blob: 482412139db2f8acbc9b7855b112e744a5386074 [file] [log] [blame]
/* NXP ENET MAC Driver
*
* Copyright 2023-2024 NXP
*
* Inspiration from eth_mcux.c, which was:
* Copyright (c) 2016-2017 ARM Ltd
* Copyright (c) 2016 Linaro Ltd
* Copyright (c) 2018 Intel Corporation
* Copyright 2023 NXP
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT nxp_enet_mac
/* Set up logging module for this driver */
#define LOG_MODULE_NAME eth_nxp_enet_mac
#define LOG_LEVEL CONFIG_ETHERNET_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(LOG_MODULE_NAME);
#include <zephyr/device.h>
#include <zephyr/sys/util.h>
#include <zephyr/kernel.h>
#include <zephyr/sys/__assert.h>
#include <zephyr/kernel/thread_stack.h>
#include <zephyr/net/net_pkt.h>
#include <zephyr/net/net_if.h>
#include <zephyr/net/ethernet.h>
#include <zephyr/net/phy.h>
#include <zephyr/net/mii.h>
#include <ethernet/eth_stats.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/drivers/clock_control.h>
#ifdef CONFIG_PTP_CLOCK
#include <zephyr/drivers/ptp_clock.h>
#endif
#ifdef CONFIG_NET_DSA
#include <zephyr/net/dsa.h>
#endif
#if defined(CONFIG_NET_POWER_MANAGEMENT) && defined(CONFIG_PM_DEVICE)
#include <zephyr/pm/device.h>
#endif
#include "eth.h"
#include <zephyr/drivers/ethernet/eth_nxp_enet.h>
#include <zephyr/dt-bindings/ethernet/nxp_enet.h>
#include <fsl_enet.h>
#define FREESCALE_OUI_B0 0x00
#define FREESCALE_OUI_B1 0x04
#define FREESCALE_OUI_B2 0x9f
#if defined(CONFIG_SOC_SERIES_IMXRT10XX)
#define ETH_NXP_ENET_UNIQUE_ID (OCOTP->CFG1 ^ OCOTP->CFG2)
#elif defined(CONFIG_SOC_SERIES_IMXRT11XX)
#define ETH_NXP_ENET_UNIQUE_ID (OCOTP->FUSEN[40].FUSE)
#elif defined(CONFIG_SOC_SERIES_KINETIS_K6X)
#define ETH_NXP_ENET_UNIQUE_ID (SIM->UIDH ^ SIM->UIDMH ^ SIM->UIDML ^ SIM->UIDL)
#elif defined(CONFIG_SOC_SERIES_RW6XX)
#define ETH_NXP_ENET_UNIQUE_ID (OCOTP->OTP_SHADOW[46])
#else
#define ETH_NXP_ENET_UNIQUE_ID 0xFFFFFF
#endif
#define RING_ID 0
enum mac_address_source {
MAC_ADDR_SOURCE_LOCAL,
MAC_ADDR_SOURCE_RANDOM,
MAC_ADDR_SOURCE_UNIQUE,
MAC_ADDR_SOURCE_FUSED,
MAC_ADDR_SOURCE_INVALID,
};
struct nxp_enet_mac_config {
const struct device *module_dev;
const struct device *clock_dev;
clock_control_subsys_t clock_subsys;
enum mac_address_source mac_addr_source;
const struct pinctrl_dev_config *pincfg;
enet_buffer_config_t buffer_config[1];
uint8_t phy_mode;
void (*irq_config_func)(void);
const struct device *phy_dev;
const struct device *mdio;
#ifdef CONFIG_PTP_CLOCK_NXP_ENET
const struct device *ptp_clock;
#endif
};
struct nxp_enet_mac_data {
ENET_Type *base;
struct net_if *iface;
uint8_t mac_addr[6];
enet_handle_t enet_handle;
struct k_sem tx_buf_sem;
struct k_work rx_work;
const struct device *dev;
struct k_sem rx_thread_sem;
struct k_mutex tx_frame_buf_mutex;
struct k_mutex rx_frame_buf_mutex;
#ifdef CONFIG_PTP_CLOCK_NXP_ENET
struct k_sem ptp_ts_sem;
struct k_mutex *ptp_mutex; /* created in PTP driver */
#endif
uint8_t *tx_frame_buf;
uint8_t *rx_frame_buf;
};
static K_THREAD_STACK_DEFINE(enet_rx_stack, CONFIG_ETH_NXP_ENET_RX_THREAD_STACK_SIZE);
static struct k_work_q rx_work_queue;
static int rx_queue_init(void)
{
struct k_work_queue_config cfg = {.name = "ENET_RX"};
k_work_queue_init(&rx_work_queue);
k_work_queue_start(&rx_work_queue, enet_rx_stack,
K_THREAD_STACK_SIZEOF(enet_rx_stack),
K_PRIO_COOP(CONFIG_ETH_NXP_ENET_RX_THREAD_PRIORITY),
&cfg);
return 0;
}
SYS_INIT(rx_queue_init, POST_KERNEL, 0);
static inline struct net_if *get_iface(struct nxp_enet_mac_data *data)
{
return data->iface;
}
#if defined(CONFIG_PTP_CLOCK_NXP_ENET)
static bool eth_get_ptp_data(struct net_if *iface, struct net_pkt *pkt)
{
struct net_eth_vlan_hdr *hdr_vlan = (struct net_eth_vlan_hdr *)NET_ETH_HDR(pkt);
struct ethernet_context *eth_ctx = net_if_l2_data(iface);
bool pkt_is_ptp;
if (net_eth_is_vlan_enabled(eth_ctx, iface)) {
pkt_is_ptp = ntohs(hdr_vlan->type) == NET_ETH_PTYPE_PTP;
} else {
pkt_is_ptp = ntohs(NET_ETH_HDR(pkt)->type) == NET_ETH_PTYPE_PTP;
}
if (pkt_is_ptp) {
net_pkt_set_priority(pkt, NET_PRIORITY_CA);
}
return pkt_is_ptp;
}
static inline void ts_register_tx_event(const struct device *dev,
enet_frame_info_t *frameinfo)
{
struct nxp_enet_mac_data *data = dev->data;
struct net_pkt *pkt = frameinfo->context;
if (pkt && atomic_get(&pkt->atomic_ref) > 0) {
if (eth_get_ptp_data(net_pkt_iface(pkt), pkt) && frameinfo->isTsAvail) {
k_mutex_lock(data->ptp_mutex, K_FOREVER);
pkt->timestamp.nanosecond = frameinfo->timeStamp.nanosecond;
pkt->timestamp.second = frameinfo->timeStamp.second;
net_if_add_tx_timestamp(pkt);
k_sem_give(&data->ptp_ts_sem);
k_mutex_unlock(data->ptp_mutex);
}
net_pkt_unref(pkt);
}
}
static inline void eth_wait_for_ptp_ts(const struct device *dev, struct net_pkt *pkt)
{
struct nxp_enet_mac_data *data = dev->data;
net_pkt_ref(pkt);
k_sem_take(&data->ptp_ts_sem, K_FOREVER);
}
#else
#define eth_get_ptp_data(...) false
#define ts_register_tx_event(...)
