blob: 31a67fd6295a1d31b6d84ff5a08a5728f07c9dfd [file] [log] [blame]
/* listener.c - Networking demo */
/*
* Copyright (c) 2015 Intel Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <zephyr.h>
#if defined(CONFIG_STDOUT_CONSOLE)
#include <stdio.h>
#define PRINT printf
#else
#include <misc/printk.h>
#define PRINT printk
#endif
#include <net/ip_buf.h>
#include <net/net_core.h>
#include <net/net_socket.h>
static void set_mac(void)
{
uint8_t mac[] = { 0x0a, 0xbe, 0xef, 0x15, 0xf0, 0x0d };
net_set_mac(mac, sizeof(mac));
}
#ifdef CONFIG_NETWORKING_WITH_IPV6
/* The 2001:db8::/32 is the private address space for documentation RFC 3849 */
#define MYADDR { { { 0x20,0x01,0x0d,0xb8,0,0,0,0,0,0,0,0,0,0,0,0x2 } } }
#else
/* The 192.0.2.0/24 is the private address space for documentation RFC 5737 */
#define MYADDR { { { 192,0,2,2 } } }
#endif
static struct net_context *get_context(void)
{
struct net_context *ctx;
static struct net_addr any_addr;
static struct net_addr my_addr;
#ifdef CONFIG_NETWORKING_WITH_IPV6
static const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT;
static struct in6_addr in6addr_my = MYADDR;
any_addr.in6_addr = in6addr_any;
any_addr.family = AF_INET6;
my_addr.in6_addr = in6addr_my;
my_addr.family = AF_INET6;
#else
static const struct in_addr in4addr_any = { { { 0 } } };
static struct in_addr in4addr_my = MYADDR;
any_addr.in_addr = in4addr_any;
any_addr.family = AF_INET;
my_addr.in_addr = in4addr_my;
my_addr.family = AF_INET;
#endif
ctx = net_context_get(IPPROTO_UDP,
&any_addr, 0,
&my_addr, 4242);
if (!ctx) {
PRINT("%s: Cannot get network context\n", __func__);
return NULL;
}
return ctx;
}
#ifdef CONFIG_MICROKERNEL
/*
* Microkernel version of hello world demo has two tasks that utilize
* semaphores and sleeps to take turns printing a greeting message at
* a controlled rate.
*/
/* specify delay between greetings (in ms); compute equivalent in ticks */
#define SLEEPTIME 500
#define SLEEPTICKS (SLEEPTIME * sys_clock_ticks_per_sec / 1000)
/* specify delay between greetings (in ms); compute equivalent in ticks */
#define SLEEPTIME 500
#define SLEEPTICKS (SLEEPTIME * sys_clock_ticks_per_sec / 1000)
/*
*
* @param taskname task identification string
* @param mySem task's own semaphore
* @param otherSem other task's semaphore
*
*/
void helloLoop(const char *taskname, ksem_t mySem, ksem_t otherSem)
{
static struct net_context *ctx;
struct net_buf *buf;
net_init();
if (!ctx) {
ctx = get_context();
}
while (1) {
task_sem_take(mySem, TICKS_UNLIMITED);
buf = net_receive(ctx, TICKS_NONE);
if (buf) {
PRINT("%s: received %d bytes\n", taskname,
ip_buf_appdatalen(buf));
ip_buf_unref(buf);
}
/* wait a while, then let other task have a turn */
task_sleep(SLEEPTICKS);
task_sem_give(otherSem);
}
}
void taskA(void)
{
set_mac();
/* taskA gives its own semaphore, allowing it to say hello right away */
task_sem_give(TASKASEM);
/* invoke routine that allows task to ping-pong hello messages with taskB */
helloLoop(__func__, TASKASEM, TASKBSEM);
}
void taskB(void)
{
/* invoke routine that allows task to ping-pong hello messages with taskA */
helloLoop(__func__, TASKBSEM, TASKASEM);
}
#else /* CONFIG_NANOKERNEL */
/*
* Nanokernel version of hello world demo has a task and a fiber that utilize
* semaphores and timers to take turns printing a greeting message at
* a controlled rate.
*/
/* specify delay between greetings (in ms); compute equivalent in ticks */
#define SLEEPTIME 500
#define SLEEPTICKS (SLEEPTIME * sys_clock_ticks_per_sec / 1000)
#define STACKSIZE 2000
char fiberStack[STACKSIZE];
struct nano_sem nanoSemTask;
struct nano_sem nanoSemFiber;
void fiberEntry(void)
{
struct nano_timer timer;
uint32_t data[2] = {0, 0};
struct net_context *ctx;
struct net_buf *buf;
ctx = get_context();
if (!ctx) {
PRINT("%s: Cannot get network context\n", __func__);
return;
}
nano_sem_init (&nanoSemFiber);
nano_timer_init (&timer, data);
while (1) {
/* wait for task to let us have a turn */
nano_fiber_sem_take(&nanoSemFiber, TICKS_UNLIMITED);
buf = net_receive(ctx, TICKS_NONE);
if (buf) {
PRINT("%s: received %d bytes\n", __func__,
ip_buf_appdatalen(buf));
ip_buf_unref(buf);
}
/* wait a while, then let task have a turn */
nano_fiber_timer_start (&timer, SLEEPTICKS);
nano_fiber_timer_test(&timer, TICKS_UNLIMITED);
nano_fiber_sem_give (&nanoSemTask);
}
}
void main(void)
{
struct nano_timer timer;
uint32_t data[2] = {0, 0};
net_init();
PRINT("%s: run listener\n", __func__);
set_mac();
task_fiber_start (&fiberStack[0], STACKSIZE,
(nano_fiber_entry_t) fiberEntry, 0, 0, 7, 0);
nano_sem_init(&nanoSemTask);
nano_timer_init(&timer, data);
while (1) {
/* wait a while, then let fiber have a turn */
nano_task_timer_start(&timer, SLEEPTICKS);
nano_task_timer_test(&timer, TICKS_UNLIMITED);
nano_task_sem_give(&nanoSemFiber);
/* now wait for fiber to let us have a turn */
nano_task_sem_take(&nanoSemTask, TICKS_UNLIMITED);
}
}
#endif /* CONFIG_MICROKERNEL || CONFIG_NANOKERNEL */