blob: fb29e5906885747560b28ad21c917a2a4b8a5a1d [file] [log] [blame]
/*
* Copyright (c) 2019 Intel Corporation
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/kernel.h>
#include <ksched.h>
#include <zephyr/arch/cpu.h>
#include <kernel_arch_data.h>
#include <kernel_arch_func.h>
#include <zephyr/drivers/interrupt_controller/sysapic.h>
#include <zephyr/drivers/interrupt_controller/loapic.h>
#include <zephyr/irq.h>
#include <zephyr/logging/log.h>
#include <x86_mmu.h>
LOG_MODULE_DECLARE(os, CONFIG_KERNEL_LOG_LEVEL);
unsigned char _irq_to_interrupt_vector[CONFIG_MAX_IRQ_LINES];
/*
* The low-level interrupt code consults these arrays to dispatch IRQs, so
* so be sure to keep locore.S up to date with any changes. Note the indices:
* use (vector - IV_IRQS), since exception vectors do not appear here.
*/
#define NR_IRQ_VECTORS (IV_NR_VECTORS - IV_IRQS) /* # vectors free for IRQs */
void (*x86_irq_funcs[NR_IRQ_VECTORS])(const void *arg);
const void *x86_irq_args[NR_IRQ_VECTORS];
#if defined(CONFIG_INTEL_VTD_ICTL)
#include <zephyr/device.h>
#include <zephyr/drivers/interrupt_controller/intel_vtd.h>
static const struct device *vtd = DEVICE_DT_GET_ONE(intel_vt_d);
#endif /* CONFIG_INTEL_VTD_ICTL */
static void irq_spurious(const void *arg)
{
LOG_ERR("Spurious interrupt, vector %d\n", (uint32_t)(uint64_t)arg);
z_fatal_error(K_ERR_SPURIOUS_IRQ, NULL);
}
void x86_64_irq_init(void)
{
for (int i = 0; i < NR_IRQ_VECTORS; i++) {
x86_irq_funcs[i] = irq_spurious;
x86_irq_args[i] = (const void *)(long)(i + IV_IRQS);
}
}
int z_x86_allocate_vector(unsigned int priority, int prev_vector)
{
const int VECTORS_PER_PRIORITY = 16;
const int MAX_PRIORITY = 13;
int vector = prev_vector;
int i;
if (priority >= MAX_PRIORITY) {
priority = MAX_PRIORITY;
}
if (vector == -1) {
vector = (priority * VECTORS_PER_PRIORITY) + IV_IRQS;
}
for (i = 0; i < VECTORS_PER_PRIORITY; ++i, ++vector) {
if (prev_vector != 1 && vector == prev_vector) {
continue;
}
#ifdef CONFIG_IRQ_OFFLOAD
if (vector == CONFIG_IRQ_OFFLOAD_VECTOR) {
continue;
}
#endif
if (vector == Z_X86_OOPS_VECTOR) {
continue;
}
if (x86_irq_funcs[vector - IV_IRQS] == irq_spurious) {
return vector;
}
}
return -1;
}
void z_x86_irq_connect_on_vector(unsigned int irq,
uint8_t vector,
void (*func)(const void *arg),
const void *arg)
{
_irq_to_interrupt_vector[irq] = vector;
x86_irq_funcs[vector - IV_IRQS] = func;
x86_irq_args[vector - IV_IRQS] = arg;
}
/*
* N.B.: the API docs don't say anything about returning error values, but
* this function returns -1 if a vector at the specific priority can't be
* allocated. Whether it should simply __ASSERT instead is up for debate.
