blob: e953b2edd1a40f16c3b54af70ba1dc9a1cc8131a [file] [log] [blame]
/*
* Copyright (c) 2017-2023 Nordic Semiconductor ASA
* Copyright (c) 2018 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/kernel.h>
#include <zephyr/devicetree.h>
#include <zephyr/shell/shell.h>
#include <zephyr/sys/util.h>
#include <stdlib.h>
#include <string.h>
#include <zephyr/drivers/flash.h>
/* Buffer is only needed for bytes that follow command and offset */
#define BUF_ARRAY_CNT (CONFIG_SHELL_ARGC_MAX - 2)
/* This only issues compilation error when it would not be possible
* to extract at least one byte from command line arguments, yet
* it does not warrant successful writes if BUF_ARRAY_CNT
* is smaller than flash write alignment.
*/
BUILD_ASSERT(BUF_ARRAY_CNT >= 1);
static const struct device *const zephyr_flash_controller =
DEVICE_DT_GET_OR_NULL(DT_CHOSEN(zephyr_flash_controller));
static uint8_t __aligned(4) test_arr[CONFIG_FLASH_SHELL_BUFFER_SIZE];
static int parse_helper(const struct shell *sh, size_t *argc,
char **argv[], const struct device * *flash_dev,
uint32_t *addr)
{
char *endptr;
*addr = strtoul((*argv)[1], &endptr, 16);
if (*endptr != '\0') {
/* flash controller from user input */
*flash_dev = device_get_binding((*argv)[1]);
if (!*flash_dev) {
shell_error(sh, "Given flash device was not found");
return -ENODEV;
}
} else if (zephyr_flash_controller != NULL) {
/* default to zephyr,flash-controller */
if (!device_is_ready(zephyr_flash_controller)) {
shell_error(sh, "Default flash driver not ready");
return -ENODEV;
}
*flash_dev = zephyr_flash_controller;
} else {
/* no flash controller given, no default available */
shell_error(sh, "No flash device specified (required)");
return -ENODEV;
}
if (*endptr == '\0') {
return 0;
}
if (*argc < 3) {
shell_error(sh, "Missing address.");
return -EINVAL;
}
*addr = strtoul((*argv)[2], &endptr, 16);
(*argc)--;
(*argv)++;
return 0;
}
static int cmd_erase(const struct shell *sh, size_t argc, char *argv[])
{
const struct device *flash_dev;
uint32_t page_addr;
int result;
uint32_t size;
result = parse_helper(sh, &argc, &argv, &flash_dev, &page_addr);
if (result) {
return result;
}
if (argc > 2) {
size = strtoul(argv[2], NULL, 16);
} else {
struct flash_pages_info info;
result = flash_get_page_info_by_offs(flash_dev, page_addr,
&info);
if (result != 0) {
shell_error(sh, "Could not determine page size, "
"code %d.", result);
return -EINVAL;
}
size = info.size;
}
result = flash_erase(flash_dev, page_addr, size);
if (result) {
shell_error(sh, "Erase Failed, code %d.", result);
} else {
shell_print(sh, "Erase success.");
}
return result;
}
static int cmd_write(const struct shell *sh, size_t argc, char *argv[])
{
uint32_t __aligned(4) check_array[BUF_ARRAY_CNT];
uint32_t __aligned(4) buf_array[BUF_ARRAY_CNT];
const struct device *flash_dev;
uint32_t w_addr;
int ret;
size_t op_size;
ret = parse_helper(sh, &argc, &argv, &flash_dev, &w_addr);
if (ret) {
return ret;
}
if (argc <= 2) {
shell_error(sh, "Missing data to be written.");
return -EINVAL;
}
op_size = 0;
for (int i = 2; i < argc; i++) {
int j = i - 2;
buf_array[j] = strtoul(argv[i], NULL, 16);
check_array[j] = ~buf_array[j];
op_size += sizeof(buf_array[0]);
}
if (flash_write(flash_dev, w_addr, buf_array, op_size) != 0) {
shell_error(sh, "Write internal ERROR!");
return -EIO;
}
shell_print(sh, "Write OK.");
if (flash_read(flash_dev, w_addr, check_array, op_size) < 0) {
