blob: 72ac74635a57470b7dbc5b5a768bcf6811c9753a [file] [log] [blame]
/* bmp280.c - Driver for Bosch BMP280 temperature and pressure sensor */
/*
* Copyright (c) 2016, 2017 Intel Corporation
* Copyright (c) 2017 IpTronix S.r.l.
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <kernel.h>
#include <sensor.h>
#include <init.h>
#include <gpio.h>
#include <misc/byteorder.h>
#include <misc/__assert.h>
#ifdef CONFIG_BME280_DEV_TYPE_I2C
#include <i2c.h>
#elif defined CONFIG_BME280_DEV_TYPE_SPI
#include <spi.h>
#endif
#include "bme280.h"
static int bm280_reg_read(struct bme280_data *data,
u8_t start, u8_t *buf, int size)
{
#ifdef CONFIG_BME280_DEV_TYPE_I2C
return i2c_burst_read(data->i2c_master, data->i2c_slave_addr,
start, buf, size);
#elif defined CONFIG_BME280_DEV_TYPE_SPI
u8_t tx_buf[2];
u8_t rx_buf[2];
int i;
int ret;
for (i = 0; i < size; i++) {
ret = spi_slave_select(data->spi, data->spi_slave);
if (ret) {
SYS_LOG_DBG("spi_slave_select FAIL %d\n", ret);
return ret;
}
tx_buf[0] = (start + i) | 0x80;
ret = spi_transceive(data->spi, tx_buf, 2, rx_buf, 2);
if (ret) {
SYS_LOG_DBG("spi_transceive FAIL %d\n", ret);
return ret;
}
buf[i] = rx_buf[1];
}
#endif
return 0;
}
static int bm280_reg_write(struct bme280_data *data, u8_t reg, u8_t val)
{
#ifdef CONFIG_BME280_DEV_TYPE_I2C
return i2c_reg_write_byte(data->i2c_master, data->i2c_slave_addr,
reg, val);
#elif defined CONFIG_BME280_DEV_TYPE_SPI
u8_t tx_buf[2];
u8_t rx_buf[2];
int ret;
ret = spi_slave_select(data->spi, data->spi_slave);
if (ret) {
SYS_LOG_DBG("spi_slave_select FAIL %d\n", ret);
return ret;
}
reg &= 0x7F;
tx_buf[0] = reg;
tx_buf[1] = val;
ret = spi_transceive(data->spi, tx_buf, 2, rx_buf, 2);
if (ret) {
SYS_LOG_DBG("spi_transceive FAIL %d\n", ret);
return ret;
}
#endif
return 0;
}
/*
* Compensation code taken from BME280 datasheet, Section 4.2.3
* "Compensation formula".
*/
static void bme280_compensate_temp(struct bme280_data *data, s32_t adc_temp)
{
s32_t var1, var2;
var1 = (((adc_temp >> 3) - ((s32_t)data->dig_t1 << 1)) *
((s32_t)data->dig_t2)) >> 11;
var2 = (((((adc_temp >> 4) - ((s32_t)data->dig_t1)) *
((adc_temp >> 4) - ((s32_t)data->dig_t1))) >> 12) *
((s32_t)data->dig_t3)) >> 14;
data->t_fine = var1 + var2;
data->comp_temp = (data->t_fine * 5 + 128) >> 8;
}
static void bme280_compensate_press(struct bme280_data *data, s32_t adc_press)
{
s64_t var1, var2, p;
var1 = ((s64_t)data->t_fine) - 128000;
var2 = var1 * var1 * (s64_t)data->dig_p6;
var2 = var2 + ((var1 * (s64_t)data->dig_p5) << 17);
var2 = var2 + (((s64_t)data->dig_p4) << 35);
var1 = ((var1 * var1 * (s64_t)data->dig_p3) >> 8) +
((var1 * (s64_t)data->dig_p2) << 12);
var1 = (((((s64_t)1) << 47) + var1)) * ((s64_t)data->dig_p1) >> 33;
/* Avoid exception caused by division by zero. */
if (var1 == 0) {
data->comp_press = 0;
return;
}
p = 1048576 - adc_press;
p = (((p << 31) - var2) * 3125) / var1;
var1 = (((s64_t)data->dig_p9) * (p >> 13) * (p >> 13)) >> 25;
var2 = (((s64_t)data->dig_p8) * p) >> 19;
p = ((p + var1 + var2) >> 8) + (((s64_t)data->dig_p7) << 4);
