef *adc = config->base; |
| |
| #if defined(STM32F3X_ADC_V1_1) || \ |
| defined(CONFIG_SOC_SERIES_STM32L4X) || \ |
| defined(CONFIG_SOC_SERIES_STM32L5X) || \ |
| defined(CONFIG_SOC_SERIES_STM32WBX) || \ |
| defined(CONFIG_SOC_SERIES_STM32G4X) |
| LL_ADC_StartCalibration(adc, LL_ADC_SINGLE_ENDED); |
| #elif defined(CONFIG_SOC_SERIES_STM32F0X) || \ |
| defined(CONFIG_SOC_SERIES_STM32G0X) || \ |
| defined(CONFIG_SOC_SERIES_STM32L0X) || \ |
| defined(CONFIG_SOC_SERIES_STM32WLX) |
| LL_ADC_StartCalibration(adc); |
| #elif defined(CONFIG_SOC_SERIES_STM32U5X) |
| LL_ADC_StartCalibration(adc, LL_ADC_CALIB_OFFSET); |
| #elif defined(CONFIG_SOC_SERIES_STM32H7X) |
| LL_ADC_StartCalibration(adc, LL_ADC_CALIB_OFFSET, LL_ADC_SINGLE_ENDED); |
| #endif |
| while (LL_ADC_IsCalibrationOnGoing(adc)) { |
| } |
| } |
| #endif |
| |
| /* |
| * Disable ADC peripheral, and wait until it is disabled |
| */ |
| static inline void adc_stm32_disable(ADC_TypeDef *adc) |
| { |
| if (LL_ADC_IsEnabled(adc) != 1UL) { |
| return; |
| } |
| |
| LL_ADC_Disable(adc); |
| while (LL_ADC_IsEnabled(adc) == 1UL) { |
| } |
| } |
| |
| #if defined(CONFIG_SOC_SERIES_STM32G0X) || \ |
| defined(CONFIG_SOC_SERIES_STM32G4X) || \ |
| defined(CONFIG_SOC_SERIES_STM32H7X) || \ |
| defined(CONFIG_SOC_SERIES_STM32L0X) || \ |
| defined(CONFIG_SOC_SERIES_STM32L4X) || \ |
| defined(CONFIG_SOC_SERIES_STM32L5X) || \ |
| defined(CONFIG_SOC_SERIES_STM32U5X) || \ |
| defined(CONFIG_SOC_SERIES_STM32WBX) || \ |
| defined(CONFIG_SOC_SERIES_STM32WLX) |
| |
| #ifdef LL_ADC_OVS_RATIO_2 |
| /* table for shifting oversampling mostly for ADC3 != ADC_VER_V5_V90 */ |
| static const uint32_t stm32_adc_ratio_table[] = { |
| 0, |
| LL_ADC_OVS_RATIO_2, |
| LL_ADC_OVS_RATIO_4, |
| LL_ADC_OVS_RATIO_8, |
| LL_ADC_OVS_RATIO_16, |
| LL_ADC_OVS_RATIO_32, |
| LL_ADC_OVS_RATIO_64, |
| LL_ADC_OVS_RATIO_128, |
| LL_ADC_OVS_RATIO_256, |
| }; |
| #endif /* ! ADC_VER_V5_V90 */ |
| |
| /* |
| * Function to configure the oversampling scope. It is basically a wrapper over |
| * LL_ADC_SetOverSamplingScope() which in addition stops the ADC if needed. |
| */ |
| static void adc_stm32_oversampling_scope(ADC_TypeDef *adc, uint32_t ovs_scope) |
| { |
| #if defined(CONFIG_SOC_SERIES_STM32L0X) || \ |
| defined(CONFIG_SOC_SERIES_STM32WLX) |
| /* |
| * setting OVS bits is conditioned to ADC state: ADC must be disabled |
| * or enabled without conversion on going : disable it, it will stop |
| */ |
| if (LL_ADC_GetOverSamplingScope(adc) == ovs_scope) { |
| return; |
| } |
| adc_stm32_disable(adc); |
| #endif |
| LL_ADC_SetOverSamplingScope(adc, ovs_scope); |
| } |
| |
| #if !defined(CONFIG_SOC_SERIES_STM32H7X) |
| /* |
| * Function to configure the oversampling ratio and shift. It is basically a |
| * wrapper over LL_ADC_SetOverSamplingRatioShift() which in addition stops the |
| * ADC if needed. |
| */ |
| static void adc_stm32_oversampling_ratioshift(ADC_TypeDef *adc, uint32_t ratio, uint32_t shift) |
| { |
| #if defined(CONFIG_SOC_SERIES_STM32L0X) || \ |
| defined(CONFIG_SOC_SERIES_STM32WLX) |
| /* |
| * setting OVS bits is conditioned to ADC state: ADC must be disabled |
| * or enabled without conversion on going : disable it, it will stop |
| */ |
| if ((LL_ADC_GetOverSamplingRatio(adc) == ratio) |
| && (LL_ADC_GetOverSamplingShift(adc) == shift)) { |
| return; |
| } |
| adc_stm32_disable(adc); |
| #endif |
| LL_ADC_ConfigOverSamplingRatioShift(adc, ratio, shift); |
| } |
| #endif |
| |
| /* |
| * Function to configure the oversampling ratio and shit using stm32 LL |
| * ratio is directly the sequence->oversampling (a 2^n value) |
| * shift is the corresponding LL_ADC_OVS_SHIFT_RIGHT_x constant |
| */ |
| static void adc_stm32_oversampling(ADC_TypeDef *adc, uint8_t ratio, uint32_t shift) |
| { |
| adc_stm32_oversampling_scope(adc, LL_ADC_OVS_GRP_REGULAR_CONTINUED); |
| #if defined(CONFIG_SOC_SERIES_STM32H7X) |
| /* |
| * Set bits manually to circumvent bug in LL Libraries |
| * https://github.com/STMicroelectronics/STM32CubeH7/issues/177 |
| */ |
| #if defined(ADC_VER_V5_V90) |
| if (adc == ADC3) { |
| MODIFY_REG(adc->CFGR2, (ADC_CFGR2_OVSS | ADC3_CFGR2_OVSR), |
| (shift | stm32_adc_ratio_table[ratio])); |
| } else { |
| MODIFY_REG(adc->CFGR2, (ADC_CFGR2_OVSS | ADC_CFGR2_OVSR), |
| (shift | (((1UL << ratio) - 1) << ADC_CFGR2_OVSR_Pos))); |
| } |
