blob: f7e75b3aab6154fb37e80f75acbe04bf7a310948 [file] [log] [blame]
/*
* Copyright (c) 2019 Intel Corp.
* SPDX-License-Identifier: Apache-2.0
*/
#ifndef ZEPHYR_INCLUDE_ARCH_X86_ARCH_H_
#define ZEPHYR_INCLUDE_ARCH_X86_ARCH_H_
#include <zephyr/devicetree.h>
/* Changing this value will require manual changes to exception and IDT setup
* in locore.S for intel64
*/
#define Z_X86_OOPS_VECTOR 32
#if !defined(_ASMLANGUAGE)
#include <zephyr/sys/sys_io.h>
#include <zephyr/types.h>
#include <stddef.h>
#include <stdbool.h>
#include <zephyr/irq.h>
#include <zephyr/arch/x86/mmustructs.h>
#include <zephyr/arch/x86/thread_stack.h>
#include <zephyr/linker/sections.h>
#ifdef __cplusplus
extern "C" {
#endif
#ifdef CONFIG_PCIE_MSI
struct x86_msi_vector {
unsigned int irq;
uint8_t vector;
#ifdef CONFIG_INTEL_VTD_ICTL
bool remap;
uint8_t irte;
#endif
};
typedef struct x86_msi_vector arch_msi_vector_t;
#endif /* CONFIG_PCIE_MSI */
static ALWAYS_INLINE void arch_irq_unlock(unsigned int key)
{
if ((key & 0x00000200U) != 0U) { /* 'IF' bit */
__asm__ volatile ("sti" ::: "memory");
}
}
static ALWAYS_INLINE void sys_out8(uint8_t data, io_port_t port)
{
__asm__ volatile("outb %b0, %w1" :: "a"(data), "Nd"(port));
}
static ALWAYS_INLINE uint8_t sys_in8(io_port_t port)
{
uint8_t ret;
__asm__ volatile("inb %w1, %b0" : "=a"(ret) : "Nd"(port));
return ret;
}
static ALWAYS_INLINE void sys_out16(uint16_t data, io_port_t port)
{
__asm__ volatile("outw %w0, %w1" :: "a"(data), "Nd"(port));
}
static ALWAYS_INLINE uint16_t sys_in16(io_port_t port)
{
uint16_t ret;
__asm__ volatile("inw %w1, %w0" : "=a"(ret) : "Nd"(port));
return ret;
}
static ALWAYS_INLINE void sys_out32(uint32_t data, io_port_t port)
{
__asm__ volatile("outl %0, %w1" :: "a"(data), "Nd"(port));
}
static ALWAYS_INLINE uint32_t sys_in32(io_port_t port)
{
uint32_t ret;
__asm__ volatile("inl %w1, %0" : "=a"(ret) : "Nd"(port));
return ret;
}
static ALWAYS_INLINE void sys_write8(uint8_t data, mm_reg_t addr)
{
__asm__ volatile("movb %0, %1"
:
: "q"(data), "m" (*(volatile uint8_t *)(uintptr_t) addr)
: "memory");
}
static ALWAYS_INLINE uint8_t sys_read8(mm_reg_t addr)
{
uint8_t ret;
__asm__ volatile("movb %1, %0"
: "=q"(ret)
: "m" (*(volatile uint8_t *)(uintptr_t) addr)
: "memory");
return ret;
}
static ALWAYS_INLINE void sys_write16(uint16_t data, mm_reg_t addr)
{
__asm__ volatile("movw %0, %1"
:
: "r"(data), "m" (*(volatile uint16_t *)(uintptr_t) addr)
: "memory");
}
static ALWAYS_INLINE uint16_t sys_read16(mm_reg_t addr)
{
uint16_t ret;
__asm__ volatile("movw %1, %0"
: "=r"(ret)
: "m" (*(volatile uint16_t *)(uintptr_t) addr)
: "memory");
return ret;
}
static ALWAYS_INLINE void sys_write32(uint32_t data, mm_reg_t addr)
{
__asm__ volatile("movl %0, %1"
:
: "r"(data), "m" (*(volatile uint32_t *)(uintptr_t) addr)
: "memory");
}
static ALWAYS_INLINE uint32_t sys_read32(mm_reg_t addr)
{
uint32_t ret;
__asm__ volatile("movl %1, %0"
: "=r"(ret)
: "m" (*(volatile uint32_t *)(uintptr_t) addr)
: "memory");
return ret;
}
static ALWAYS_INLINE void sys_set_bit(mem_addr_t addr, unsigned int bit)
{
__asm__ volatile("btsl %1, %0"
: "+m" (*(volatile uint8_t *) (addr))
: "Ir" (bit)
: "memory");
}
static ALWAYS_INLINE void sys_clear_bit(mem_addr_t addr, unsigned int bit)
{
__asm__ volatile("btrl %1, %0"
: "+m" (*(volatile uint8_t *) (addr))
: "Ir" (bit));
}