data->comp_press = (u32_t)p;
}
static void bme280_compensate_humidity(struct bme280_data *data,
s32_t adc_humidity)
{
s32_t h;
h = (data->t_fine - ((s32_t)76800));
h = ((((adc_humidity << 14) - (((s32_t)data->dig_h4) << 20) -
(((s32_t)data->dig_h5) * h)) + ((s32_t)16384)) >> 15) *
(((((((h * ((s32_t)data->dig_h6)) >> 10) * (((h *
((s32_t)data->dig_h3)) >> 11) + ((s32_t)32768))) >> 10) +
((s32_t)2097152)) * ((s32_t)data->dig_h2) + 8192) >> 14);
h = (h - (((((h >> 15) * (h >> 15)) >> 7) *
((s32_t)data->dig_h1)) >> 4));
h = (h > 419430400 ? 419430400 : h);
data->comp_humidity = (u32_t)(h >> 12);
}
static int bme280_sample_fetch(struct device *dev, enum sensor_channel chan)
{
struct bme280_data *data = dev->driver_data;
u8_t buf[8];
s32_t adc_press, adc_temp, adc_humidity;
int size = 6;
int ret;
__ASSERT_NO_MSG(chan == SENSOR_CHAN_ALL);
if (data->chip_id == BME280_CHIP_ID) {
size = 8;
}
ret = bm280_reg_read(data, BME280_REG_PRESS_MSB, buf, size);
if (ret < 0) {
return ret;
}
adc_press = (buf[0] << 12) | (buf[1] << 4) | (buf[2] >> 4);
adc_temp = (buf[3] << 12) | (buf[4] << 4) | (buf[5] >> 4);
bme280_compensate_temp(data, adc_temp);
bme280_compensate_press(data, adc_press);
if (data->chip_id == BME280_CHIP_ID) {
adc_humidity = (buf[6] << 8) | buf[7];
bme280_compensate_humidity(data, adc_humidity);
}
return 0;
}
static int bme280_channel_get(struct device *dev,
enum sensor_channel chan,
struct sensor_value *val)
{
struct bme280_data *data = dev->driver_data;
switch (chan) {
case SENSOR_CHAN_TEMP:
/*
* data->comp_temp has a resolution of 0.01 degC. So
* 5123 equals 51.23 degC.
*/
val->val1 = data->comp_temp / 100;
val->val2 = data->comp_temp % 100 * 10000;
break;
case SENSOR_CHAN_PRESS:
/*
* data->comp_press has 24 integer bits and 8
* fractional. Output value of 24674867 represents
* 24674867/256 = 96386.2 Pa = 963.862 hPa
*/
val->val1 = (data->comp_press >> 8) / 1000;
val->val2 = (data->comp_press >> 8) % 1000 * 1000 +
(((data->comp_press & 0xff) * 1000) >> 8);
break;
case SENSOR_CHAN_HUMIDITY:
/*
* data->comp_humidity has 22 integer bits and 10
* fractional. Output value of 47445 represents
* 47445/1024 = 46.333 %RH
*/
val->val1 = (data->comp_humidity >> 10);
val->val2 = (((data->comp_humidity & 0x3ff) * 1000 * 1000) >> 10);
val->val1 = val->val1 * 1000 + (val->val2 * 1000) / 1000000;
val->val2 = (val->val2 * 1000) % 1000000;
break;
default:
return -EINVAL;
}
return 0;
}
static const struct sensor_driver_api bme280_api_funcs = {
.sample_fetch = bme280_sample_fetch,
.channel_get = bme280_channel_get,
};
static int bme280_read_compensation(struct bme280_data *data)
{
u16_t buf[12];
u8_t hbuf[7];
int err = 0;
err = bm280_reg_read(data, BME280_REG_COMP_START,
(u8_t *)buf, sizeof(buf));
if (err < 0) {
return err;
}
data->dig_t1 = sys_le16_to_cpu(buf[0]);
data->dig_t2 = sys_le16_to_cpu(buf[1]);
data->dig_t3 = sys_le16_to_cpu(buf[2]);
data->dig_p1 = sys_le16_to_cpu(buf[3]);
data->dig_p2 = sys_le16_to_cpu(buf[4]);
data->dig_p3 = sys_le16_to_cpu(buf[5]);