*/
int arch_irq_connect_dynamic(unsigned int irq, unsigned int priority,
void (*func)(const void *arg),
const void *arg, uint32_t flags)
{
uint32_t key;
int vector;
__ASSERT(irq <= CONFIG_MAX_IRQ_LINES, "IRQ %u out of range", irq);
key = irq_lock();
vector = z_x86_allocate_vector(priority, -1);
if (vector >= 0) {
#if defined(CONFIG_INTEL_VTD_ICTL)
if (device_is_ready(vtd)) {
int irte = vtd_allocate_entries(vtd, 1);
__ASSERT(irte >= 0, "IRTE allocation must succeed");
vtd_set_irte_vector(vtd, irte, vector);
vtd_set_irte_irq(vtd, irte, irq);
}
#endif /* CONFIG_INTEL_VTD_ICTL */
z_irq_controller_irq_config(vector, irq, flags);
z_x86_irq_connect_on_vector(irq, vector, func, arg);
}
irq_unlock(key);
return vector;
}
#ifdef CONFIG_IRQ_OFFLOAD
#include <zephyr/irq_offload.h>
void arch_irq_offload(irq_offload_routine_t routine, const void *parameter)
{
x86_irq_funcs[CONFIG_IRQ_OFFLOAD_VECTOR - IV_IRQS] = routine;
x86_irq_args[CONFIG_IRQ_OFFLOAD_VECTOR - IV_IRQS] = parameter;
__asm__ volatile("int %0" : : "i" (CONFIG_IRQ_OFFLOAD_VECTOR)
: "memory");
x86_irq_funcs[CONFIG_IRQ_OFFLOAD_VECTOR - IV_IRQS] = NULL;
}
#endif /* CONFIG_IRQ_OFFLOAD */
#if defined(CONFIG_SMP)
void z_x86_ipi_setup(void)
{
/*
* z_sched_ipi() doesn't have the same signature as a typical ISR, so
* we fudge it with a cast. the argument is ignored, no harm done.
*/
x86_irq_funcs[CONFIG_SCHED_IPI_VECTOR - IV_IRQS] =
(void *) z_sched_ipi;
/* TLB shootdown handling */
x86_irq_funcs[CONFIG_TLB_IPI_VECTOR - IV_IRQS] = z_x86_tlb_ipi;
}
/*
* it is not clear exactly how/where/why to abstract this, as it
* assumes the use of a local APIC (but there's no other mechanism).
*/
void arch_sched_ipi(void)
{
z_loapic_ipi(0, LOAPIC_ICR_IPI_OTHERS, CONFIG_SCHED_IPI_VECTOR);
}
#endif
/* The first bit is used to indicate whether the list of reserved interrupts
* have been initialized based on content stored in the irq_alloc linker
* section in ROM.
*/
#define IRQ_LIST_INITIALIZED 0
static ATOMIC_DEFINE(irq_reserved, CONFIG_MAX_IRQ_LINES);
static void irq_init(void)
{
extern uint8_t __irq_alloc_start[];
extern uint8_t __irq_alloc_end[];
const uint8_t *irq;
for (irq = __irq_alloc_start; irq < __irq_alloc_end; irq++) {
__ASSERT_NO_MSG(*irq < CONFIG_MAX_IRQ_LINES);
atomic_set_bit(irq_reserved, *irq);
}
}
unsigned int arch_irq_allocate(void)
{
unsigned int key = irq_lock();
int i;
if (!atomic_test_and_set_bit(irq_reserved, IRQ_LIST_INITIALIZED)) {
irq_init();
}
for (i = 0; i < ARRAY_SIZE(irq_reserved); i++) {
unsigned int fz, irq;
while ((fz = find_lsb_set(~atomic_get(&irq_reserved[i])))) {
irq = (fz - 1) + (i * sizeof(atomic_val_t) * 8);
if (irq >= CONFIG_MAX_IRQ_LINES) {
break;
}
if (!atomic_test_and_set_bit(irq_reserved, irq)) {
irq_unlock(key);
return irq;
}
}
}
irq_unlock(key);
return UINT_MAX;
}
void arch_irq_set_used(unsigned int irq)
{
unsigned int key = irq_lock();
atomic_set_bit(irq_reserved, irq);
irq_unlock(key);
}
bool arch_irq_is_used(unsigned int irq)
{
return atomic_test_bit(irq_reserved, irq);
}