| #endif /* ADC_VER_V5_V90*/ |
| MODIFY_REG(adc->CFGR2, (ADC_CFGR2_OVSS | ADC_CFGR2_OVSR), |
| (shift | (((1UL << ratio) - 1) << ADC_CFGR2_OVSR_Pos))); |
| #elif defined(CONFIG_SOC_SERIES_STM32U5X) |
| if (adc == ADC1) { |
| /* the LL function expects a value from 1 to 1024 */ |
| adc_stm32_oversampling_ratioshift(adc, (1 << ratio), shift); |
| } else { |
| /* the LL function expects a value LL_ADC_OVS_RATIO_x */ |
| adc_stm32_oversampling_ratioshift(adc, stm32_adc_ratio_table[ratio], shift); |
| } |
| #else /* CONFIG_SOC_SERIES_STM32H7X */ |
| adc_stm32_oversampling_ratioshift(adc, stm32_adc_ratio_table[ratio], shift); |
| #endif /* CONFIG_SOC_SERIES_STM32H7X */ |
| } |
| #endif /* CONFIG_SOC_SERIES_STM32xxx */ |
| |
| /* |
| * Enable ADC peripheral, and wait until ready if required by SOC. |
| */ |
| static int adc_stm32_enable(ADC_TypeDef *adc) |
| { |
| if (LL_ADC_IsEnabled(adc) == 1UL) { |
| return 0; |
| } |
| #if defined(CONFIG_SOC_SERIES_STM32L4X) || \ |
| defined(CONFIG_SOC_SERIES_STM32L5X) || \ |
| defined(CONFIG_SOC_SERIES_STM32WBX) || \ |
| defined(CONFIG_SOC_SERIES_STM32G0X) || \ |
| defined(CONFIG_SOC_SERIES_STM32G4X) || \ |
| defined(CONFIG_SOC_SERIES_STM32H7X) || \ |
| defined(CONFIG_SOC_SERIES_STM32U5X) || \ |
| defined(CONFIG_SOC_SERIES_STM32WLX) |
| |
| LL_ADC_ClearFlag_ADRDY(adc); |
| LL_ADC_Enable(adc); |
| |
| /* |
| * Enabling ADC modules in L4, WB, G0 and G4 series may fail if they are |
| * still not stabilized, this will wait for a short time to ensure ADC |
| * modules are properly enabled. |
| */ |
| uint32_t count_timeout = 0; |
| |
| while (LL_ADC_IsActiveFlag_ADRDY(adc) == 0) { |
| if (LL_ADC_IsEnabled(adc) == 0UL) { |
| LL_ADC_Enable(adc); |
| count_timeout++; |
| if (count_timeout == 10) { |
| return -ETIMEDOUT; |
| } |
| } |
| } |
| #else |
| /* |
| * On the stm32F10x, do not re-enable the ADC : |
| * if ADON holds 1 (LL_ADC_IsEnabled is true) and 1 is written, |
| * then conversion starts ; that's not what is expected |
| */ |
| LL_ADC_Enable(adc); |
| #endif |
| |
| return 0; |
| } |
| |
| /* |
| * Enable internal channel source |
| */ |
| static void adc_stm32_set_common_path(const struct device *dev, uint32_t PathInternal) |
| { |
| const struct adc_stm32_cfg *config = |
| (const struct adc_stm32_cfg *)dev->config; |
| ADC_TypeDef *adc = (ADC_TypeDef *)config->base; |
| |
| ARG_UNUSED(adc); /* Avoid 'unused variable' warning for some families */ |
| |
| /* Do not remove existing paths */ |
| PathInternal |= LL_ADC_GetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(adc)); |
| LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(adc), PathInternal); |
| } |
| |
| static void adc_stm32_setup_channel(const struct device *dev, uint8_t channel_id) |
| { |
| const struct adc_stm32_cfg *config = dev->config; |
| ADC_TypeDef *adc = (ADC_TypeDef *)config->base; |
| |
| if (config->temp_channel == channel_id) { |
| adc_stm32_disable(adc); |
| adc_stm32_set_common_path(dev, LL_ADC_PATH_INTERNAL_TEMPSENSOR); |
| k_usleep(LL_ADC_DELAY_TEMPSENSOR_STAB_US); |
| } |
| |
| if (config->vref_channel == channel_id) { |
| adc_stm32_disable(adc); |
| adc_stm32_set_common_path(dev, LL_ADC_PATH_INTERNAL_VREFINT); |
| #ifdef LL_ADC_DELAY_VREFINT_STAB_US |
| k_usleep(LL_ADC_DELAY_VREFINT_STAB_US); |
| #endif |
| } |
| |
| #if defined(LL_ADC_CHANNEL_VBAT) |
| /* Enable the bridge divider only when needed for ADC conversion. */ |
| if (config->vbat_channel == channel_id) { |
| adc_stm32_disable(adc); |
| adc_stm32_set_common_path(dev, LL_ADC_PATH_INTERNAL_VBAT); |
| } |
| #endif /* LL_ADC_CHANNEL_VBAT */ |
| } |
| |
| static void adc_stm32_unset_common_path(const struct device *dev, uint32_t PathInternal) |
| { |
| const struct adc_stm32_cfg *config = dev->config; |
| ADC_TypeDef *adc = (ADC_TypeDef *)config->base; |
| const uint32_t currentPath = LL_ADC_GetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(adc)); |
| |
| ARG_UNUSED(adc); /* Avoid 'unused variable' warning for some families */ |
| |
| PathInternal = ~PathInternal & currentPath; |
| LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(adc), PathInternal); |
| } |
| |
| static void adc_stm32_teardown_channels(const struct device *dev) |
| { |
| const struct adc_stm32_cfg *config = dev->config; |
| struct adc_stm32_data *data = dev->data; |
| ADC_TypeDef *adc = (ADC_TypeDef *)config->base; |