shell_print(sh, "Verification read ERROR!");
return -EIO;
}
if (memcmp(buf_array, check_array, op_size) == 0) {
shell_print(sh, "Verified.");
} else {
shell_error(sh, "Verification ERROR!");
return -EIO;
}
return 0;
}
static int cmd_read(const struct shell *sh, size_t argc, char *argv[])
{
const struct device *flash_dev;
uint32_t addr;
int todo;
int upto;
int cnt;
int ret;
ret = parse_helper(sh, &argc, &argv, &flash_dev, &addr);
if (ret) {
return ret;
}
if (argc > 2) {
cnt = strtoul(argv[2], NULL, 16);
} else {
cnt = 1;
}
for (upto = 0; upto < cnt; upto += todo) {
uint8_t data[SHELL_HEXDUMP_BYTES_IN_LINE];
todo = MIN(cnt - upto, SHELL_HEXDUMP_BYTES_IN_LINE);
ret = flash_read(flash_dev, addr, data, todo);
if (ret != 0) {
shell_error(sh, "Read ERROR!");
return -EIO;
}
shell_hexdump_line(sh, addr, data, todo);
addr += todo;
}
shell_print(sh, "");
return 0;
}
static int cmd_test(const struct shell *sh, size_t argc, char *argv[])
{
const struct device *flash_dev;
uint32_t repeat;
int result;
uint32_t addr;
uint32_t size;
static uint8_t __aligned(4) check_arr[CONFIG_FLASH_SHELL_BUFFER_SIZE];
result = parse_helper(sh, &argc, &argv, &flash_dev, &addr);
if (result) {
return result;
}
size = strtoul(argv[2], NULL, 16);
repeat = strtoul(argv[3], NULL, 16);
if (size > CONFIG_FLASH_SHELL_BUFFER_SIZE) {
shell_error(sh, "<size> must be at most 0x%x.",
CONFIG_FLASH_SHELL_BUFFER_SIZE);
return -EINVAL;
}
if (repeat == 0) {
repeat = 1;
}
for (uint32_t i = 0; i < size; i++) {
test_arr[i] = (uint8_t)i;
}
result = 0;
while (repeat--) {
result = flash_erase(flash_dev, addr, size);
if (result) {
shell_error(sh, "Erase Failed, code %d.", result);
break;
}
shell_print(sh, "Erase OK.");
result = flash_write(flash_dev, addr, test_arr, size);
if (result) {
shell_error(sh, "Write failed, code %d", result);
break;
}
shell_print(sh, "Write OK.");
result = flash_read(flash_dev, addr, check_arr, size);
if (result < 0) {
shell_print(sh, "Verification read failed, code: %d", result);
break;
}
if (memcmp(test_arr, check_arr, size) != 0) {
shell_error(sh, "Verification ERROR!");
break;
}
shell_print(sh, "Verified OK.");
}
if (result == 0) {
shell_print(sh, "Erase-Write-Verify test done.");
}
return result;
}
#ifdef CONFIG_FLASH_SHELL_TEST_COMMANDS
const static uint8_t speed_types[][4] = { "B", "KiB", "MiB", "GiB" };
const static uint32_t speed_divisor = 1024;
static int read_write_erase_validate(const struct shell *sh, size_t argc, char *argv[],
uint32_t *size, uint32_t *repeat)
{
if (argc < 4) {
shell_error(sh, "Missing parameters: <device> <offset> <size> <repeat>");
return -EINVAL;
}
*size = strtoul(argv[2], NULL, 0);
*repeat = strtoul(argv[3], NULL, 0);
if (*size == 0 || *size > CONFIG_FLASH_SHELL_BUFFER_SIZE) {
shell_error(sh, "<size> must be between 0x1 and 0x%x.",
CONFIG_FLASH_SHELL_BUFFER_SIZE);
return -EINVAL;
}
if (*repeat == 0 || *repeat > 10) {
shell_error(sh, "<repeat> must be between 1 and 10.");
return -EINVAL;
}
return 0;
}
static void speed_output(const struct shell *sh, uint64_t total_time, double loops, double size)
{
double time_per_loop = (double)total_time / loops;
double throughput = size;
uint8_t speed_index = 0;
if (time_per_loop > 0) {
throughput /= (time_per_loop / 1000.0);
}
while (throughput >= (double)speed_divisor && speed_index < ARRAY_SIZE(speed_types)) {
throughput /= (double)speed_divisor;