#define eth_wait_for_ptp_ts(...)
#endif /* CONFIG_PTP_CLOCK_NXP_ENET */
#ifdef CONFIG_PTP_CLOCK
static const struct device *eth_nxp_enet_get_ptp_clock(const struct device *dev)
{
const struct nxp_enet_mac_config *config = dev->config;
return config->ptp_clock;
}
#endif /* CONFIG_PTP_CLOCK */
static int eth_nxp_enet_tx(const struct device *dev, struct net_pkt *pkt)
{
struct nxp_enet_mac_data *data = dev->data;
uint16_t total_len = net_pkt_get_len(pkt);
bool frame_is_timestamped;
status_t ret;
/* Wait for a TX buffer descriptor to be available */
k_sem_take(&data->tx_buf_sem, K_FOREVER);
/* Enter critical section for TX frame buffer access */
k_mutex_lock(&data->tx_frame_buf_mutex, K_FOREVER);
ret = net_pkt_read(pkt, data->tx_frame_buf, total_len);
if (ret) {
k_sem_give(&data->tx_buf_sem);
goto exit;
}
frame_is_timestamped = eth_get_ptp_data(net_pkt_iface(pkt), pkt);
ret = ENET_SendFrame(data->base, &data->enet_handle, data->tx_frame_buf,
total_len, RING_ID, frame_is_timestamped, pkt);
if (ret != kStatus_Success) {
LOG_ERR("ENET_SendFrame error: %d", ret);
ENET_ReclaimTxDescriptor(data->base, &data->enet_handle, RING_ID);
ret = -EIO;
goto exit;
}
if (frame_is_timestamped) {
eth_wait_for_ptp_ts(dev, pkt);
}
exit:
/* Leave critical section for TX frame buffer access */
k_mutex_unlock(&data->tx_frame_buf_mutex);
return ret;
}
static enum ethernet_hw_caps eth_nxp_enet_get_capabilities(const struct device *dev)
{
#if defined(CONFIG_ETH_NXP_ENET_1G)
const struct nxp_enet_mac_config *config = dev->config;
#else
ARG_UNUSED(dev);
#endif
enum ethernet_hw_caps caps;
caps = ETHERNET_LINK_10BASE_T |
ETHERNET_HW_FILTERING |
#if defined(CONFIG_NET_VLAN)
ETHERNET_HW_VLAN |
#endif
#if defined(CONFIG_PTP_CLOCK_NXP_ENET)
ETHERNET_PTP |
#endif
#if defined(CONFIG_NET_DSA)
ETHERNET_DSA_MASTER_PORT |
#endif
#if defined(CONFIG_ETH_NXP_ENET_HW_ACCELERATION)
ETHERNET_HW_TX_CHKSUM_OFFLOAD |
ETHERNET_HW_RX_CHKSUM_OFFLOAD |
#endif
ETHERNET_LINK_100BASE_T;
if (COND_CODE_1(IS_ENABLED(CONFIG_ETH_NXP_ENET_1G),
(config->phy_mode == NXP_ENET_RGMII_MODE), (0))) {
caps |= ETHERNET_LINK_1000BASE_T;
}
return caps;
}
static int eth_nxp_enet_set_config(const struct device *dev,
enum ethernet_config_type type,
const struct ethernet_config *cfg)
{
struct nxp_enet_mac_data *data = dev->data;
switch (type) {
case ETHERNET_CONFIG_TYPE_MAC_ADDRESS:
memcpy(data->mac_addr,
cfg->mac_address.addr,
sizeof(data->mac_addr));
ENET_SetMacAddr(data->base, data->mac_addr);
net_if_set_link_addr(data->iface, data->mac_addr,
sizeof(data->mac_addr),
NET_LINK_ETHERNET);
LOG_DBG("%s MAC set to %02x:%02x:%02x:%02x:%02x:%02x",
dev->name,
data->mac_addr[0], data->mac_addr[1],
data->mac_addr[2], data->mac_addr[3],
data->mac_addr[4], data->mac_addr[5]);
return 0;
case ETHERNET_CONFIG_TYPE_FILTER:
/* The ENET driver does not modify the address buffer but the API is not const */
if (cfg->filter.set) {
ENET_AddMulticastGroup(data->base,
(uint8_t *)cfg->filter.mac_address.addr);
} else {
