blob: 7dd9934cdef315ad203f1b1bffd77a923dfffbdd [file] [log] [blame]
/* ST Microelectronics LIS2DW12 3-axis accelerometer driver
*
* Copyright (c) 2019 STMicroelectronics
*
* SPDX-License-Identifier: Apache-2.0
*
* Datasheet:
* https://www.st.com/resource/en/datasheet/lis2dw12.pdf
*/
#define DT_DRV_COMPAT st_lis2dw12
#include <zephyr/init.h>
#include <stdlib.h>
#include <zephyr/sys/__assert.h>
#include <zephyr/sys/byteorder.h>
#include <zephyr/logging/log.h>
#include <zephyr/drivers/sensor.h>
#if DT_ANY_INST_ON_BUS_STATUS_OKAY(spi)
#include <zephyr/drivers/spi.h>
#elif DT_ANY_INST_ON_BUS_STATUS_OKAY(i2c)
#include <zephyr/drivers/i2c.h>
#endif
#include "lis2dw12.h"
LOG_MODULE_REGISTER(LIS2DW12, CONFIG_SENSOR_LOG_LEVEL);
/**
* lis2dw12_set_range - set full scale range for acc
* @dev: Pointer to instance of struct device (I2C or SPI)
* @range: Full scale range (2, 4, 8 and 16 G)
*/
static int lis2dw12_set_range(const struct device *dev, uint8_t fs)
{
int err;
struct lis2dw12_data *lis2dw12 = dev->data;
const struct lis2dw12_device_config *cfg = dev->config;
stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx;
uint8_t shift_gain = 0U;
err = lis2dw12_full_scale_set(ctx, fs);
if (cfg->pm == LIS2DW12_CONT_LOW_PWR_12bit) {
shift_gain = LIS2DW12_SHFT_GAIN_NOLP1;
}
if (!err) {
/* save internally gain for optimization */
lis2dw12->gain =
LIS2DW12_FS_TO_GAIN(fs, shift_gain);
}
return err;
}
/**
* lis2dw12_set_odr - set new sampling frequency
* @dev: Pointer to instance of struct device (I2C or SPI)
* @odr: Output data rate
*/
static int lis2dw12_set_odr(const struct device *dev, uint16_t odr)
{
const struct lis2dw12_device_config *cfg = dev->config;
stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx;
uint8_t val;
/* check if power off */
if (odr == 0U) {
return lis2dw12_data_rate_set(ctx, LIS2DW12_XL_ODR_OFF);
}
val = LIS2DW12_ODR_TO_REG(odr);
if (val > LIS2DW12_XL_ODR_1k6Hz) {
LOG_ERR("ODR too high");
return -ENOTSUP;
}
return lis2dw12_data_rate_set(ctx, val);
}
static inline void lis2dw12_convert(struct sensor_value *val, int raw_val,
float gain)
{
int64_t dval;
/* Gain is in ug/LSB */
/* Convert to m/s^2 */
dval = ((int64_t)raw_val * gain * SENSOR_G) / 1000000LL;
val->val1 = dval / 1000000LL;
val->val2 = dval % 1000000LL;
}
static inline void lis2dw12_channel_get_acc(const struct device *dev,
enum sensor_channel chan,
struct sensor_value *val)
{
int i;
uint8_t ofs_start, ofs_stop;
struct lis2dw12_data *lis2dw12 = dev->data;
struct sensor_value *pval = val;
switch (chan) {
case SENSOR_CHAN_ACCEL_X:
ofs_start = ofs_stop = 0U;
break;
case SENSOR_CHAN_ACCEL_Y:
ofs_start = ofs_stop = 1U;
break;
case SENSOR_CHAN_ACCEL_Z:
ofs_start = ofs_stop = 2U;