++speed_index;
}
shell_print(sh, "Total: %llums, Per loop: ~%.0fms, Speed: ~%.1f%sps",
total_time, time_per_loop, throughput, speed_types[speed_index]);
}
static int cmd_read_test(const struct shell *sh, size_t argc, char *argv[])
{
const struct device *flash_dev;
uint32_t repeat;
int result;
uint32_t addr;
uint32_t size;
uint64_t start_time;
uint64_t loop_time;
uint64_t total_time = 0;
uint32_t loops = 0;
result = parse_helper(sh, &argc, &argv, &flash_dev, &addr);
if (result) {
return result;
}
result = read_write_erase_validate(sh, argc, argv, &size, &repeat);
if (result) {
return result;
}
while (repeat--) {
start_time = k_uptime_get();
result = flash_read(flash_dev, addr, test_arr, size);
loop_time = k_uptime_delta(&start_time);
if (result) {
shell_error(sh, "Read failed: %d", result);
break;
}
++loops;
total_time += loop_time;
shell_print(sh, "Loop #%u done in %llums.", loops, loop_time);
}
if (result == 0) {
speed_output(sh, total_time, (double)loops, (double)size);
}
return result;
}
static int cmd_write_test(const struct shell *sh, size_t argc, char *argv[])
{
const struct device *flash_dev;
uint32_t repeat;
int result;
uint32_t addr;
uint32_t size;
uint64_t start_time;
uint64_t loop_time;
uint64_t total_time = 0;
uint32_t loops = 0;
result = parse_helper(sh, &argc, &argv, &flash_dev, &addr);
if (result) {
return result;
}
result = read_write_erase_validate(sh, argc, argv, &size, &repeat);
if (result) {
return result;
}
for (uint32_t i = 0; i < size; i++) {
test_arr[i] = (uint8_t)i;
}
while (repeat--) {
start_time = k_uptime_get();
result = flash_write(flash_dev, addr, test_arr, size);
loop_time = k_uptime_delta(&start_time);
if (result) {
shell_error(sh, "Write failed: %d", result);
break;
}
++loops;
total_time += loop_time;
shell_print(sh, "Loop #%u done in %llu ticks.", loops, loop_time);
}
if (result == 0) {
speed_output(sh, total_time, (double)loops, (double)size);
}
return result;
}
static int cmd_erase_test(const struct shell *sh, size_t argc, char *argv[])
{
const struct device *flash_dev;
uint32_t repeat;
int result;
uint32_t addr;
uint32_t size;
uint64_t start_time;
uint64_t loop_time;
uint64_t total_time = 0;
uint32_t loops = 0;
result = parse_helper(sh, &argc, &argv, &flash_dev, &addr);
if (result) {
return result;
}
result = read_write_erase_validate(sh, argc, argv, &size, &repeat);
if (result) {
return result;
}
for (uint32_t i = 0; i < size; i++) {
test_arr[i] = (uint8_t)i;
}
while (repeat--) {
start_time = k_uptime_get();
result = flash_erase(flash_dev, addr, size);
loop_time = k_uptime_delta(&start_time);
if (result) {
shell_error(sh, "Erase failed: %d", result);
break;
}
++loops;
total_time += loop_time;
shell_print(sh, "Loop #%u done in %llums.", loops, loop_time);
}
if (result == 0) {
speed_output(sh, total_time, (double)loops, (double)size);
}
return result;
}
static int cmd_erase_write_test(const struct shell *sh, size_t argc, char *argv[])
{
const struct device *flash_dev;
uint32_t repeat;
int result_erase = 0;
int result_write = 0;
uint32_t addr;
uint32_t size;
uint64_t start_time;
uint64_t loop_time;
uint64_t total_time = 0;
uint32_t loops = 0;
result_erase = parse_helper(sh, &argc, &argv, &flash_dev, &addr);
if (result_erase) {
return result_erase;
}
result_erase = read_write_erase_validate(sh, argc, argv, &size, &repeat);
if (result_erase) {
return result_erase;
}
