blob: 5068f382c4df508f5330f7129e0fdbd58438c207 [file] [log] [blame]
/*
* Copyright (c) 2014 Wind River Systems, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
* @brief ARCv2 public interrupt handling
*
* ARCv2 kernel interrupt handling interface. Included by arc/arch.h.
*/
#ifndef ZEPHYR_INCLUDE_ARCH_ARC_V2_IRQ_H_
#define ZEPHYR_INCLUDE_ARCH_ARC_V2_IRQ_H_
#include <zephyr/arch/arc/v2/aux_regs.h>
#include <zephyr/toolchain/common.h>
#include <zephyr/irq.h>
#include <zephyr/sys/util.h>
#include <zephyr/sw_isr_table.h>
#ifdef __cplusplus
extern "C" {
#endif
#ifndef _ASMLANGUAGE
extern void z_arc_firq_stack_set(void);
extern void arch_irq_enable(unsigned int irq);
extern void arch_irq_disable(unsigned int irq);
extern int arch_irq_is_enabled(unsigned int irq);
#ifdef CONFIG_TRACING_ISR
extern void sys_trace_isr_enter(void);
extern void sys_trace_isr_exit(void);
#endif
extern void z_irq_priority_set(unsigned int irq, unsigned int prio,
uint32_t flags);
/* Z_ISR_DECLARE will populate the .intList section with the interrupt's
* parameters, which will then be used by gen_irq_tables.py to create
* the vector table and the software ISR table. This is all done at
* build-time.
*
* We additionally set the priority in the interrupt controller at
* runtime.
*/
#define ARCH_IRQ_CONNECT(irq_p, priority_p, isr_p, isr_param_p, flags_p) \
{ \
Z_ISR_DECLARE(irq_p, 0, isr_p, isr_param_p); \
z_irq_priority_set(irq_p, priority_p, flags_p); \
}
/**
* Configure a 'direct' static interrupt.
*
* When firq has no separate stack(CONFIG_ARC_FIRQ_STACK=N), it's not safe
* to call C ISR handlers because sp will be switched to bank1's sp which
* is undefined value.
* So for this case, the priority cannot be set to 0 but next level 1
*
* When firq has separate stack (CONFIG_ARC_FIRQ_STACK=y) but at the same
* time stack checking is enabled (CONFIG_ARC_STACK_CHECKING=y)
* the stack checking can raise stack check exception as sp is switched to
* firq's stack (bank1's sp). So for this case, the priority cannot be set
* to 0 but next level 1.
*
* Note that for the above cases, if application still wants to use firq by
* setting priority to 0. Application can call z_irq_priority_set again.
* Then it's left to application to handle the details of firq
*
* See include/irq.h for details.
* All arguments must be computable at build time.
*/
#define ARCH_IRQ_DIRECT_CONNECT(irq_p, priority_p, isr_p, flags_p) \
{ \
Z_ISR_DECLARE(irq_p, ISR_FLAG_DIRECT, isr_p, NULL); \
BUILD_ASSERT(priority_p || !IS_ENABLED(CONFIG_ARC_FIRQ) || \
(IS_ENABLED(CONFIG_ARC_FIRQ_STACK) && \
!IS_ENABLED(CONFIG_ARC_STACK_CHECKING)), \
"irq priority cannot be set to 0 when CONFIG_ARC_FIRQ_STACK" \
"is not configured or CONFIG_ARC_FIRQ_STACK " \
"and CONFIG_ARC_STACK_CHECKING are configured together"); \
z_irq_priority_set(irq_p, priority_p, flags_p); \
}
static inline void arch_isr_direct_header(void)
{
#ifdef CONFIG_TRACING_ISR
sys_trace_isr_enter();
#endif
}
static inline void arch_isr_direct_footer(int maybe_swap)
{
/* clear SW generated interrupt */
if (z_arc_v2_aux_reg_read(_ARC_V2_ICAUSE) ==
z_arc_v2_aux_reg_read(_ARC_V2_AUX_IRQ_HINT)) {
z_arc_v2_aux_reg_write(_ARC_V2_AUX_IRQ_HINT, 0);
}
#ifdef CONFIG_TRACING_ISR
sys_trace_isr_exit();
#endif
}
#define ARCH_ISR_DIRECT_HEADER() arch_isr_direct_header()
extern void arch_isr_direct_header(void);
#define ARCH_ISR_DIRECT_FOOTER(swap) arch_isr_direct_footer(swap)
#if defined(__CCAC__)
#define _ARC_DIRECT_ISR_FUNC_ATTRIBUTE __interrupt__
#else
#define _ARC_DIRECT_ISR_FUNC_ATTRIBUTE interrupt("ilink")
#endif
/*
* Scheduling can not be done in direct isr. If required, please use kernel
* aware interrupt handling
*/
#define ARCH_ISR_DIRECT_DECLARE(name) \
static inline int name##_body(void); \
__attribute__ ((_ARC_DIRECT_ISR_FUNC_ATTRIBUTE))void name(void) \
{ \
ISR_DIRECT_HEADER(); \
name##_body(); \
ISR_DIRECT_FOOTER(0); \
} \
static inline int name##_body(void)
/**
*
* @brief Disable all interrupts on the local CPU
*
* This routine disables interrupts. It can be called from either interrupt or
* thread level. This routine returns an architecture-dependent
* lock-out key representing the "interrupt disable state" prior to the call;
* this key can be passed to irq_unlock() to re-enable interrupts.
*
* The lock-out key should only be used as the argument to the
* irq_unlock() API. It should never be used to manually re-enable
* interrupts or to inspect or manipulate the contents of the source register.
*
* This function can be called recursively: it will return a key to return the
* state of interrupt locking to the previous level.
*
* WARNINGS
* Invoking a kernel routine with interrupts locked may result in
* interrupts being re-enabled for an unspecified period of time. If the
* called routine blocks, interrupts will be re-enabled while another
* thread executes, or while the system is idle.
*
* The "interrupt disable state" is an attribute of a thread. Thus, if a
* thread disables interrupts and subsequently invokes a kernel
* routine that causes the calling thread to block, the interrupt
* disable state will be restored when the thread is later rescheduled
* for execution.
*
* @return An architecture-dependent lock-out key representing the
* "interrupt disable state" prior to the call.
*/
static ALWAYS_INLINE unsigned int arch_irq_lock(void)
{
unsigned int key;
__asm__ volatile("clri %0" : "=r"(key):: "memory");
return key;
}
static ALWAYS_INLINE void arch_irq_unlock(unsigned int key)
{
__asm__ volatile("seti %0" : : "ir"(key) : "memory");
}
static ALWAYS_INLINE bool arch_irq_unlocked(unsigned int key)
{
/* ARC irq lock uses instruction "clri r0",
* r0 == {26’d0, 1’b1, STATUS32.IE, STATUS32.E[3:0] }
* bit4 is used to record IE (Interrupt Enable) bit
*/
return (key & 0x10) == 0x10;
}
#endif /* _ASMLANGUAGE */
#ifdef __cplusplus
}
#endif
#endif /* ZEPHYR_INCLUDE_ARCH_ARC_V2_IRQ_H_ */