break;
default:
ofs_start = 0U; ofs_stop = 2U;
break;
}
for (i = ofs_start; i <= ofs_stop ; i++) {
lis2dw12_convert(pval++, lis2dw12->acc[i], lis2dw12->gain);
}
}
static int lis2dw12_channel_get(const struct device *dev,
enum sensor_channel chan,
struct sensor_value *val)
{
switch (chan) {
case SENSOR_CHAN_ACCEL_X:
case SENSOR_CHAN_ACCEL_Y:
case SENSOR_CHAN_ACCEL_Z:
case SENSOR_CHAN_ACCEL_XYZ:
lis2dw12_channel_get_acc(dev, chan, val);
return 0;
default:
LOG_DBG("Channel not supported");
break;
}
return -ENOTSUP;
}
static int lis2dw12_config(const struct device *dev, enum sensor_channel chan,
enum sensor_attribute attr,
const struct sensor_value *val)
{
switch (attr) {
case SENSOR_ATTR_FULL_SCALE:
return lis2dw12_set_range(dev,
LIS2DW12_FS_TO_REG(sensor_ms2_to_g(val)));
case SENSOR_ATTR_SAMPLING_FREQUENCY:
return lis2dw12_set_odr(dev, val->val1);
default:
LOG_DBG("Acc attribute not supported");
break;
}
return -ENOTSUP;
}
static inline int32_t sensor_ms2_to_mg(const struct sensor_value *ms2)
{
int64_t nano_ms2 = (ms2->val1 * 1000000LL + ms2->val2) * 1000LL;
if (nano_ms2 > 0) {
return (nano_ms2 + SENSOR_G / 2) / SENSOR_G;
} else {
return (nano_ms2 - SENSOR_G / 2) / SENSOR_G;
}
}
#if CONFIG_LIS2DW12_THRESHOLD
/* Converts a lis2dw12_fs_t range to its value in milli-g
* Range can be 2/4/8/16G
*/
#define FS_RANGE_TO_MG(fs_range) ((2U << fs_range) * 1000U)
/* Converts a range in mg to the lsb value for the WK_THS register
* For the reg value: 1 LSB = 1/64 of FS
* Range can be 2/4/8/16G
*/
#define MG_TO_WK_THS_LSB(range_mg) (range_mg / 64)
/* Calculates the WK_THS reg value
* from the threshold in mg and the lsb value in mg
* with correct integer rounding
*/
#define THRESHOLD_MG_TO_WK_THS_REG(thr_mg, lsb_mg) \
((thr_mg + (lsb_mg / 2)) / lsb_mg)
static int lis2dw12_attr_set_thresh(const struct device *dev,
enum sensor_channel chan,
enum sensor_attribute attr,
const struct sensor_value *val)
{
uint8_t reg;
size_t ret;
int lsb_mg;
const struct lis2dw12_device_config *cfg = dev->config;
stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx;
LOG_DBG("%s on channel %d", __func__, chan);
/* can only be set for all directions at once */
if (chan != SENSOR_CHAN_ACCEL_XYZ) {
return -EINVAL;
}
/* Configure wakeup threshold threshold. */
lis2dw12_fs_t range;
int err = lis2dw12_full_scale_get(ctx, &range);
if (err) {
return err;
}
uint32_t thr_mg = abs(sensor_ms2_to_mg(val));
/* Check maximum value: depends on current FS value */
if (thr_mg >= FS_RANGE_TO_MG(range)) {
return -EINVAL;
}
/* The threshold is applied to both positive and negative data:
* for a wake-up interrupt generation at least one of the three axes must be
* bigger than the threshold.