| uint8_t channel_id; |
| |
| for (uint32_t channels = data->channels; channels; channels &= ~BIT(channel_id)) { |
| channel_id = find_lsb_set(channels) - 1; |
| if (config->temp_channel == channel_id) { |
| adc_stm32_disable(adc); |
| adc_stm32_unset_common_path(dev, LL_ADC_PATH_INTERNAL_TEMPSENSOR); |
| } |
| |
| if (config->vref_channel == channel_id) { |
| adc_stm32_disable(adc); |
| adc_stm32_unset_common_path(dev, LL_ADC_PATH_INTERNAL_VREFINT); |
| } |
| |
| #if defined(LL_ADC_CHANNEL_VBAT) |
| /* Enable the bridge divider only when needed for ADC conversion. */ |
| if (config->vbat_channel == channel_id) { |
| adc_stm32_disable(adc); |
| adc_stm32_unset_common_path(dev, LL_ADC_PATH_INTERNAL_VBAT); |
| } |
| #endif /* LL_ADC_CHANNEL_VBAT */ |
| } |
| |
| adc_stm32_enable(adc); |
| } |
| |
| static int start_read(const struct device *dev, |
| const struct adc_sequence *sequence) |
| { |
| const struct adc_stm32_cfg *config = dev->config; |
| struct adc_stm32_data *data = dev->data; |
| ADC_TypeDef *adc = (ADC_TypeDef *)config->base; |
| uint8_t resolution; |
| int err; |
| |
| switch (sequence->resolution) { |
| #if defined(CONFIG_SOC_SERIES_STM32F1X) || \ |
| defined(STM32F3X_ADC_V2_5) |
| case 12: |
| resolution = table_resolution[0]; |
| break; |
| #elif defined(CONFIG_SOC_SERIES_STM32U5X) |
| case 6: |
| resolution = table_resolution[0]; |
| break; |
| case 8: |
| resolution = table_resolution[1]; |
| break; |
| case 10: |
| resolution = table_resolution[2]; |
| break; |
| case 12: |
| resolution = table_resolution[3]; |
| break; |
| case 14: |
| resolution = table_resolution[4]; |
| break; |
| #elif !defined(CONFIG_SOC_SERIES_STM32H7X) |
| case 6: |
| resolution = table_resolution[0]; |
| break; |
| case 8: |
| resolution = table_resolution[1]; |
| break; |
| case 10: |
| resolution = table_resolution[2]; |
| break; |
| case 12: |
| resolution = table_resolution[3]; |
| break; |
| #else |
| case 8: |
| resolution = table_resolution[0]; |
| break; |
| case 10: |
| resolution = table_resolution[1]; |
| break; |
| case 12: |
| resolution = table_resolution[2]; |
| break; |
| case 14: |
| resolution = table_resolution[3]; |
| break; |
| case 16: |
| resolution = table_resolution[4]; |
| break; |
| #endif |
| default: |
| LOG_ERR("Invalid resolution"); |
| return -EINVAL; |
| } |
| |
| data->buffer = sequence->buffer; |
| data->channels = sequence->channels; |
| data->channel_count = POPCOUNT(data->channels); |
| data->samples_count = 0; |
| |
| if (data->channel_count == 0) { |
| LOG_ERR("No channels selected"); |
| return -EINVAL; |
| } |
| |
| if (data->channels > BIT(STM32_CHANNEL_COUNT) - 1) { |
| LOG_ERR("Channels bitmask uses out of range channel"); |
| return -EINVAL; |
| } |
| |
| #if !defined(CONFIG_SOC_SERIES_STM32F0X) && \ |
| !defined(CONFIG_SOC_SERIES_STM32G0X) && \ |
| !defined(CONFIG_SOC_SERIES_STM32L0X) && \ |
| !defined(CONFIG_SOC_SERIES_STM32WLX) |
| if (data->channel_count > ARRAY_SIZE(table_seq_len)) { |
| LOG_ERR("Too many channels for sequencer. Max: %d", ARRAY_SIZE(table_seq_len)); |
| return -EINVAL; |
| } |
| #else |
| if (data->channel_count > 1) { |
| LOG_ERR("This device only supports single channel sampling"); |
| return -EINVAL; |
| } |
| #endif |
| |
| uint8_t channel_id; |
| uint8_t channel_index = 0; |
| |
| /* Iterate over selected channels in bitmask keeping track of: |
| * - channel_index: ranging from 0 -> ( data->channel_count - 1 ) |
| * - channel_id: ordinal position of channel in data->channels bitmask |
| */ |
| for (uint32_t channels = data->channels; channels; |
| channels &= ~BIT(channel_id), channel_index++) { |
| channel_id = find_lsb_set(channels) - 1; |
| |
| uint32_t channel = __LL_ADC_DECIMAL_NB_TO_CHANNEL(channel_id); |
| |
| adc_stm32_setup_channel(dev, channel_id); |
| |
| #if defined(CONFIG_SOC_SERIES_STM32H7X) |
| /* |
| * Each channel in the sequence must be previously enabled in PCSEL. |
| * This register controls the analog switch integrated in the IO level. |
| */ |
| LL_ADC_SetChannelPreSelection(adc, channel); |
| #elif defined(CONFIG_SOC_SERIES_STM32U5X) |
| /* |
| * Each channel in the sequence must be previously enabled in PCSEL. |
| * This register controls the analog switch integrated in the IO level. |
| * Only for ADC1 instance (ADC4 has no Channel preselection capability). |
| */ |