ENET_LeaveMulticastGroup(data->base,
(uint8_t *)cfg->filter.mac_address.addr);
}
return 0;
default:
break;
}
return -ENOTSUP;
}
static int eth_nxp_enet_get_config(const struct device *dev,
enum ethernet_config_type type,
struct ethernet_config *cfg)
{
switch (type) {
case ETHERNET_CONFIG_TYPE_RX_CHECKSUM_SUPPORT:
case ETHERNET_CONFIG_TYPE_TX_CHECKSUM_SUPPORT:
cfg->chksum_support = ETHERNET_CHECKSUM_SUPPORT_IPV4_HEADER |
ETHERNET_CHECKSUM_SUPPORT_IPV4_ICMP |
ETHERNET_CHECKSUM_SUPPORT_IPV6_HEADER |
ETHERNET_CHECKSUM_SUPPORT_TCP |
ETHERNET_CHECKSUM_SUPPORT_UDP;
return 0;
default:
break;
}
return -ENOTSUP;
}
static int eth_nxp_enet_rx(const struct device *dev)
{
#if defined(CONFIG_PTP_CLOCK_NXP_ENET)
const struct nxp_enet_mac_config *config = dev->config;
#endif
struct nxp_enet_mac_data *data = dev->data;
uint32_t frame_length = 0U;
struct net_if *iface;
struct net_pkt *pkt = NULL;
status_t status;
uint32_t ts;
status = ENET_GetRxFrameSize(&data->enet_handle,
(uint32_t *)&frame_length, RING_ID);
if (status == kStatus_ENET_RxFrameEmpty) {
return 0;
} else if (status == kStatus_ENET_RxFrameError) {
enet_data_error_stats_t error_stats;
LOG_ERR("ENET_GetRxFrameSize return: %d", (int)status);
ENET_GetRxErrBeforeReadFrame(&data->enet_handle,
&error_stats, RING_ID);
goto flush;
}
if (frame_length > NET_ETH_MAX_FRAME_SIZE) {
LOG_ERR("Frame too large (%d)", frame_length);
goto flush;
}
/* Using root iface. It will be updated in net_recv_data() */
pkt = net_pkt_rx_alloc_with_buffer(data->iface, frame_length,
AF_UNSPEC, 0, K_NO_WAIT);
if (!pkt) {
goto flush;
}
k_mutex_lock(&data->rx_frame_buf_mutex, K_FOREVER);
status = ENET_ReadFrame(data->base, &data->enet_handle,
data->rx_frame_buf, frame_length, RING_ID, &ts);
k_mutex_unlock(&data->rx_frame_buf_mutex);
if (status) {
LOG_ERR("ENET_ReadFrame failed: %d", (int)status);
goto error;
}
if (net_pkt_write(pkt, data->rx_frame_buf, frame_length)) {
LOG_ERR("Unable to write frame into the packet");
goto error;
}
#if defined(CONFIG_PTP_CLOCK_NXP_ENET)
k_mutex_lock(data->ptp_mutex, K_FOREVER);
/* Invalid value by default. */
pkt->timestamp.nanosecond = UINT32_MAX;
pkt->timestamp.second = UINT64_MAX;
/* Timestamp the packet using PTP clock */
if (eth_get_ptp_data(get_iface(data), pkt)) {
struct net_ptp_time ptp_time;
ptp_clock_get(config->ptp_clock, &ptp_time);
/* If latest timestamp reloads after getting from Rx BD,
* then second - 1 to make sure the actual Rx timestamp is accurate
*/
if (ptp_time.nanosecond < ts) {
ptp_time.second--;
}
pkt->timestamp.nanosecond = ts;
pkt->timestamp.second = ptp_time.second;
}
k_mutex_unlock(data->ptp_mutex);
#endif /* CONFIG_PTP_CLOCK_NXP_ENET */
iface = get_iface(data);
#if defined(CONFIG_NET_DSA)
iface = dsa_net_recv(iface, &pkt);
#endif
if (net_recv_data(iface, pkt) < 0) {
goto error;
}
return 1;
flush:
/* Flush the current read buffer. This operation can
* only report failure if there is no frame to flush,
* which cannot happen in this context.