static ALWAYS_INLINE int sys_test_bit(mem_addr_t addr, unsigned int bit)
{
int ret;
__asm__ volatile("btl %2, %1;"
"sbb %0, %0"
: "=r" (ret), "+m" (*(volatile uint8_t *) (addr))
: "Ir" (bit));
return ret;
}
static ALWAYS_INLINE int sys_test_and_set_bit(mem_addr_t addr,
unsigned int bit)
{
int ret;
__asm__ volatile("btsl %2, %1;"
"sbb %0, %0"
: "=r" (ret), "+m" (*(volatile uint8_t *) (addr))
: "Ir" (bit));
return ret;
}
static ALWAYS_INLINE int sys_test_and_clear_bit(mem_addr_t addr,
unsigned int bit)
{
int ret;
__asm__ volatile("btrl %2, %1;"
"sbb %0, %0"
: "=r" (ret), "+m" (*(volatile uint8_t *) (addr))
: "Ir" (bit));
return ret;
}
#define sys_bitfield_set_bit sys_set_bit
#define sys_bitfield_clear_bit sys_clear_bit
#define sys_bitfield_test_bit sys_test_bit
#define sys_bitfield_test_and_set_bit sys_test_and_set_bit
#define sys_bitfield_test_and_clear_bit sys_test_and_clear_bit
/*
* Map of IRQ numbers to their assigned vectors. On IA32, this is generated
* at build time and defined via the linker script. On Intel64, it's an array.
*/
extern unsigned char _irq_to_interrupt_vector[];
#define Z_IRQ_TO_INTERRUPT_VECTOR(irq) \
((unsigned int) _irq_to_interrupt_vector[irq])
#endif /* _ASMLANGUAGE */
#ifdef __cplusplus
}
#endif
#include <zephyr/drivers/interrupt_controller/sysapic.h>
#ifdef CONFIG_X86_64
#include <zephyr/arch/x86/intel64/arch.h>
#else
#include <zephyr/arch/x86/ia32/arch.h>
#endif
#include <zephyr/arch/common/ffs.h>
#ifdef __cplusplus
extern "C" {
#endif
#ifndef _ASMLANGUAGE
extern void arch_irq_enable(unsigned int irq);
extern void arch_irq_disable(unsigned int irq);
extern uint32_t sys_clock_cycle_get_32(void);
__pinned_func
static inline uint32_t arch_k_cycle_get_32(void)
{
return sys_clock_cycle_get_32();
}
extern uint64_t sys_clock_cycle_get_64(void);
__pinned_func
static inline uint64_t arch_k_cycle_get_64(void)
{
return sys_clock_cycle_get_64();
}
static ALWAYS_INLINE bool arch_irq_unlocked(unsigned int key)
{
return (key & 0x200) != 0;
}
/**
* @brief read timestamp register, 32-bits only, unserialized
*/
static ALWAYS_INLINE uint32_t z_do_read_cpu_timestamp32(void)
{
uint32_t rv;
__asm__ volatile("rdtsc" : "=a" (rv) : : "%edx");
return rv;
}
/**
* @brief read timestamp register ensuring serialization
*/
__pinned_func
static inline uint64_t z_tsc_read(void)
{
union {
struct {
uint32_t lo;
uint32_t hi;
};
uint64_t value;
} rv;
#ifdef CONFIG_X86_64
/*
* According to Intel 64 and IA-32 Architectures Software
* Developer’s Manual, volume 3, chapter 8.2.5, LFENCE provides
* a more efficient method of controlling memory ordering than
* the CPUID instruction. So use LFENCE here, as all 64-bit
* CPUs have LFENCE.
*/
__asm__ volatile ("lfence");
#else
/* rdtsc & cpuid clobbers eax, ebx, ecx and edx registers */
__asm__ volatile (/* serialize */
"xorl %%eax,%%eax;"
"cpuid"
:
:
: "%eax", "%ebx", "%ecx", "%edx"
);
#endif
#ifdef CONFIG_X86_64
/*
* We cannot use "=A", since this would use %rax on x86_64 and
* return only the lower 32bits of the TSC
*/
__asm__ volatile ("rdtsc" : "=a" (rv.lo), "=d" (rv.hi));
#else
/* "=A" means that value is in eax:edx pair. */
__asm__ volatile ("rdtsc" : "=A" (rv.value));
#endif
return rv.value;
}
static ALWAYS_INLINE void arch_nop(void)
{
__asm__ volatile("nop");
}
#endif /* _ASMLANGUAGE */
#ifdef __cplusplus
}
#endif
#endif /* ZEPHYR_INCLUDE_ARCH_X86_ARCH_H_ */