| if (adc == ADC1) { |
| LL_ADC_SetChannelPreselection(adc, channel); |
| } |
| #endif |
| |
| #if defined(CONFIG_SOC_SERIES_STM32F0X) || \ |
| defined(CONFIG_SOC_SERIES_STM32L0X) |
| LL_ADC_REG_SetSequencerChannels(adc, channel); |
| #elif defined(CONFIG_SOC_SERIES_STM32WLX) |
| /* Init the the ADC group for REGULAR conversion*/ |
| LL_ADC_REG_SetSequencerConfigurable(adc, LL_ADC_REG_SEQ_CONFIGURABLE); |
| LL_ADC_REG_SetTriggerSource(adc, LL_ADC_REG_TRIG_SOFTWARE); |
| LL_ADC_REG_SetSequencerLength(adc, LL_ADC_REG_SEQ_SCAN_DISABLE); |
| LL_ADC_REG_SetOverrun(adc, LL_ADC_REG_OVR_DATA_OVERWRITTEN); |
| LL_ADC_REG_SetSequencerRanks(adc, LL_ADC_REG_RANK_1, channel); |
| LL_ADC_REG_SetSequencerChannels(adc, channel); |
| /* Wait for config complete config is ready */ |
| while (LL_ADC_IsActiveFlag_CCRDY(adc) == 0) { |
| } |
| LL_ADC_ClearFlag_CCRDY(adc); |
| #elif defined(CONFIG_SOC_SERIES_STM32G0X) |
| /* STM32G0 in "not fully configurable" sequencer mode */ |
| LL_ADC_REG_SetSequencerChannels(adc, channel); |
| LL_ADC_REG_SetSequencerConfigurable(adc, LL_ADC_REG_SEQ_FIXED); |
| while (LL_ADC_IsActiveFlag_CCRDY(adc) == 0) { |
| } |
| LL_ADC_ClearFlag_CCRDY(adc); |
| #elif defined(CONFIG_SOC_SERIES_STM32U5X) |
| if (adc != ADC4) { |
| LL_ADC_REG_SetSequencerRanks(adc, table_rank[channel_index], channel); |
| LL_ADC_REG_SetSequencerLength(adc, table_seq_len[channel_index]); |
| } else { |
| LL_ADC_REG_SetSequencerConfigurable(adc, LL_ADC_REG_SEQ_FIXED); |
| LL_ADC_REG_SetSequencerLength(adc, |
| BIT(__LL_ADC_CHANNEL_TO_DECIMAL_NB(channel))); |
| } |
| #else |
| LL_ADC_REG_SetSequencerRanks(adc, table_rank[channel_index], channel); |
| LL_ADC_REG_SetSequencerLength(adc, table_seq_len[channel_index]); |
| #endif |
| } |
| |
| err = check_buffer_size(sequence, data->channel_count); |
| if (err) { |
| return err; |
| } |
| |
| #if defined(CONFIG_SOC_SERIES_STM32G0X) || \ |
| defined(CONFIG_SOC_SERIES_STM32WLX) |
| if (LL_ADC_GetResolution(adc) != resolution) { |
| /* |
| * Writing ADC_CFGR1 register while ADEN bit is set |
| * resets RES[1:0] bitfield. We need to disable and enable adc. |
| */ |
| adc_stm32_disable(adc); |
| LL_ADC_SetResolution(adc, resolution); |
| } |
| #elif !defined(CONFIG_SOC_SERIES_STM32F1X) && \ |
| !defined(STM32F3X_ADC_V2_5) |
| LL_ADC_SetResolution(adc, resolution); |
| #endif |
| |
| #if defined(CONFIG_SOC_SERIES_STM32G0X) || \ |
| defined(CONFIG_SOC_SERIES_STM32G4X) || \ |
| defined(CONFIG_SOC_SERIES_STM32H7X) || \ |
| defined(CONFIG_SOC_SERIES_STM32L0X) || \ |
| defined(CONFIG_SOC_SERIES_STM32L4X) || \ |
| defined(CONFIG_SOC_SERIES_STM32L5X) || \ |
| defined(CONFIG_SOC_SERIES_STM32U5X) || \ |
| defined(CONFIG_SOC_SERIES_STM32WBX) || \ |
| defined(CONFIG_SOC_SERIES_STM32WLX) |
| |
| switch (sequence->oversampling) { |
| case 0: |
| adc_stm32_oversampling_scope(adc, LL_ADC_OVS_DISABLE); |
| break; |
| case 1: |
| adc_stm32_oversampling(adc, 1, LL_ADC_OVS_SHIFT_RIGHT_1); |
| break; |
| case 2: |
| adc_stm32_oversampling(adc, 2, LL_ADC_OVS_SHIFT_RIGHT_2); |
| break; |
| case 3: |
| adc_stm32_oversampling(adc, 3, LL_ADC_OVS_SHIFT_RIGHT_3); |
| break; |
| case 4: |
| adc_stm32_oversampling(adc, 4, LL_ADC_OVS_SHIFT_RIGHT_4); |
| break; |
| case 5: |
| adc_stm32_oversampling(adc, 5, LL_ADC_OVS_SHIFT_RIGHT_5); |
| break; |
| case 6: |
| adc_stm32_oversampling(adc, 6, LL_ADC_OVS_SHIFT_RIGHT_6); |
| break; |
| case 7: |
| adc_stm32_oversampling(adc, 7, LL_ADC_OVS_SHIFT_RIGHT_7); |
| break; |
| case 8: |
| adc_stm32_oversampling(adc, 8, LL_ADC_OVS_SHIFT_RIGHT_8); |
| break; |
| #if defined(CONFIG_SOC_SERIES_STM32H7X) || defined(CONFIG_SOC_SERIES_STM32U5X) |
| /* stm32 U5, H7 ADC1 & 2 have oversampling ratio from 1..1024 */ |
| case 9: |
| adc_stm32_oversampling(adc, 9, LL_ADC_OVS_SHIFT_RIGHT_9); |
| break; |
| case 10: |
| adc_stm32_oversampling(adc, 10, LL_ADC_OVS_SHIFT_RIGHT_10); |
| break; |
| #endif /* CONFIG_SOC_SERIES_STM32H7X */ |
| default: |
| LOG_ERR("Invalid oversampling"); |
| adc_stm32_enable(adc); |
| return -EINVAL; |
| } |
| #else |
| if (sequence->oversampling) { |
| LOG_ERR("Oversampling not supported"); |
| return -ENOTSUP; |
| } |
| #endif |
| |
| if (sequence->calibrate) { |
| #if !defined(CONFIG_SOC_SERIES_STM32F2X) && \ |
| !defined(CONFIG_SOC_SERIES_STM32F4X) && \ |
| !defined(CONFIG_SOC_SERIES_STM32F7X) && \ |
| !defined(CONFIG_SOC_SERIES_STM32F1X) && \ |