*/
status = ENET_ReadFrame(data->base, &data->enet_handle, NULL,
0, RING_ID, NULL);
__ASSERT_NO_MSG(status == kStatus_Success);
error:
if (pkt) {
net_pkt_unref(pkt);
}
eth_stats_update_errors_rx(get_iface(data));
return -EIO;
}
static void eth_nxp_enet_rx_thread(struct k_work *work)
{
struct nxp_enet_mac_data *data =
CONTAINER_OF(work, struct nxp_enet_mac_data, rx_work);
const struct device *dev = data->dev;
int ret;
if (k_sem_take(&data->rx_thread_sem, K_FOREVER)) {
return;
}
do {
ret = eth_nxp_enet_rx(dev);
} while (ret == 1);
ENET_EnableInterrupts(data->base, kENET_RxFrameInterrupt);
}
static int nxp_enet_phy_configure(const struct device *phy, uint8_t phy_mode)
{
enum phy_link_speed speeds = LINK_HALF_10BASE_T | LINK_FULL_10BASE_T |
LINK_HALF_100BASE_T | LINK_FULL_100BASE_T;
if (COND_CODE_1(IS_ENABLED(CONFIG_ETH_NXP_ENET_1G),
(phy_mode == NXP_ENET_RGMII_MODE), (0))) {
speeds |= (LINK_HALF_1000BASE_T | LINK_FULL_1000BASE_T);
}
/* Configure the PHY */
return phy_configure_link(phy, speeds);
}
static void nxp_enet_phy_cb(const struct device *phy,
struct phy_link_state *state,
void *eth_dev)
{
const struct device *dev = eth_dev;
struct nxp_enet_mac_data *data = dev->data;
const struct nxp_enet_mac_config *config = dev->config;
enet_mii_speed_t speed;
enet_mii_duplex_t duplex;
if (state->is_up) {
#if defined(CONFIG_ETH_NXP_ENET_1G)
if (PHY_LINK_IS_SPEED_1000M(state->speed)) {
speed = kENET_MiiSpeed1000M;
} else if (PHY_LINK_IS_SPEED_100M(state->speed)) {
#else
if (PHY_LINK_IS_SPEED_100M(state->speed)) {
#endif
speed = kENET_MiiSpeed100M;
} else {
speed = kENET_MiiSpeed10M;
}
if (PHY_LINK_IS_FULL_DUPLEX(state->speed)) {
duplex = kENET_MiiFullDuplex;
} else {
duplex = kENET_MiiHalfDuplex;
}
ENET_SetMII(data->base, speed, duplex);
}
if (!data->iface) {
return;
}
LOG_INF("Link is %s", state->is_up ? "up" : "down");
if (!state->is_up) {
net_eth_carrier_off(data->iface);
nxp_enet_phy_configure(phy, config->phy_mode);
} else {
net_eth_carrier_on(data->iface);
}
}
static void eth_nxp_enet_iface_init(struct net_if *iface)
{
const struct device *dev = net_if_get_device(iface);
struct nxp_enet_mac_data *data = dev->data;
const struct nxp_enet_mac_config *config = dev->config;
const struct device *phy_dev = config->phy_dev;
struct phy_link_state state;
net_if_set_link_addr(iface, data->mac_addr,
sizeof(data->mac_addr),
NET_LINK_ETHERNET);
if (data->iface == NULL) {
data->iface = iface;
}
#if defined(CONFIG_NET_DSA)
dsa_register_master_tx(iface, &eth_nxp_enet_tx);
#endif
ethernet_init(iface);
net_if_carrier_off(iface);
/* In case the phy driver doesn't report a state change due to link being up
* before calling phy_configure, we should check the state ourself, and then do a
* pseudo-callback
*/
phy_get_link_state(phy_dev, &state);
nxp_enet_phy_cb(phy_dev, &state, (void *)dev);
config->irq_config_func();
nxp_enet_driver_cb(config->mdio, NXP_ENET_MDIO, NXP_ENET_INTERRUPT_ENABLED, NULL);
}
static int nxp_enet_phy_init(const struct device *dev)
{
const struct nxp_enet_mac_config *config = dev->config;
int ret = 0;
ret = nxp_enet_phy_configure(config->phy_dev, config->phy_mode);
if (ret) {
return ret;
}
ret = phy_link_callback_set(config->phy_dev, nxp_enet_phy_cb, (void *)dev);
if (ret) {
return ret;
}
return ret;
}
void nxp_enet_driver_cb(const struct device *dev, enum nxp_enet_driver dev_type,
enum nxp_enet_callback_reason event, void *data)
{
if (dev_type == NXP_ENET_MDIO) {
nxp_enet_mdio_callback(dev, event, data);
} else if (dev_type == NXP_ENET_PTP_CLOCK) {
nxp_enet_ptp_clock_callback(dev, event, data);
}
}
static void eth_callback(ENET_Type *base, enet_handle_t *handle,
#if FSL_FEATURE_ENET_QUEUE > 1
uint32_t ringId,
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
enet_event_t event, enet_frame_info_t *frameinfo, void *param)
{
const struct device *dev = param;
struct nxp_enet_mac_data *data = dev->data;