data->dig_p4 = sys_le16_to_cpu(buf[6]);
data->dig_p5 = sys_le16_to_cpu(buf[7]);
data->dig_p6 = sys_le16_to_cpu(buf[8]);
data->dig_p7 = sys_le16_to_cpu(buf[9]);
data->dig_p8 = sys_le16_to_cpu(buf[10]);
data->dig_p9 = sys_le16_to_cpu(buf[11]);
if (data->chip_id == BME280_CHIP_ID) {
err = bm280_reg_read(data, BME280_REG_HUM_COMP_PART1,
&data->dig_h1, 1);
if (err < 0) {
return err;
}
err = bm280_reg_read(data, BME280_REG_HUM_COMP_PART2, hbuf, 7);
if (err < 0) {
return err;
}
data->dig_h2 = (hbuf[1] << 8) | hbuf[0];
data->dig_h3 = hbuf[2];
data->dig_h4 = (hbuf[3] << 4) | (hbuf[4] & 0x0F);
data->dig_h5 = ((hbuf[4] >> 4) & 0x0F) | (hbuf[5] << 4);
data->dig_h6 = hbuf[6];
}
return 0;
}
static int bme280_chip_init(struct device *dev)
{
struct bme280_data *data = (struct bme280_data *) dev->driver_data;
int err;
err = bm280_reg_read(data, BME280_REG_ID, &data->chip_id, 1);
if (err < 0) {
return err;
}
if (data->chip_id == BME280_CHIP_ID) {
SYS_LOG_DBG("BME280 chip detected");
} else if (data->chip_id == BMP280_CHIP_ID_MP ||
data->chip_id == BMP280_CHIP_ID_SAMPLE_1) {
SYS_LOG_DBG("BMP280 chip detected");
} else {
SYS_LOG_DBG("bad chip id 0x%x", data->chip_id);
return -ENOTSUP;
}
err = bme280_read_compensation(data);
if (err < 0) {
return err;
}
if (data->chip_id == BME280_CHIP_ID) {
err = bm280_reg_write(data, BME280_REG_CTRL_HUM,
BME280_HUMIDITY_OVER);
if (err < 0) {
return err;
}
}
err = bm280_reg_write(data, BME280_REG_CTRL_MEAS, BME280_CTRL_MEAS_VAL);
if (err < 0) {
return err;
}
err = bm280_reg_write(data, BME280_REG_CONFIG, BME280_CONFIG_VAL);
if (err < 0) {
return err;
}
return 0;
}
#ifdef CONFIG_BME280_DEV_TYPE_SPI
static inline int bme280_spi_init(struct bme280_data *data)
{
struct spi_config spi_config;
int ret;
data->spi = device_get_binding(CONFIG_BME280_SPI_DEV_NAME);
if (!data->spi) {
SYS_LOG_DBG("spi device not found: %s",
CONFIG_BME280_SPI_DEV_NAME);
return -EINVAL;
}
spi_config.config = SPI_WORD(8) | SPI_TRANSFER_MSB |
SPI_MODE_CPOL | SPI_MODE_CPHA;
spi_config.max_sys_freq = 4;
ret = spi_configure(data->spi, &spi_config);
if (ret) {
SYS_LOG_DBG("SPI configuration error %s %d\n",
CONFIG_BME280_SPI_DEV_NAME, ret);
return ret;
}
return 0;
}
#endif
int bme280_init(struct device *dev)
{
struct bme280_data *data = dev->driver_data;
#ifdef CONFIG_BME280_DEV_TYPE_I2C
data->i2c_master = device_get_binding(CONFIG_BME280_I2C_MASTER_DEV_NAME);
if (!data->i2c_master) {
SYS_LOG_DBG("i2c master not found: %s",
CONFIG_BME280_I2C_MASTER_DEV_NAME);
return -EINVAL;
}
data->i2c_slave_addr = BME280_I2C_ADDR;
#elif defined CONFIG_BME280_DEV_TYPE_SPI
if (bme280_spi_init(data) < 0) {
SYS_LOG_DBG("spi master not found: %s",
CONFIG_BME280_SPI_DEV_NAME);
return -EINVAL;
}
data->spi_slave = CONFIG_BME280_SPI_DEV_SLAVE;
#endif
if (bme280_chip_init(dev) < 0) {
return -EINVAL;
}
return 0;
}
static struct bme280_data bme280_data;
DEVICE_AND_API_INIT(bme280, CONFIG_BME280_DEV_NAME, bme280_init, &bme280_data,
NULL, POST_KERNEL, CONFIG_SENSOR_INIT_PRIORITY,
&bme280_api_funcs);