| !defined(STM32F3X_ADC_V2_5) && \ |
| !defined(CONFIG_SOC_SERIES_STM32L1X) |
| |
| /* we cannot calibrate the ADC while the ADC is enabled */ |
| adc_stm32_disable(adc); |
| adc_stm32_calib(dev); |
| #else |
| LOG_ERR("Calibration not supported"); |
| return -ENOTSUP; |
| #endif |
| } |
| |
| /* |
| * Make sure the ADC is enabled as it might have been disabled earlier |
| * to set the resolution, to set the oversampling or to perform the |
| * calibration. |
| */ |
| adc_stm32_enable(adc); |
| |
| #if defined(CONFIG_SOC_SERIES_STM32F0X) || \ |
| defined(STM32F3X_ADC_V1_1) || \ |
| defined(CONFIG_SOC_SERIES_STM32L0X) || \ |
| defined(CONFIG_SOC_SERIES_STM32L4X) || \ |
| defined(CONFIG_SOC_SERIES_STM32L5X) || \ |
| defined(CONFIG_SOC_SERIES_STM32WBX) || \ |
| defined(CONFIG_SOC_SERIES_STM32G0X) || \ |
| defined(CONFIG_SOC_SERIES_STM32G4X) || \ |
| defined(CONFIG_SOC_SERIES_STM32H7X) || \ |
| defined(CONFIG_SOC_SERIES_STM32U5X) || \ |
| defined(CONFIG_SOC_SERIES_STM32WLX) |
| LL_ADC_EnableIT_EOC(adc); |
| #elif defined(STM32F3X_ADC_V2_5) || \ |
| defined(CONFIG_SOC_SERIES_STM32F1X) |
| LL_ADC_EnableIT_EOS(adc); |
| #else |
| LL_ADC_EnableIT_EOCS(adc); |
| #endif |
| |
| adc_context_start_read(&data->ctx, sequence); |
| |
| int result = adc_context_wait_for_completion(&data->ctx); |
| |
| return result; |
| } |
| |
| static void adc_context_start_sampling(struct adc_context *ctx) |
| { |
| struct adc_stm32_data *data = |
| CONTAINER_OF(ctx, struct adc_stm32_data, ctx); |
| |
| data->repeat_buffer = data->buffer; |
| |
| adc_stm32_start_conversion(data->dev); |
| } |
| |
| static void adc_context_update_buffer_pointer(struct adc_context *ctx, |
| bool repeat_sampling) |
| { |
| struct adc_stm32_data *data = |
| CONTAINER_OF(ctx, struct adc_stm32_data, ctx); |
| |
| if (repeat_sampling) { |
| data->buffer = data->repeat_buffer; |
| } |
| } |
| |
| static void adc_stm32_isr(const struct device *dev) |
| { |
| struct adc_stm32_data *data = dev->data; |
| const struct adc_stm32_cfg *config = |
| (const struct adc_stm32_cfg *)dev->config; |
| ADC_TypeDef *adc = config->base; |
| |
| *data->buffer++ = LL_ADC_REG_ReadConversionData32(adc); |
| |
| /* ISR is triggered after each conversion, and at the end-of-sequence. */ |
| if (++data->samples_count == data->channel_count) { |
| data->samples_count = 0; |
| adc_context_on_sampling_done(&data->ctx, dev); |
| } |
| |
| LOG_DBG("%s ISR triggered.", dev->name); |
| } |
| |
| static void adc_context_on_complete(struct adc_context *ctx, int status) |
| { |
| struct adc_stm32_data *data = |
| CONTAINER_OF(ctx, struct adc_stm32_data, ctx); |
| |
| ARG_UNUSED(status); |
| |
| adc_stm32_teardown_channels(data->dev); |
| } |
| |
| static int adc_stm32_read(const struct device *dev, |
| const struct adc_sequence *sequence) |
| { |
| struct adc_stm32_data *data = dev->data; |
| int error; |
| |
| adc_context_lock(&data->ctx, false, NULL); |
| error = start_read(dev, sequence); |
| adc_context_release(&data->ctx, error); |
| |
| return error; |
| } |
| |
| #ifdef CONFIG_ADC_ASYNC |
| static int adc_stm32_read_async(const struct device *dev, |
| const struct adc_sequence *sequence, |
| struct k_poll_signal *async) |
| { |
| struct adc_stm32_data *data = dev->data; |
| int error; |
| |
| adc_context_lock(&data->ctx, true, async); |
| error = start_read(dev, sequence); |
| adc_context_release(&data->ctx, error); |
| |
| return error; |
| } |
| #endif |
| |
| static int adc_stm32_check_acq_time(uint16_t acq_time) |
| { |
| if (acq_time == ADC_ACQ_TIME_MAX) { |
| return ARRAY_SIZE(acq_time_tbl) - 1; |
| } |
| |
| for (int i = 0; i < 8; i++) { |
| if (acq_time == ADC_ACQ_TIME(ADC_ACQ_TIME_TICKS, |
| acq_time_tbl[i])) { |
| return i; |
| } |
| } |
| |
| if (acq_time == ADC_ACQ_TIME_DEFAULT) { |
| return 0; |
| } |
| |
| LOG_ERR("Conversion time not supported."); |
| return -EINVAL; |
| } |
| |
| static void adc_stm32_setup_speed(const struct device *dev, uint8_t id, |
| uint8_t acq_time_index) |
| { |
| const struct adc_stm32_cfg *config = |
| (const struct adc_stm32_cfg *)dev->config; |
| ADC_TypeDef *adc = config->base; |
| |
| #if defined(CONFIG_SOC_SERIES_STM32F0X) || defined(CONFIG_SOC_SERIES_STM32L0X) |
| LL_ADC_SetSamplingTimeCommonChannels(adc, |
| table_samp_time[acq_time_index]); |
| #elif defined(CONFIG_SOC_SERIES_STM32G0X) |
