| /* |
| * Copyright (c) 2017 Intel Corporation |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| #include <zephyr/kernel.h> |
| #include <ksched.h> |
| #include <zephyr/wait_q.h> |
| #include <zephyr/posix/pthread.h> |
| #include <zephyr/sys/bitarray.h> |
| |
| #include "posix_internal.h" |
| |
| extern struct k_spinlock z_pthread_spinlock; |
| |
| int64_t timespec_to_timeoutms(const struct timespec *abstime); |
| |
| static struct posix_cond posix_cond_pool[CONFIG_MAX_PTHREAD_COND_COUNT]; |
| SYS_BITARRAY_DEFINE_STATIC(posix_cond_bitarray, CONFIG_MAX_PTHREAD_COND_COUNT); |
| |
| /* |
| * We reserve the MSB to mark a pthread_cond_t as initialized (from the |
| * perspective of the application). With a linear space, this means that |
| * the theoretical pthread_cond_t range is [0,2147483647]. |
| */ |
| BUILD_ASSERT(CONFIG_MAX_PTHREAD_COND_COUNT < PTHREAD_OBJ_MASK_INIT, |
| "CONFIG_MAX_PTHREAD_COND_COUNT is too high"); |
| |
| static inline size_t posix_cond_to_offset(struct posix_cond *cv) |
| { |
| return cv - posix_cond_pool; |
| } |
| |
| static inline size_t to_posix_cond_idx(pthread_cond_t cond) |
| { |
| return mark_pthread_obj_uninitialized(cond); |
| } |
| |
| struct posix_cond *get_posix_cond(pthread_cond_t cond) |
| { |
| int actually_initialized; |
| size_t bit = to_posix_cond_idx(cond); |
| |
| /* if the provided cond does not claim to be initialized, its invalid */ |
| if (!is_pthread_obj_initialized(cond)) { |
| return NULL; |
| } |
| |
| /* Mask off the MSB to get the actual bit index */ |
| if (sys_bitarray_test_bit(&posix_cond_bitarray, bit, &actually_initialized) < 0) { |
| return NULL; |
| } |
| |
| if (actually_initialized == 0) { |
| /* The cond claims to be initialized but is actually not */ |
| return NULL; |
| } |
| |
| return &posix_cond_pool[bit]; |
| } |
| |
| struct posix_cond *to_posix_cond(pthread_cond_t *cvar) |
| { |
| size_t bit; |
| struct posix_cond *cv; |
| |
| if (*cvar != PTHREAD_COND_INITIALIZER) { |
| return get_posix_cond(*cvar); |
| } |
| |
| /* Try and automatically associate a posix_cond */ |
| if (sys_bitarray_alloc(&posix_cond_bitarray, 1, &bit) < 0) { |
| /* No conds left to allocate */ |
| return NULL; |
| } |
| |
| /* Record the associated posix_cond in mu and mark as initialized */ |
| *cvar = mark_pthread_obj_initialized(bit); |
| cv = &posix_cond_pool[bit]; |
| |
| /* Initialize the condition variable here */ |
| z_waitq_init(&cv->wait_q); |
| |
| return cv; |
| } |
| |
| static int cond_wait(pthread_cond_t *cond, pthread_mutex_t *mu, k_timeout_t timeout) |
| { |
| int ret; |
| k_spinlock_key_t key; |
| struct posix_cond *cv; |
| struct posix_mutex *m; |
| |
| key = k_spin_lock(&z_pthread_spinlock); |
| m = to_posix_mutex(mu); |
| if (m == NULL) { |
| k_spin_unlock(&z_pthread_spinlock, key); |
| return EINVAL; |
| } |
| |
| cv = to_posix_cond(cond); |
| if (cv == NULL) { |
| k_spin_unlock(&z_pthread_spinlock, key); |
| return EINVAL; |