switch (event) {
case kENET_RxEvent:
k_sem_give(&data->rx_thread_sem);
break;
case kENET_TxEvent:
ts_register_tx_event(dev, frameinfo);
k_sem_give(&data->tx_buf_sem);
break;
case kENET_TimeStampEvent:
/* Reset periodic timer to default value. */
data->base->ATPER = NSEC_PER_SEC;
break;
default:
break;
}
}
#if FSL_FEATURE_ENET_QUEUE > 1
#define ENET_IRQ_HANDLER_ARGS(base, handle) base, handle, 0
#else
#define ENET_IRQ_HANDLER_ARGS(base, handle) base, handle
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
static void eth_nxp_enet_isr(const struct device *dev)
{
const struct nxp_enet_mac_config *config = dev->config;
struct nxp_enet_mac_data *data = dev->data;
unsigned int irq_lock_key = irq_lock();
uint32_t eir = ENET_GetInterruptStatus(data->base);
if (eir & (kENET_RxFrameInterrupt)) {
ENET_ReceiveIRQHandler(ENET_IRQ_HANDLER_ARGS(data->base, &data->enet_handle));
ENET_DisableInterrupts(data->base, kENET_RxFrameInterrupt);
k_work_submit_to_queue(&rx_work_queue, &data->rx_work);
}
if (eir & kENET_TxFrameInterrupt) {
ENET_TransmitIRQHandler(ENET_IRQ_HANDLER_ARGS(data->base, &data->enet_handle));
}
if (eir & ENET_EIR_MII_MASK) {
nxp_enet_driver_cb(config->mdio, NXP_ENET_MDIO, NXP_ENET_INTERRUPT, NULL);
}
irq_unlock(irq_lock_key);
}
static const struct device *eth_nxp_enet_get_phy(const struct device *dev)
{
const struct nxp_enet_mac_config *config = dev->config;
return config->phy_dev;
}
/* Note this is not universally unique, it just is probably unique on a network */
static inline void nxp_enet_unique_mac(uint8_t *mac_addr)
{
uint32_t id = ETH_NXP_ENET_UNIQUE_ID;
if (id == 0xFFFFFF) {
LOG_ERR("No unique MAC can be provided in this platform");
}
/* Setting LAA bit because it is not guaranteed universally unique */
mac_addr[0] = FREESCALE_OUI_B0 | 0x02;
mac_addr[1] = FREESCALE_OUI_B1;
mac_addr[2] = FREESCALE_OUI_B2;
mac_addr[3] = FIELD_GET(0xFF0000, id);
mac_addr[4] = FIELD_GET(0x00FF00, id);
mac_addr[5] = FIELD_GET(0x0000FF, id);
}
#ifdef CONFIG_SOC_FAMILY_NXP_IMXRT
#include <fsl_ocotp.h>
#endif
static inline void nxp_enet_fused_mac(uint8_t *mac_addr)
{
#ifdef CONFIG_SOC_FAMILY_NXP_IMXRT
uint32_t mac_addr_fuse[2] = {0};
#if defined(CONFIG_SOC_SERIES_IMXRT10XX)
OCOTP_Init((OCOTP_Type *)OCOTP_BASE, CLOCK_GetIpgFreq());
/* OTP bank 4, word 2: MAC0 */
OCOTP_ReadFuseShadowRegisterExt((OCOTP_Type *)OCOTP_BASE,
0x22, &mac_addr_fuse[0], 1);
/* OTP bank 4, word 3: MAC1*/
OCOTP_ReadFuseShadowRegisterExt((OCOTP_Type *)OCOTP_BASE,
0x23, &mac_addr_fuse[1], 1);
#elif defined(CONFIG_SOC_SERIES_IMXRT11XX)
OCOTP_Init((OCOTP_Type *)OCOTP_BASE, 0);
OCOTP_ReadFuseShadowRegisterExt((OCOTP_Type *)OCOTP_BASE,
0x28, &mac_addr_fuse[0], 2);
#endif
mac_addr[0] = mac_addr_fuse[0] & 0x000000FF;
mac_addr[1] = (mac_addr_fuse[0] & 0x0000FF00) >> 8;
mac_addr[2] = (mac_addr_fuse[0] & 0x00FF0000) >> 16;
mac_addr[3] = (mac_addr_fuse[0] & 0xFF000000) >> 24;
mac_addr[4] = (mac_addr_fuse[1] & 0x00FF);
mac_addr[5] = (mac_addr_fuse[1] & 0xFF00) >> 8;
#else
ARG_UNUSED(mac_addr);
#endif
}
static int eth_nxp_enet_init(const struct device *dev)
{
struct nxp_enet_mac_data *data = dev->data;
const struct nxp_enet_mac_config *config = dev->config;
enet_config_t enet_config;
uint32_t enet_module_clock_rate;
int err;
data->base = (ENET_Type *)DEVICE_MMIO_GET(config->module_dev);
err = pinctrl_apply_state(config->pincfg, PINCTRL_STATE_DEFAULT);
if (err) {
return err;
}
k_mutex_init(&data->rx_frame_buf_mutex);
k_mutex_init(&data->tx_frame_buf_mutex);
k_sem_init(&data->rx_thread_sem, 0, CONFIG_ETH_NXP_ENET_RX_BUFFERS);
k_sem_init(&data->tx_buf_sem,
CONFIG_ETH_NXP_ENET_TX_BUFFERS, CONFIG_ETH_NXP_ENET_TX_BUFFERS);
#if defined(CONFIG_PTP_CLOCK_NXP_ENET)
k_sem_init(&data->ptp_ts_sem, 0, 1);
#endif
k_work_init(&data->rx_work, eth_nxp_enet_rx_thread);
switch (config->mac_addr_source) {
case MAC_ADDR_SOURCE_LOCAL:
break;
case MAC_ADDR_SOURCE_RANDOM:
gen_random_mac(data->mac_addr,
FREESCALE_OUI_B0, FREESCALE_OUI_B1, FREESCALE_OUI_B2);
break;
case MAC_ADDR_SOURCE_UNIQUE:
nxp_enet_unique_mac(data->mac_addr);
break;
case MAC_ADDR_SOURCE_FUSED:
nxp_enet_fused_mac(data->mac_addr);
break;
default:
return -ENOTSUP;
}
err = clock_control_get_rate(config->clock_dev, config->clock_subsys,
&enet_module_clock_rate);
if (err) {
return err;
}
ENET_GetDefaultConfig(&enet_config);
if (IS_ENABLED(CONFIG_NET_PROMISCUOUS_MODE)) {
enet_config.macSpecialConfig |= kENET_ControlPromiscuousEnable;
}
if (IS_ENABLED(CONFIG_NET_VLAN)) {
enet_config.macSpecialConfig |= kENET_ControlVLANTagEnable;
}
if (IS_ENABLED(CONFIG_ETH_NXP_ENET_HW_ACCELERATION)) {
enet_config.txAccelerConfig |=
kENET_TxAccelIpCheckEnabled | kENET_TxAccelProtoCheckEnabled;
enet_config.rxAccelerConfig |=
kENET_RxAccelIpCheckEnabled | kENET_RxAccelProtoCheckEnabled;
}
enet_config.interrupt |= kENET_RxFrameInterrupt;
enet_config.interrupt |= kENET_TxFrameInterrupt;
if (config->phy_mode == NXP_ENET_MII_MODE) {
enet_config.miiMode = kENET_MiiMode;
} else if (config->phy_mode == NXP_ENET_RMII_MODE) {
enet_config.miiMode = kENET_RmiiMode;
#if defined(CONFIG_ETH_NXP_ENET_1G)
} else if (config->phy_mode == NXP_ENET_RGMII_MODE) {
enet_config.miiMode = kENET_RgmiiMode;
#endif
} else {
return -EINVAL;
}
enet_config.callback = eth_callback;
enet_config.userData = (void *)dev;
ENET_Up(data->base,
&data->enet_handle,
&enet_config,
config->buffer_config,
data->mac_addr,
enet_module_clock_rate);
nxp_enet_driver_cb(config->mdio, NXP_ENET_MDIO, NXP_ENET_MODULE_RESET, NULL);
#if defined(CONFIG_PTP_CLOCK_NXP_ENET)
nxp_enet_driver_cb(config->ptp_clock, NXP_ENET_PTP_CLOCK,
NXP_ENET_MODULE_RESET, &data->ptp_mutex);
ENET_SetTxReclaim(&data->enet_handle, true, 0);
#endif
ENET_ActiveRead(data->base);
err = nxp_enet_phy_init(dev);
if (err) {
return err;
}
LOG_DBG("%s MAC %02x:%02x:%02x:%02x:%02x:%02x",
dev->name,
data->mac_addr[0], data->mac_addr[1],
data->mac_addr[2], data->mac_addr[3],
data->mac_addr[4], data->mac_addr[5]);
return 0;
}
#if defined(CONFIG_NET_POWER_MANAGEMENT)
static int eth_nxp_enet_device_pm_action(const struct device *dev, enum pm_device_action action)
{
const struct nxp_enet_mac_config *config = dev->config;
struct nxp_enet_mac_data *data = dev->data;
int ret;
if (!device_is_ready(config->clock_dev)) {
return -ENODEV;
}
if (action == PM_DEVICE_ACTION_SUSPEND) {
LOG_DBG("Suspending");
ret = net_if_suspend(data->iface);
if (ret) {
return ret;
}
ENET_Reset(data->base);
ENET_Down(data->base);
clock_control_off(config->clock_dev, (clock_control_subsys_t)config->clock_subsys);
} else if (action == PM_DEVICE_ACTION_RESUME) {
LOG_DBG("Resuming");
clock_control_on(config->clock_dev, (clock_control_subsys_t)config->clock_subsys);
eth_nxp_enet_init(dev);
net_if_resume(data->iface);
} else {
return -ENOTSUP;
}
return 0;
}
#define ETH_NXP_ENET_PM_DEVICE_INIT(n) \
PM_DEVICE_DT_INST_DEFINE(n, eth_nxp_enet_device_pm_action);
#define ETH_NXP_ENET_PM_DEVICE_GET(n) PM_DEVICE_DT_INST_GET(n)
#else
#define ETH_NXP_ENET_PM_DEVICE_INIT(n)
#define ETH_NXP_ENET_PM_DEVICE_GET(n) NULL
#endif /* CONFIG_NET_POWER_MANAGEMENT */
#ifdef CONFIG_NET_DSA
#define NXP_ENET_SEND_FUNC dsa_tx
#else
#define NXP_ENET_SEND_FUNC eth_nxp_enet_tx
#endif /* CONFIG_NET_DSA */
static const struct ethernet_api api_funcs = {
.iface_api.init = eth_nxp_enet_iface_init,
.get_capabilities = eth_nxp_enet_get_capabilities,
.get_phy = eth_nxp_enet_get_phy,
.set_config = eth_nxp_enet_set_config,
.get_config = eth_nxp_enet_get_config,
.send = NXP_ENET_SEND_FUNC,
#if defined(CONFIG_PTP_CLOCK)
.get_ptp_clock = eth_nxp_enet_get_ptp_clock,
#endif
};
#define NXP_ENET_CONNECT_IRQ(node_id, irq_names, idx) \
do { \
IRQ_CONNECT(DT_IRQ_BY_IDX(node_id, idx, irq), \
DT_IRQ_BY_IDX(node_id, idx, priority), \
eth_nxp_enet_isr, \