| /* Errata ES0418 and more: ADC sampling time might be one cycle longer */ |
| if (acq_time_index < 2) { |
| acq_time_index = 2; |
| } |
| LL_ADC_SetSamplingTimeCommonChannels(adc, LL_ADC_SAMPLINGTIME_COMMON_1, |
| table_samp_time[acq_time_index]); |
| #elif defined(CONFIG_SOC_SERIES_STM32WLX) |
| LL_ADC_SetChannelSamplingTime(adc, |
| __LL_ADC_DECIMAL_NB_TO_CHANNEL(id), |
| LL_ADC_SAMPLINGTIME_COMMON_1); |
| LL_ADC_SetSamplingTimeCommonChannels(adc, |
| __LL_ADC_DECIMAL_NB_TO_CHANNEL(id), |
| table_samp_time[acq_time_index]); |
| #elif defined(CONFIG_SOC_SERIES_STM32U5X) |
| if (adc != ADC4) { |
| LL_ADC_SetChannelSamplingTime(adc, |
| __LL_ADC_DECIMAL_NB_TO_CHANNEL(id), |
| table_samp_time[acq_time_index]); |
| } else { |
| LL_ADC_SetSamplingTimeCommonChannels(adc, |
| LL_ADC_SAMPLINGTIME_COMMON_1, |
| table_samp_time[acq_time_index]); |
| } |
| #else |
| LL_ADC_SetChannelSamplingTime(adc, |
| __LL_ADC_DECIMAL_NB_TO_CHANNEL(id), |
| table_samp_time[acq_time_index]); |
| #endif |
| } |
| |
| static int adc_stm32_channel_setup(const struct device *dev, |
| const struct adc_channel_cfg *channel_cfg) |
| { |
| #if defined(CONFIG_SOC_SERIES_STM32F0X) || \ |
| defined(CONFIG_SOC_SERIES_STM32G0X) || \ |
| defined(CONFIG_SOC_SERIES_STM32L0X) |
| struct adc_stm32_data *data = dev->data; |
| #endif |
| int acq_time_index; |
| |
| if (channel_cfg->channel_id >= STM32_CHANNEL_COUNT) { |
| LOG_ERR("Channel %d is not valid", channel_cfg->channel_id); |
| return -EINVAL; |
| } |
| |
| acq_time_index = adc_stm32_check_acq_time( |
| channel_cfg->acquisition_time); |
| if (acq_time_index < 0) { |
| return acq_time_index; |
| } |
| #if defined(CONFIG_SOC_SERIES_STM32F0X) || \ |
| defined(CONFIG_SOC_SERIES_STM32G0X) || \ |
| defined(CONFIG_SOC_SERIES_STM32L0X) |
| if (data->acq_time_index == -1) { |
| data->acq_time_index = acq_time_index; |
| } else { |
| /* All channels of F0/L0 must have identical acquisition time.*/ |
| if (acq_time_index != data->acq_time_index) { |
| return -EINVAL; |
| } |
| } |
| #endif |
| |
| if (channel_cfg->differential) { |
| LOG_ERR("Differential channels are not supported"); |
| return -EINVAL; |
| } |
| |
| if (channel_cfg->gain != ADC_GAIN_1) { |
| LOG_ERR("Invalid channel gain"); |
| return -EINVAL; |
| } |
| |
| if (channel_cfg->reference != ADC_REF_INTERNAL) { |
| LOG_ERR("Invalid channel reference"); |
| return -EINVAL; |
| } |
| |
| adc_stm32_setup_speed(dev, channel_cfg->channel_id, |
| acq_time_index); |
| |
| LOG_DBG("Channel setup succeeded!"); |
| |
| return 0; |
| } |
| |
| static int adc_stm32_init(const struct device *dev) |
| { |
| struct adc_stm32_data *data = dev->data; |
| const struct adc_stm32_cfg *config = dev->config; |
| const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE); |
| ADC_TypeDef *adc = (ADC_TypeDef *)config->base; |
| int err; |
| |
| LOG_DBG("Initializing...."); |
| |
| if (!device_is_ready(clk)) { |
| LOG_ERR("clock control device not ready"); |
| return -ENODEV; |
| } |
| |
| data->dev = dev; |
| #if defined(CONFIG_SOC_SERIES_STM32F0X) || \ |
| defined(CONFIG_SOC_SERIES_STM32G0X) || \ |
| defined(CONFIG_SOC_SERIES_STM32L0X) |
| /* |
| * All conversion time for all channels on one ADC instance for F0 and |
| * L0 series chips has to be the same. For STM32G0 currently only one |
| * of the two available common channel conversion times is used. |
| * This additional variable is for checking if the conversion time |
| * selection of all channels on one ADC instance is the same. |
| */ |
| data->acq_time_index = -1; |
| #endif |
| |
| if (clock_control_on(clk, |
| (clock_control_subsys_t *) &config->pclken) != 0) { |
| return -EIO; |
| } |
| |
| /* Configure dt provided device signals when available */ |
| err = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT); |
| if (err < 0) { |
| LOG_ERR("ADC pinctrl setup failed (%d)", err); |
| return err; |
| } |
| #if defined(CONFIG_SOC_SERIES_STM32U5X) |
| /* Enable the independent analog supply */ |
| LL_PWR_EnableVDDA(); |
| #endif /* CONFIG_SOC_SERIES_STM32U5X */ |
| |
| #if defined(CONFIG_SOC_SERIES_STM32L4X) || \ |
| defined(CONFIG_SOC_SERIES_STM32L5X) || \ |
| defined(CONFIG_SOC_SERIES_STM32WBX) || \ |
| defined(CONFIG_SOC_SERIES_STM32G4X) || \ |
| defined(CONFIG_SOC_SERIES_STM32H7X) || \ |
| defined(CONFIG_SOC_SERIES_STM32U5X) |
| /* |