*/
lsb_mg = MG_TO_WK_THS_LSB(FS_RANGE_TO_MG(range));
reg = THRESHOLD_MG_TO_WK_THS_REG(thr_mg, lsb_mg);
LOG_DBG("Threshold %d mg -> fs: %u mg -> reg = %d LSBs",
thr_mg, FS_RANGE_TO_MG(range), reg);
ret = 0;
return lis2dw12_wkup_threshold_set(ctx, reg);
}
#endif
static int lis2dw12_attr_set(const struct device *dev,
enum sensor_channel chan,
enum sensor_attribute attr,
const struct sensor_value *val)
{
#if CONFIG_LIS2DW12_THRESHOLD
switch (attr) {
case SENSOR_ATTR_UPPER_THRESH:
case SENSOR_ATTR_LOWER_THRESH:
return lis2dw12_attr_set_thresh(dev, chan, attr, val);
default:
/* Do nothing */
break;
}
#endif
switch (chan) {
case SENSOR_CHAN_ACCEL_X:
case SENSOR_CHAN_ACCEL_Y:
case SENSOR_CHAN_ACCEL_Z:
case SENSOR_CHAN_ACCEL_XYZ:
return lis2dw12_config(dev, chan, attr, val);
default:
LOG_DBG("Attr not supported on %d channel", chan);
break;
}
return -ENOTSUP;
}
static int lis2dw12_sample_fetch(const struct device *dev,
enum sensor_channel chan)
{
struct lis2dw12_data *lis2dw12 = dev->data;
const struct lis2dw12_device_config *cfg = dev->config;
stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx;
uint8_t shift;
int16_t buf[3];
/* fetch raw data sample */
if (lis2dw12_acceleration_raw_get(ctx, buf) < 0) {
LOG_DBG("Failed to fetch raw data sample");
return -EIO;
}
/* adjust to resolution */
if (cfg->pm == LIS2DW12_CONT_LOW_PWR_12bit) {
shift = LIS2DW12_SHIFT_PM1;
} else {
shift = LIS2DW12_SHIFT_PMOTHER;
}
lis2dw12->acc[0] = sys_le16_to_cpu(buf[0]) >> shift;
lis2dw12->acc[1] = sys_le16_to_cpu(buf[1]) >> shift;
lis2dw12->acc[2] = sys_le16_to_cpu(buf[2]) >> shift;
return 0;
}
static const struct sensor_driver_api lis2dw12_driver_api = {
.attr_set = lis2dw12_attr_set,
#if CONFIG_LIS2DW12_TRIGGER
.trigger_set = lis2dw12_trigger_set,
#endif /* CONFIG_LIS2DW12_TRIGGER */
.sample_fetch = lis2dw12_sample_fetch,
.channel_get = lis2dw12_channel_get,
};
static int lis2dw12_set_power_mode(const struct device *dev,
lis2dw12_mode_t pm)
{
const struct lis2dw12_device_config *cfg = dev->config;
stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx;
uint8_t regval = LIS2DW12_CONT_LOW_PWR_12bit;
switch (pm) {
case LIS2DW12_CONT_LOW_PWR_2:
case LIS2DW12_CONT_LOW_PWR_3:
case LIS2DW12_CONT_LOW_PWR_4:
case LIS2DW12_HIGH_PERFORMANCE:
regval = pm;
break;
default:
LOG_DBG("Apply default Power Mode");
break;
}
return lis2dw12_write_reg(ctx, LIS2DW12_CTRL1, &regval, 1);
}
static int lis2dw12_set_low_noise(const struct device *dev,
bool low_noise)
{
const struct lis2dw12_device_config *cfg = dev->config;
stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx;
lis2dw12_ctrl6_t ctrl6;
int ret;
ret = lis2dw12_read_reg(ctx, LIS2DW12_CTRL6, (uint8_t *)&ctrl6, 1);