| } |
| |
| __ASSERT_NO_MSG(m->lock_count == 1U); |
| m->lock_count = 0U; |
| m->owner = NULL; |
| _ready_one_thread(&m->wait_q); |
| ret = z_sched_wait(&z_pthread_spinlock, key, &cv->wait_q, timeout, NULL); |
| |
| /* FIXME: this extra lock (and the potential context switch it |
| * can cause) could be optimized out. At the point of the |
| * signal/broadcast, it's possible to detect whether or not we |
| * will be swapping back to this particular thread and lock it |
| * (i.e. leave the lock variable unchanged) on our behalf. |
| * But that requires putting scheduler intelligence into this |
| * higher level abstraction and is probably not worth it. |
| */ |
| pthread_mutex_lock(mu); |
| |
| return ret == -EAGAIN ? ETIMEDOUT : ret; |
| } |
| |
| int pthread_cond_signal(pthread_cond_t *cvar) |
| { |
| k_spinlock_key_t key; |
| struct posix_cond *cv; |
| |
| key = k_spin_lock(&z_pthread_spinlock); |
| |
| cv = to_posix_cond(cvar); |
| if (cv == NULL) { |
| k_spin_unlock(&z_pthread_spinlock, key); |
| return EINVAL; |
| } |
| |
| k_spin_unlock(&z_pthread_spinlock, key); |
| |
| z_sched_wake(&cv->wait_q, 0, NULL); |
| |
| return 0; |
| } |
| |
| int pthread_cond_broadcast(pthread_cond_t *cvar) |
| { |
| k_spinlock_key_t key; |
| struct posix_cond *cv; |
| |
| key = k_spin_lock(&z_pthread_spinlock); |
| |
| cv = to_posix_cond(cvar); |
| if (cv == NULL) { |
| k_spin_unlock(&z_pthread_spinlock, key); |
| return EINVAL; |
| } |
| |
| k_spin_unlock(&z_pthread_spinlock, key); |
| |
| z_sched_wake_all(&cv->wait_q, 0, NULL); |
| return 0; |
| } |
| |
| int pthread_cond_wait(pthread_cond_t *cv, pthread_mutex_t *mut) |
| { |
| return cond_wait(cv, mut, K_FOREVER); |
| } |
| |
| int pthread_cond_timedwait(pthread_cond_t *cv, pthread_mutex_t *mut, const struct timespec *abstime) |
| { |
| int32_t timeout = (int32_t)timespec_to_timeoutms(abstime); |
| return cond_wait(cv, mut, K_MSEC(timeout)); |
| } |
| |
| int pthread_cond_init(pthread_cond_t *cvar, const pthread_condattr_t *att) |
| { |
| k_spinlock_key_t key; |
| struct posix_cond *cv; |
| |
| ARG_UNUSED(att); |
| *cvar = PTHREAD_COND_INITIALIZER; |
| |
| key = k_spin_lock(&z_pthread_spinlock); |
| |
| cv = to_posix_cond(cvar); |
| if (cv == NULL) { |
| k_spin_unlock(&z_pthread_spinlock, key); |
| return EINVAL; |
| } |
| |
| k_spin_unlock(&z_pthread_spinlock, key); |
| |
| return 0; |
| } |
| |
| int pthread_cond_destroy(pthread_cond_t *cvar) |
| { |
| __unused int rc; |
| k_spinlock_key_t key; |
| struct posix_cond *cv; |
| pthread_cond_t c = *cvar; |
| size_t bit = to_posix_cond_idx(c); |
| |
| key = k_spin_lock(&z_pthread_spinlock); |
| |
| cv = get_posix_cond(c); |
| if (cv == NULL) { |
| k_spin_unlock(&z_pthread_spinlock, key); |
| return EINVAL; |
| } |
| |
| rc = sys_bitarray_free(&posix_cond_bitarray, 1, bit); |
| __ASSERT(rc == 0, "failed to free bit %zu", bit); |
| |
| k_spin_unlock(&z_pthread_spinlock, key); |
| |
| return 0; |
| } |