| * L4, WB, G4, H7 and U5 series STM32 needs to be awaken from deep sleep |
| * mode, and restore its calibration parameters if there are some |
| * previously stored calibration parameters. |
| */ |
| |
| LL_ADC_DisableDeepPowerDown(adc); |
| #elif defined(CONFIG_SOC_SERIES_STM32WLX) |
| /* The ADC clock must be disabled by clock gating during CPU1 sleep/stop */ |
| LL_APB2_GRP1_DisableClockSleep(LL_APB2_GRP1_PERIPH_ADC); |
| #endif |
| /* |
| * F3, L4, WB, G0 and G4 ADC modules need some time |
| * to be stabilized before performing any enable or calibration actions. |
| */ |
| #if defined(STM32F3X_ADC_V1_1) || \ |
| defined(CONFIG_SOC_SERIES_STM32L4X) || \ |
| defined(CONFIG_SOC_SERIES_STM32L5X) || \ |
| defined(CONFIG_SOC_SERIES_STM32WBX) || \ |
| defined(CONFIG_SOC_SERIES_STM32G0X) || \ |
| defined(CONFIG_SOC_SERIES_STM32G4X) || \ |
| defined(CONFIG_SOC_SERIES_STM32H7X) || \ |
| defined(CONFIG_SOC_SERIES_STM32U5X) || \ |
| defined(CONFIG_SOC_SERIES_STM32WLX) |
| LL_ADC_EnableInternalRegulator(adc); |
| k_busy_wait(LL_ADC_DELAY_INTERNAL_REGUL_STAB_US); |
| #endif |
| |
| #if defined(CONFIG_SOC_SERIES_STM32F0X) || \ |
| defined(CONFIG_SOC_SERIES_STM32L0X) || \ |
| defined(CONFIG_SOC_SERIES_STM32WLX) |
| LL_ADC_SetClock(adc, LL_ADC_CLOCK_SYNC_PCLK_DIV4); |
| #elif defined(CONFIG_SOC_SERIES_STM32L4X) || \ |
| defined(CONFIG_SOC_SERIES_STM32L5X) || \ |
| defined(CONFIG_SOC_SERIES_STM32WBX) || \ |
| defined(CONFIG_SOC_SERIES_STM32G0X) || \ |
| defined(CONFIG_SOC_SERIES_STM32G4X) || \ |
| defined(CONFIG_SOC_SERIES_STM32H7X) |
| LL_ADC_SetCommonClock(__LL_ADC_COMMON_INSTANCE(adc), |
| LL_ADC_CLOCK_SYNC_PCLK_DIV4); |
| #elif defined(STM32F3X_ADC_V1_1) |
| /* |
| * Set the synchronous clock mode to HCLK/1 (DIV1) or HCLK/2 (DIV2) |
| * Both are valid common clock setting values. |
| * The HCLK/1(DIV1) is possible only if |
| * the ahb-prescaler = <1> in the RCC_CFGR. |
| */ |
| LL_ADC_SetCommonClock(__LL_ADC_COMMON_INSTANCE(adc), |
| LL_ADC_CLOCK_SYNC_PCLK_DIV2); |
| #elif defined(CONFIG_SOC_SERIES_STM32L1X) || \ |
| defined(CONFIG_SOC_SERIES_STM32U5X) |
| LL_ADC_SetCommonClock(__LL_ADC_COMMON_INSTANCE(adc), |
| LL_ADC_CLOCK_ASYNC_DIV4); |
| #endif |
| |
| #if !defined(CONFIG_SOC_SERIES_STM32F2X) && \ |
| !defined(CONFIG_SOC_SERIES_STM32F4X) && \ |
| !defined(CONFIG_SOC_SERIES_STM32F7X) && \ |
| !defined(CONFIG_SOC_SERIES_STM32F1X) && \ |
| !defined(STM32F3X_ADC_V2_5) && \ |
| !defined(CONFIG_SOC_SERIES_STM32L1X) |
| /* |
| * Calibration of F1 and F3 (ADC1_V2_5) series has to be started |
| * after ADC Module is enabled. |
| */ |
| adc_stm32_calib(dev); |
| #endif |
| |
| #if defined(CONFIG_SOC_SERIES_STM32F0X) || \ |
| defined(CONFIG_SOC_SERIES_STM32L0X) || \ |
| defined(CONFIG_SOC_SERIES_STM32L4X) || \ |
| defined(CONFIG_SOC_SERIES_STM32L5X) || \ |
| defined(CONFIG_SOC_SERIES_STM32WBX) || \ |
| defined(CONFIG_SOC_SERIES_STM32G0X) || \ |
| defined(CONFIG_SOC_SERIES_STM32G4X) || \ |
| defined(CONFIG_SOC_SERIES_STM32H7X) || \ |
| defined(CONFIG_SOC_SERIES_STM32U5X) || \ |
| defined(CONFIG_SOC_SERIES_STM32WLX) |
| if (LL_ADC_IsActiveFlag_ADRDY(adc)) { |
| LL_ADC_ClearFlag_ADRDY(adc); |
| } |
| #endif |
| |
| #if defined(CONFIG_SOC_SERIES_STM32F0X) || \ |
| defined(STM32F3X_ADC_V1_1) || \ |
| defined(CONFIG_SOC_SERIES_STM32L0X) || \ |
| defined(CONFIG_SOC_SERIES_STM32L4X) || \ |
| defined(CONFIG_SOC_SERIES_STM32L5X) || \ |
| defined(CONFIG_SOC_SERIES_STM32WBX) || \ |
| defined(CONFIG_SOC_SERIES_STM32G0X) || \ |
| defined(CONFIG_SOC_SERIES_STM32G4X) || \ |
| defined(CONFIG_SOC_SERIES_STM32H7X) || \ |
| defined(CONFIG_SOC_SERIES_STM32U5X) || \ |
| defined(CONFIG_SOC_SERIES_STM32WLX) |
| /* |
| * ADC modules on these series have to wait for some cycles to be |
| * enabled. |
| */ |
| uint32_t adc_rate, wait_cycles; |
| |
| if (clock_control_get_rate(clk, |
| (clock_control_subsys_t *) &config->pclken, &adc_rate) < 0) { |
| LOG_ERR("ADC clock rate get error."); |
| } |
| |
| wait_cycles = SystemCoreClock / adc_rate * |
| LL_ADC_DELAY_CALIB_ENABLE_ADC_CYCLES; |
| |
| for (int i = wait_cycles; i >= 0; i--) { |
| } |
| #endif |
| |
| err = adc_stm32_enable(adc); |
| if (err < 0) { |
| return err; |
| } |
| |
| config->irq_cfg_func(); |
| |
| #if defined(CONFIG_SOC_SERIES_STM32F1X) || \ |
| defined(STM32F3X_ADC_V2_5) |
| /* |
| * Calibration of F1 and F3 (ADC1_V2_5) must starts after two cycles |