if (ret < 0) {
return ret;
}
ctrl6.low_noise = low_noise;
return lis2dw12_write_reg(ctx, LIS2DW12_CTRL6, (uint8_t *)&ctrl6, 1);
}
static int lis2dw12_init(const struct device *dev)
{
const struct lis2dw12_device_config *cfg = dev->config;
stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx;
uint8_t wai;
int ret;
/* check chip ID */
ret = lis2dw12_device_id_get(ctx, &wai);
if (ret < 0) {
LOG_ERR("Not able to read dev id");
return ret;
}
if (wai != LIS2DW12_ID) {
LOG_ERR("Invalid chip ID");
return -EINVAL;
}
/* reset device */
ret = lis2dw12_reset_set(ctx, PROPERTY_ENABLE);
if (ret < 0) {
return ret;
}
k_busy_wait(100);
ret = lis2dw12_block_data_update_set(ctx, PROPERTY_ENABLE);
if (ret < 0) {
LOG_ERR("Not able to set BDU");
return ret;
}
/* set power mode */
LOG_DBG("power-mode is %d", cfg->pm);
ret = lis2dw12_set_power_mode(dev, cfg->pm);
if (ret < 0) {
return ret;
}
LOG_DBG("low noise is %d", cfg->low_noise);
ret = lis2dw12_set_low_noise(dev, cfg->low_noise);
if (ret < 0) {
LOG_ERR("Failed to configure low_noise");
return ret;
}
/* set default odr to 12.5Hz acc */
ret = lis2dw12_set_odr(dev, 12);
if (ret < 0) {
LOG_ERR("odr init error (12.5 Hz)");
return ret;
}
LOG_DBG("range is %d", cfg->range);
ret = lis2dw12_set_range(dev, LIS2DW12_FS_TO_REG(cfg->range));
if (ret < 0) {
LOG_ERR("range init error %d", cfg->range);
return ret;
}
LOG_DBG("bandwidth filter is %u", (int)cfg->bw_filt);
lis2dw12_filter_bandwidth_set(ctx, cfg->bw_filt);
#ifdef CONFIG_LIS2DW12_TRIGGER
ret = lis2dw12_init_interrupt(dev);
if (ret < 0) {
LOG_ERR("Failed to initialize interrupts");
return ret;
}
#endif /* CONFIG_LIS2DW12_TRIGGER */
LOG_DBG("high pass reference mode is %d", (int)cfg->hp_ref_mode);
ret = lis2dw12_reference_mode_set(ctx, cfg->hp_ref_mode);
if (ret < 0) {
LOG_ERR("high pass reference mode config error %d", (int)cfg->hp_ref_mode);
return ret;
}
LOG_DBG("high pass filter path is %d", (int)cfg->hp_filter_path);
lis2dw12_fds_t fds = cfg->hp_filter_path ?
LIS2DW12_HIGH_PASS_ON_OUT : LIS2DW12_LPF_ON_OUT;
ret = lis2dw12_filter_path_set(ctx, fds);
if (ret < 0) {
LOG_ERR("filter path config error %d", (int)cfg->hp_filter_path);
return ret;
}
return 0;
}
#if DT_NUM_INST_STATUS_OKAY(DT_DRV_COMPAT) == 0
#warning "LIS2DW12 driver enabled without any devices"
#endif
/*
* Device creation macro, shared by LIS2DW12_DEFINE_SPI() and
* LIS2DW12_DEFINE_I2C().
*/
#define LIS2DW12_DEVICE_INIT(inst) \
DEVICE_DT_INST_DEFINE(inst, \
lis2dw12_init, \
NULL, \
&lis2dw12_data_##inst, \
&lis2dw12_config_##inst, \
POST_KERNEL, \
CONFIG_SENSOR_INIT_PRIORITY, \
&lis2dw12_driver_api);
/*
* Instantiation macros used when a device is on a SPI bus.