for (uint32_t i = 0; i < size; i++) {
test_arr[i] = (uint8_t)i;
}
while (repeat--) {
start_time = k_uptime_get();
result_erase = flash_erase(flash_dev, addr, size);
result_write = flash_write(flash_dev, addr, test_arr, size);
loop_time = k_uptime_delta(&start_time);
if (result_erase) {
shell_error(sh, "Erase failed: %d", result_erase);
break;
}
if (result_write) {
shell_error(sh, "Write failed: %d", result_write);
break;
}
++loops;
total_time += loop_time;
shell_print(sh, "Loop #%u done in %llums.", loops, loop_time);
}
if (result_erase == 0 && result_write == 0) {
speed_output(sh, total_time, (double)loops, (double)size);
}
return (result_erase != 0 ? result_erase : result_write);
}
#endif
static int set_bypass(const struct shell *sh, shell_bypass_cb_t bypass)
{
static bool in_use;
if (bypass && in_use) {
shell_error(sh, "flash load supports setting bypass on a single instance.");
return -EBUSY;
}
/* Mark that we have set or unset the bypass function */
in_use = bypass != NULL;
if (in_use) {
shell_print(sh, "Loading...");
}
shell_set_bypass(sh, bypass);
return 0;
}
#define FLASH_LOAD_BUF_MAX 256
static const struct device *flash_load_dev;
static uint32_t flash_load_buf_size;
static uint32_t flash_load_addr;
static uint32_t flash_load_total;
static uint32_t flash_load_written;
static uint32_t flash_load_chunk;
static uint32_t flash_load_boff;
static uint8_t flash_load_buf[FLASH_LOAD_BUF_MAX];
static void bypass_cb(const struct shell *sh, uint8_t *recv, size_t len)
{
uint32_t left_to_read = flash_load_total - flash_load_written - flash_load_boff;
uint32_t to_copy = MIN(len, left_to_read);
uint32_t copied = 0;
while (copied < to_copy) {
uint32_t buf_copy = MIN(to_copy, flash_load_buf_size - flash_load_boff);
memcpy(flash_load_buf + flash_load_boff, recv + copied, buf_copy);
flash_load_boff += buf_copy;
copied += buf_copy;
/* Buffer is full. Write data to memory. */
if (flash_load_boff == flash_load_buf_size) {
uint32_t addr = flash_load_addr + flash_load_written;
int rc = flash_write(flash_load_dev, addr, flash_load_buf,
flash_load_buf_size);
if (rc != 0) {
shell_error(sh, "Write to addr %x on dev %p ERROR!",
addr, flash_load_dev);
}
shell_print(sh, "Written chunk %d", flash_load_chunk);
flash_load_written += flash_load_buf_size;
flash_load_chunk++;
flash_load_boff = 0;
}
}
/* When data is not aligned to flash_load_buf_size there may be partial write
* at the end.
*/
if (flash_load_written < flash_load_total &&
flash_load_written + flash_load_boff >= flash_load_total) {
uint32_t addr = flash_load_addr + flash_load_written;
int rc = flash_write(flash_load_dev, addr, flash_load_buf, flash_load_boff);
if (rc != 0) {
set_bypass(sh, NULL);
shell_error(sh, "Write to addr %x on dev %p ERROR!",
addr, flash_load_dev);
return;
}
shell_print(sh, "Written chunk %d", flash_load_chunk);
flash_load_written += flash_load_boff;
flash_load_chunk++;
}
if (flash_load_written >= flash_load_total) {
set_bypass(sh, NULL);
shell_print(sh, "Read all");
}
}
static int cmd_load(const struct shell *sh, size_t argc, char *argv[])
{
const struct device *flash_dev;
int result;
uint32_t addr;
uint32_t size;
ssize_t write_block_size;
result = parse_helper(sh, &argc, &argv, &flash_dev, &addr);
if (result) {
return result;
}
size = strtoul(argv[2], NULL, 0);
write_block_size = flash_get_write_block_size(flash_dev);
/* Check if size is aligned */