DEVICE_DT_GET(node_id), \
0); \
irq_enable(DT_IRQ_BY_IDX(node_id, idx, irq)); \
} while (false);
#if DT_NODE_HAS_STATUS_OKAY(DT_CHOSEN(zephyr_dtcm)) && \
CONFIG_ETH_NXP_ENET_USE_DTCM_FOR_DMA_BUFFER
#define _nxp_enet_dma_desc_section __dtcm_bss_section
#define _nxp_enet_dma_buffer_section __dtcm_noinit_section
#define _nxp_enet_driver_buffer_section __dtcm_noinit_section
#define driver_cache_maintain false
#elif defined(CONFIG_NOCACHE_MEMORY)
#define _nxp_enet_dma_desc_section __nocache
#define _nxp_enet_dma_buffer_section
#define _nxp_enet_driver_buffer_section
#define driver_cache_maintain true
#else
#define _nxp_enet_dma_desc_section
#define _nxp_enet_dma_buffer_section
#define _nxp_enet_driver_buffer_section
#define driver_cache_maintain true
#endif
/* Use ENET_FRAME_MAX_VLANFRAMELEN for VLAN frame size
* Use ENET_FRAME_MAX_FRAMELEN for Ethernet frame size
*/
#if defined(CONFIG_NET_VLAN)
#if !defined(ENET_FRAME_MAX_VLANFRAMELEN)
#define ENET_FRAME_MAX_VLANFRAMELEN (ENET_FRAME_MAX_FRAMELEN + 4)
#endif
#define ETH_NXP_ENET_BUFFER_SIZE \
ROUND_UP(ENET_FRAME_MAX_VLANFRAMELEN, ENET_BUFF_ALIGNMENT)
#else
#define ETH_NXP_ENET_BUFFER_SIZE \
ROUND_UP(ENET_FRAME_MAX_FRAMELEN, ENET_BUFF_ALIGNMENT)
#endif /* CONFIG_NET_VLAN */
#define NXP_ENET_PHY_MODE(node_id) \
DT_ENUM_HAS_VALUE(node_id, phy_connection_type, mii) ? NXP_ENET_MII_MODE : \
(DT_ENUM_HAS_VALUE(node_id, phy_connection_type, rmii) ? NXP_ENET_RMII_MODE : \
(DT_ENUM_HAS_VALUE(node_id, phy_connection_type, rgmii) ? NXP_ENET_RGMII_MODE : \
NXP_ENET_INVALID_MII_MODE))
#ifdef CONFIG_PTP_CLOCK_NXP_ENET
#define NXP_ENET_PTP_DEV(n) .ptp_clock = DEVICE_DT_GET(DT_INST_PHANDLE(n, nxp_ptp_clock)),
#define NXP_ENET_FRAMEINFO_ARRAY(n) \
static enet_frame_info_t \
nxp_enet_##n##_tx_frameinfo_array[CONFIG_ETH_NXP_ENET_TX_BUFFERS];
#define NXP_ENET_FRAMEINFO(n) \
.txFrameInfo = nxp_enet_##n##_tx_frameinfo_array,
#else
#define NXP_ENET_PTP_DEV(n)
#define NXP_ENET_FRAMEINFO_ARRAY(n)
#define NXP_ENET_FRAMEINFO(n) \
.txFrameInfo = NULL
#endif
#define NXP_ENET_NODE_HAS_MAC_ADDR_CHECK(n) \
BUILD_ASSERT(NODE_HAS_VALID_MAC_ADDR(DT_DRV_INST(n)) || \
DT_INST_PROP(n, zephyr_random_mac_address) || \
DT_INST_PROP(n, nxp_unique_mac) || \
DT_INST_PROP(n, nxp_fused_mac), \
"MAC address not specified on ENET DT node");
#define NXP_ENET_NODE_PHY_MODE_CHECK(n) \
BUILD_ASSERT(NXP_ENET_PHY_MODE(DT_DRV_INST(n)) != NXP_ENET_RGMII_MODE || \
(IS_ENABLED(CONFIG_ETH_NXP_ENET_1G) && \
DT_NODE_HAS_COMPAT(DT_INST_PARENT(n), nxp_enet1g)), \
"RGMII mode requires nxp,enet1g compatible on ENET DT node" \
" and CONFIG_ETH_NXP_ENET_1G enabled");
#define NXP_ENET_MAC_ADDR_SOURCE(n) \
COND_CODE_1(DT_NODE_HAS_PROP(DT_DRV_INST(n), local_mac_address), \
(MAC_ADDR_SOURCE_LOCAL), \
(COND_CODE_1(DT_INST_PROP(n, zephyr_random_mac_address), \
(MAC_ADDR_SOURCE_RANDOM), \
(COND_CODE_1(DT_INST_PROP(n, nxp_unique_mac), (MAC_ADDR_SOURCE_UNIQUE), \
(COND_CODE_1(DT_INST_PROP(n, nxp_fused_mac), (MAC_ADDR_SOURCE_FUSED), \
(MAC_ADDR_SOURCE_INVALID))))))))
#define NXP_ENET_MAC_INIT(n) \
NXP_ENET_NODE_HAS_MAC_ADDR_CHECK(n) \
\
NXP_ENET_NODE_PHY_MODE_CHECK(n) \
\
PINCTRL_DT_INST_DEFINE(n); \
\
NXP_ENET_FRAMEINFO_ARRAY(n) \
\
static void nxp_enet_##n##_irq_config_func(void) \
{ \
DT_INST_FOREACH_PROP_ELEM(n, interrupt_names, \
NXP_ENET_CONNECT_IRQ); \
} \
\
volatile static __aligned(ENET_BUFF_ALIGNMENT) \
_nxp_enet_dma_desc_section \
enet_rx_bd_struct_t \
nxp_enet_##n##_rx_buffer_desc[CONFIG_ETH_NXP_ENET_RX_BUFFERS]; \
\
volatile static __aligned(ENET_BUFF_ALIGNMENT) \
_nxp_enet_dma_desc_section \
enet_tx_bd_struct_t \
nxp_enet_##n##_tx_buffer_desc[CONFIG_ETH_NXP_ENET_TX_BUFFERS]; \
\
static uint8_t __aligned(ENET_BUFF_ALIGNMENT) \
_nxp_enet_dma_buffer_section \
nxp_enet_##n##_rx_buffer[CONFIG_ETH_NXP_ENET_RX_BUFFERS] \
[ETH_NXP_ENET_BUFFER_SIZE]; \
\
static uint8_t __aligned(ENET_BUFF_ALIGNMENT) \