*/
#ifdef CONFIG_LIS2DW12_TAP
#define LIS2DW12_CONFIG_TAP(inst) \
.tap_mode = DT_INST_PROP(inst, tap_mode), \
.tap_threshold = DT_INST_PROP(inst, tap_threshold), \
.tap_shock = DT_INST_PROP(inst, tap_shock), \
.tap_latency = DT_INST_PROP(inst, tap_latency), \
.tap_quiet = DT_INST_PROP(inst, tap_quiet),
#else
#define LIS2DW12_CONFIG_TAP(inst)
#endif /* CONFIG_LIS2DW12_TAP */
#ifdef CONFIG_LIS2DW12_TRIGGER
#define LIS2DW12_CFG_IRQ(inst) \
.gpio_int = GPIO_DT_SPEC_INST_GET(inst, irq_gpios), \
.int_pin = DT_INST_PROP(inst, int_pin),
#else
#define LIS2DW12_CFG_IRQ(inst)
#endif /* CONFIG_LIS2DW12_TRIGGER */
#define LIS2DW12_SPI_OPERATION (SPI_WORD_SET(8) | \
SPI_OP_MODE_MASTER | \
SPI_MODE_CPOL | \
SPI_MODE_CPHA) \
#define LIS2DW12_CONFIG_SPI(inst) \
{ \
.ctx = { \
.read_reg = \
(stmdev_read_ptr) stmemsc_spi_read, \
.write_reg = \
(stmdev_write_ptr) stmemsc_spi_write, \
.handle = \
(void *)&lis2dw12_config_##inst.stmemsc_cfg, \
}, \
.stmemsc_cfg = { \
.spi = SPI_DT_SPEC_INST_GET(inst, \
LIS2DW12_SPI_OPERATION, \
0), \
}, \
.pm = DT_INST_PROP(inst, power_mode), \
.range = DT_INST_PROP(inst, range), \
.bw_filt = DT_INST_PROP(inst, bw_filt), \
.low_noise = DT_INST_PROP(inst, low_noise), \
.hp_filter_path = DT_INST_PROP(inst, hp_filter_path), \
.hp_ref_mode = DT_INST_PROP(inst, hp_ref_mode), \
.drdy_pulsed = DT_INST_PROP(inst, drdy_pulsed), \
LIS2DW12_CONFIG_TAP(inst) \
COND_CODE_1(DT_INST_NODE_HAS_PROP(inst, irq_gpios), \
(LIS2DW12_CFG_IRQ(inst)), ()) \
}
/*
* Instantiation macros used when a device is on an I2C bus.
*/
#define LIS2DW12_CONFIG_I2C(inst) \
{ \
.ctx = { \
.read_reg = \
(stmdev_read_ptr) stmemsc_i2c_read, \
.write_reg = \
(stmdev_write_ptr) stmemsc_i2c_write, \
.handle = \
(void *)&lis2dw12_config_##inst.stmemsc_cfg, \
}, \
.stmemsc_cfg = { \
.i2c = I2C_DT_SPEC_INST_GET(inst), \
}, \
.pm = DT_INST_PROP(inst, power_mode), \
.range = DT_INST_PROP(inst, range), \
.bw_filt = DT_INST_PROP(inst, bw_filt), \
.low_noise = DT_INST_PROP(inst, low_noise), \
.hp_filter_path = DT_INST_PROP(inst, hp_filter_path), \
.hp_ref_mode = DT_INST_PROP(inst, hp_ref_mode), \
.drdy_pulsed = DT_INST_PROP(inst, drdy_pulsed), \
LIS2DW12_CONFIG_TAP(inst) \
COND_CODE_1(DT_INST_NODE_HAS_PROP(inst, irq_gpios), \
(LIS2DW12_CFG_IRQ(inst)), ()) \
}
/*
* Main instantiation macro. Use of COND_CODE_1() selects the right
* bus-specific macro at preprocessor time.
*/
#define LIS2DW12_DEFINE(inst) \
static struct lis2dw12_data lis2dw12_data_##inst; \
static const struct lis2dw12_device_config lis2dw12_config_##inst = \
COND_CODE_1(DT_INST_ON_BUS(inst, spi), \
(LIS2DW12_CONFIG_SPI(inst)), \
(LIS2DW12_CONFIG_I2C(inst))); \
LIS2DW12_DEVICE_INIT(inst)
DT_INST_FOREACH_STATUS_OKAY(LIS2DW12_DEFINE)