if (size % write_block_size != 0) {
shell_error(sh, "Size must be %zu bytes aligned", write_block_size);
return -EIO;
}
/* Align buffer size to write_block_size */
flash_load_buf_size = FLASH_LOAD_BUF_MAX;
if (flash_load_buf_size < write_block_size) {
shell_error(sh, "Size of buffer is too small to be aligned to %zu.",
write_block_size);
return -ENOSPC;
}
/* If buffer size is not aligned then change its size. */
if (flash_load_buf_size % write_block_size != 0) {
flash_load_buf_size -= flash_load_buf_size % write_block_size;
shell_warn(sh, "Load buffer was not aligned to %zu.", write_block_size);
shell_warn(sh, "Effective load buffer size was set from %d to %d",
FLASH_LOAD_BUF_MAX, flash_load_buf_size);
}
/* Prepare data for callback. */
flash_load_dev = flash_dev;
flash_load_addr = addr;
flash_load_total = size;
flash_load_written = 0;
flash_load_boff = 0;
flash_load_chunk = 0;
shell_print(sh, "Loading %d bytes starting at address %x", size, addr);
set_bypass(sh, bypass_cb);
return 0;
}
static int cmd_page_info(const struct shell *sh, size_t argc, char *argv[])
{
const struct device *flash_dev;
struct flash_pages_info info;
int result;
uint32_t addr;
result = parse_helper(sh, &argc, &argv, &flash_dev, &addr);
if (result) {
return result;
}
result = flash_get_page_info_by_offs(flash_dev, addr, &info);
if (result != 0) {
shell_error(sh, "Could not determine page size, error code %d.", result);
return -EINVAL;
}
shell_print(sh, "Page for address 0x%x:\nstart offset: 0x%lx\nsize: %zu\nindex: %d",
addr, info.start_offset, info.size, info.index);
return 0;
}
static void device_name_get(size_t idx, struct shell_static_entry *entry);
SHELL_DYNAMIC_CMD_CREATE(dsub_device_name, device_name_get);
static void device_name_get(size_t idx, struct shell_static_entry *entry)
{
const struct device *dev = shell_device_lookup(idx, NULL);
entry->syntax = (dev != NULL) ? dev->name : NULL;
entry->handler = NULL;
entry->help = NULL;
entry->subcmd = &dsub_device_name;
}
SHELL_STATIC_SUBCMD_SET_CREATE(flash_cmds,
SHELL_CMD_ARG(erase, &dsub_device_name,
"[<device>] <page address> [<size>]",
cmd_erase, 2, 2),
SHELL_CMD_ARG(read, &dsub_device_name,
"[<device>] <address> [<Dword count>]",
cmd_read, 2, 2),
SHELL_CMD_ARG(test, &dsub_device_name,
"[<device>] <address> <size> <repeat count>",
cmd_test, 4, 1),
SHELL_CMD_ARG(write, &dsub_device_name,
"[<device>] <address> <dword> [<dword>...]",
cmd_write, 3, BUF_ARRAY_CNT),
SHELL_CMD_ARG(load, &dsub_device_name,
"[<device>] <address> <size>",
cmd_load, 3, 1),
SHELL_CMD_ARG(page_info, &dsub_device_name,
"[<device>] <address>",
cmd_page_info, 2, 1),
#ifdef CONFIG_FLASH_SHELL_TEST_COMMANDS
SHELL_CMD_ARG(read_test, &dsub_device_name,
"[<device>] <address> <size> <repeat count>",
cmd_read_test, 4, 1),
SHELL_CMD_ARG(write_test, &dsub_device_name,
"[<device>] <address> <size> <repeat count>",
cmd_write_test, 4, 1),
SHELL_CMD_ARG(erase_test, &dsub_device_name,
"[<device>] <address> <size> <repeat count>",
cmd_erase_test, 4, 1),
SHELL_CMD_ARG(erase_write_test, &dsub_device_name,
"[<device>] <address> <size> <repeat count>",
cmd_erase_write_test, 4, 1),
#endif
SHELL_SUBCMD_SET_END
);
static int cmd_flash(const struct shell *sh, size_t argc, char **argv)
{
shell_error(sh, "%s:unknown parameter: %s", argv[0], argv[1]);
return -EINVAL;
}
SHELL_CMD_ARG_REGISTER(flash, &flash_cmds, "Flash shell commands",
cmd_flash, 2, 0);