_nxp_enet_dma_buffer_section \
nxp_enet_##n##_tx_buffer[CONFIG_ETH_NXP_ENET_TX_BUFFERS] \
[ETH_NXP_ENET_BUFFER_SIZE]; \
\
const struct nxp_enet_mac_config nxp_enet_##n##_config = { \
.irq_config_func = nxp_enet_##n##_irq_config_func, \
.module_dev = DEVICE_DT_GET(DT_INST_PARENT(n)), \
.clock_dev = DEVICE_DT_GET(DT_CLOCKS_CTLR(DT_INST_PARENT(n))), \
.clock_subsys = (void *)DT_CLOCKS_CELL_BY_IDX( \
DT_INST_PARENT(n), 0, name), \
.pincfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \
.buffer_config = {{ \
.rxBdNumber = CONFIG_ETH_NXP_ENET_RX_BUFFERS, \
.txBdNumber = CONFIG_ETH_NXP_ENET_TX_BUFFERS, \
.rxBuffSizeAlign = ETH_NXP_ENET_BUFFER_SIZE, \
.txBuffSizeAlign = ETH_NXP_ENET_BUFFER_SIZE, \
.rxBdStartAddrAlign = nxp_enet_##n##_rx_buffer_desc, \
.txBdStartAddrAlign = nxp_enet_##n##_tx_buffer_desc, \
.rxBufferAlign = nxp_enet_##n##_rx_buffer[0], \
.txBufferAlign = nxp_enet_##n##_tx_buffer[0], \
.rxMaintainEnable = driver_cache_maintain, \
.txMaintainEnable = driver_cache_maintain, \
NXP_ENET_FRAMEINFO(n) \
}}, \
.phy_mode = NXP_ENET_PHY_MODE(DT_DRV_INST(n)), \
.phy_dev = DEVICE_DT_GET(DT_INST_PHANDLE(n, phy_handle)), \
.mdio = DEVICE_DT_GET(DT_INST_PHANDLE(n, nxp_mdio)), \
NXP_ENET_PTP_DEV(n) \
.mac_addr_source = NXP_ENET_MAC_ADDR_SOURCE(n), \
}; \
\
static _nxp_enet_driver_buffer_section uint8_t \
nxp_enet_##n##_tx_frame_buf[NET_ETH_MAX_FRAME_SIZE]; \
static _nxp_enet_driver_buffer_section uint8_t \
nxp_enet_##n##_rx_frame_buf[NET_ETH_MAX_FRAME_SIZE]; \
\
struct nxp_enet_mac_data nxp_enet_##n##_data = { \
.tx_frame_buf = nxp_enet_##n##_tx_frame_buf, \
.rx_frame_buf = nxp_enet_##n##_rx_frame_buf, \
.dev = DEVICE_DT_INST_GET(n), \
.mac_addr = DT_INST_PROP_OR(n, local_mac_address, {0}), \
}; \
\
ETH_NXP_ENET_PM_DEVICE_INIT(n) \
\
ETH_NET_DEVICE_DT_INST_DEFINE(n, eth_nxp_enet_init, \
ETH_NXP_ENET_PM_DEVICE_GET(n), \
&nxp_enet_##n##_data, &nxp_enet_##n##_config, \
CONFIG_ETH_INIT_PRIORITY, \
&api_funcs, NET_ETH_MTU);
DT_INST_FOREACH_STATUS_OKAY(NXP_ENET_MAC_INIT)
struct nxp_enet_mod_config {
DEVICE_MMIO_ROM;
const struct device *clock_dev;
clock_control_subsys_t clock_subsys;
};
struct nxp_enet_mod_data {
DEVICE_MMIO_RAM;
};
static int nxp_enet_mod_init(const struct device *dev)
{
const struct nxp_enet_mod_config *config = dev->config;
int ret;
ret = clock_control_on(config->clock_dev, config->clock_subsys);
if (ret) {
LOG_ERR("ENET module clock error");
return ret;
}
DEVICE_MMIO_MAP(dev, K_MEM_CACHE_NONE | K_MEM_DIRECT_MAP);
ENET_Reset((ENET_Type *)DEVICE_MMIO_GET(dev));
return 0;
}
#define NXP_ENET_INIT(n, compat) \
\
static const struct nxp_enet_mod_config nxp_enet_mod_cfg_##n = { \
DEVICE_MMIO_ROM_INIT(DT_DRV_INST(n)), \
.clock_dev = DEVICE_DT_GET(DT_CLOCKS_CTLR(DT_DRV_INST(n))), \
.clock_subsys = (void *) DT_CLOCKS_CELL_BY_IDX( \
DT_DRV_INST(n), 0, name), \
}; \
\
static struct nxp_enet_mod_data nxp_enet_mod_data_##n; \
\
/* Init the module before any of the MAC, MDIO, or PTP clock */ \
DEVICE_DT_INST_DEFINE(n, nxp_enet_mod_init, NULL, \
&nxp_enet_mod_data_##n, &nxp_enet_mod_cfg_##n, \
POST_KERNEL, 0, NULL);
#undef DT_DRV_COMPAT
#define DT_DRV_COMPAT nxp_enet
DT_INST_FOREACH_STATUS_OKAY_VARGS(NXP_ENET_INIT, DT_DRV_COMPAT)
#define NXP_ENET1G_INIT(n, compat) \
\
static const struct nxp_enet_mod_config nxp_enet1g_mod_cfg_##n = { \
DEVICE_MMIO_ROM_INIT(DT_DRV_INST(n)), \
.clock_dev = DEVICE_DT_GET(DT_CLOCKS_CTLR(DT_DRV_INST(n))), \
.clock_subsys = (void *) DT_CLOCKS_CELL_BY_IDX( \
DT_DRV_INST(n), 0, name), \
}; \
\
static struct nxp_enet_mod_data nxp_enet1g_mod_data_##n; \
\
/* Init the module before any of the MAC, MDIO, or PTP clock */ \
DEVICE_DT_INST_DEFINE(n, nxp_enet_mod_init, NULL, \
&nxp_enet1g_mod_data_##n, &nxp_enet1g_mod_cfg_##n, \
POST_KERNEL, 0, NULL);
#undef DT_DRV_COMPAT
#define DT_DRV_COMPAT nxp_enet1g
DT_INST_FOREACH_STATUS_OKAY_VARGS(NXP_ENET1G_INIT, DT_DRV_COMPAT)