| * after ADON is set. |
| */ |
| LL_ADC_StartCalibration(adc); |
| LL_ADC_REG_SetTriggerSource(adc, LL_ADC_REG_TRIG_SOFTWARE); |
| #endif |
| |
| #ifdef CONFIG_SOC_SERIES_STM32H7X |
| /* |
| * To ensure linearity the factory calibration values |
| * should be loaded on initialization. |
| */ |
| uint32_t channel_offset = 0U; |
| uint32_t linear_calib_buffer = 0U; |
| |
| if (adc == ADC1) { |
| channel_offset = 0UL; |
| } else if (adc == ADC2) { |
| channel_offset = 8UL; |
| } else /*Case ADC3*/ { |
| channel_offset = 16UL; |
| } |
| /* Read factory calibration factors */ |
| for (uint32_t count = 0UL; count < ADC_LINEAR_CALIB_REG_COUNT; count++) { |
| linear_calib_buffer = *(uint32_t *)( |
| ADC_LINEAR_CALIB_REG_1_ADDR + channel_offset + count |
| ); |
| LL_ADC_SetCalibrationLinearFactor( |
| adc, LL_ADC_CALIB_LINEARITY_WORD1 << count, |
| linear_calib_buffer |
| ); |
| } |
| #endif |
| adc_context_unlock_unconditionally(&data->ctx); |
| |
| return 0; |
| } |
| |
| static const struct adc_driver_api api_stm32_driver_api = { |
| .channel_setup = adc_stm32_channel_setup, |
| .read = adc_stm32_read, |
| #ifdef CONFIG_ADC_ASYNC |
| .read_async = adc_stm32_read_async, |
| #endif |
| .ref_internal = STM32_ADC_VREF_MV, /* VREF is usually connected to VDD */ |
| }; |
| |
| #ifdef CONFIG_ADC_STM32_SHARED_IRQS |
| |
| bool adc_stm32_is_irq_active(ADC_TypeDef *adc) |
| { |
| #if defined(CONFIG_SOC_SERIES_STM32G4X) |
| return LL_ADC_IsActiveFlag_EOC(adc) || |
| #else |
| return LL_ADC_IsActiveFlag_EOCS(adc) || |
| #endif /* CONFIG_SOC_SERIES_STM32G4X */ |
| LL_ADC_IsActiveFlag_OVR(adc) || |
| LL_ADC_IsActiveFlag_JEOS(adc) || |
| LL_ADC_IsActiveFlag_AWD1(adc); |
| } |
| |
| #define HANDLE_IRQS(index) \ |
| static const struct device *const dev_##index = \ |
| DEVICE_DT_INST_GET(index); \ |
| const struct adc_stm32_cfg *cfg_##index = dev_##index->config; \ |
| ADC_TypeDef *adc_##index = (ADC_TypeDef *)(cfg_##index->base); \ |
| \ |
| if (adc_stm32_is_irq_active(adc_##index)) { \ |
| adc_stm32_isr(dev_##index); \ |
| } |
| |
| static void adc_stm32_shared_irq_handler(void) |
| { |
| DT_INST_FOREACH_STATUS_OKAY(HANDLE_IRQS); |
| } |
| |
| static void adc_stm32_irq_init(void) |
| { |
| if (init_irq) { |
| init_irq = false; |
| IRQ_CONNECT(DT_INST_IRQN(0), |
| DT_INST_IRQ(0, priority), |
| adc_stm32_shared_irq_handler, NULL, 0); |
| irq_enable(DT_INST_IRQN(0)); |
| } |
| } |
| |
| #define ADC_STM32_IRQ_CONFIG(index) |
| #define ADC_STM32_IRQ_FUNC(index) \ |
| .irq_cfg_func = adc_stm32_irq_init, \ |
| |
| #else |
| |
| #define ADC_STM32_IRQ_CONFIG(index) \ |
| static void adc_stm32_cfg_func_##index(void) \ |
| { \ |
| IRQ_CONNECT(DT_INST_IRQN(index), \ |
| DT_INST_IRQ(index, priority), \ |
| adc_stm32_isr, DEVICE_DT_INST_GET(index), 0); \ |
| irq_enable(DT_INST_IRQN(index)); \ |
| } |
| #define ADC_STM32_IRQ_FUNC(index) \ |
| .irq_cfg_func = adc_stm32_cfg_func_##index, |
| |
| #endif /* CONFIG_ADC_STM32_SHARED_IRQS */ |
| |
| |
| #define ADC_STM32_INIT(index) \ |
| \ |
| PINCTRL_DT_INST_DEFINE(index); \ |
| \ |
| ADC_STM32_IRQ_CONFIG(index) \ |
| \ |
| static const struct adc_stm32_cfg adc_stm32_cfg_##index = { \ |
| .base = (ADC_TypeDef *)DT_INST_REG_ADDR(index), \ |
| ADC_STM32_IRQ_FUNC(index) \ |
| .pclken = { \ |
| .enr = DT_INST_CLOCKS_CELL(index, bits), \ |
| .bus = DT_INST_CLOCKS_CELL(index, bus), \ |
| }, \ |
| .pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(index), \ |
| .has_temp_channel = DT_INST_PROP(index, has_temp_channel), \ |
| .has_vref_channel = DT_INST_PROP(index, has_vref_channel), \ |
| .has_vbat_channel = DT_INST_PROP(index, has_vbat_channel), \ |
| .temp_channel = DT_INST_PROP_OR(index, temp_channel, 0xFF), \ |
| .vref_channel = DT_INST_PROP_OR(index, vref_channel, 0xFF), \ |
| .vbat_channel = DT_INST_PROP_OR(index, vbat_channel, 0xFF), \ |
| }; \ |
| \ |
| static struct adc_stm32_data adc_stm32_data_##index = { \ |
| ADC_CONTEXT_INIT_TIMER(adc_stm32_data_##index, ctx), \ |
| ADC_CONTEXT_INIT_LOCK(adc_stm32_data_##index, ctx), \ |
| ADC_CONTEXT_INIT_SYNC(adc_stm32_data_##index, ctx), \ |
| }; \ |
| \ |
| DEVICE_DT_INST_DEFINE(index, \ |
| &adc_stm32_init, NULL, \ |
| &adc_stm32_data_##index, &adc_stm32_cfg_##index, \ |
| POST_KERNEL, CONFIG_ADC_INIT_PRIORITY, \ |
| &api_stm32_driver_api); |
| |
| DT_INST_FOREACH_STATUS_OKAY(ADC_STM32_INIT) |