| /* |
| * Copyright (c) 2019 Philippe Retornaz <philippe@shapescale.com> |
| * Copyright (c) 2017 Linaro Limited |
| * Copyright (c) 2017 BayLibre, SAS |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| #define LOG_DOMAIN flash_stm32g0 |
| #define LOG_LEVEL CONFIG_FLASH_LOG_LEVEL |
| #include <zephyr/logging/log.h> |
| LOG_MODULE_REGISTER(LOG_DOMAIN); |
| |
| #include <zephyr/kernel.h> |
| #include <zephyr/device.h> |
| #include <string.h> |
| #include <zephyr/drivers/flash.h> |
| #include <zephyr/init.h> |
| #include <soc.h> |
| |
| #include "flash_stm32.h" |
| |
| |
| /* FLASH_DBANK_SUPPORT is defined in the HAL for all G0Bx and G0C1 SoCs, |
| * while only those with 256KiB and 512KiB Flash have two banks. |
| */ |
| #if defined(FLASH_DBANK_SUPPORT) && (CONFIG_FLASH_SIZE > (128)) |
| #define STM32G0_DBANK_SUPPORT |
| #endif |
| |
| #if defined(STM32G0_DBANK_SUPPORT) |
| #define STM32G0_BANK_COUNT 2 |
| #define STM32G0_BANK2_START_PAGE_NR 256 |
| #else |
| #define STM32G0_BANK_COUNT 1 |
| #endif |
| |
| #define STM32G0_FLASH_SIZE (FLASH_SIZE) |
| #define STM32G0_FLASH_PAGE_SIZE (FLASH_PAGE_SIZE) |
| #define STM32G0_PAGES_PER_BANK \ |
| ((STM32G0_FLASH_SIZE / STM32G0_FLASH_PAGE_SIZE) / STM32G0_BANK_COUNT) |
| |
| /* |
| * offset and len must be aligned on 8 for write, |
| * positive and not beyond end of flash |
| * On dual-bank SoCs memory accesses starting on the first bank and continuing |
| * beyond the first bank into the second bank are allowed. |
| */ |
| bool flash_stm32_valid_range(const struct device *dev, off_t offset, |
| uint32_t len, |
| bool write) |
| { |
| return (!write || (offset % 8 == 0 && len % 8 == 0)) && |
| flash_stm32_range_exists(dev, offset, len); |
| } |
| |
| static inline void flush_cache(FLASH_TypeDef *regs) |
| { |
| if (regs->ACR & FLASH_ACR_ICEN) { |
| regs->ACR &= ~FLASH_ACR_ICEN; |
| /* Datasheet: ICRST: Instruction cache reset : |
| * This bit can be written only when the instruction cache |
| * is disabled |
| */ |
| regs->ACR |= FLASH_ACR_ICRST; |
| regs->ACR &= ~FLASH_ACR_ICRST; |
| regs->ACR |= FLASH_ACR_ICEN; |
| } |
| } |
| |
| static int write_dword(const struct device *dev, off_t offset, uint64_t val) |
| { |
| volatile uint32_t *flash = (uint32_t *)(offset + CONFIG_FLASH_BASE_ADDRESS); |
| FLASH_TypeDef *regs = FLASH_STM32_REGS(dev); |
| uint32_t tmp; |
| int rc; |
| |
| /* if the control register is locked, do not fail silently */ |
| if (regs->CR & FLASH_CR_LOCK) { |
| return -EIO; |
| } |
| |
| /* Check that no Flash main memory operation is ongoing */ |
| rc = flash_stm32_wait_flash_idle(dev); |
| if (rc < 0) { |
| return rc; |
| } |
| |
| /* Check if this double word is erased and value isn't 0. |
| * |
| * It is allowed to write only zeros over an already written dword |
| * See 3.3.8 in reference manual. |
| */ |
| if ((flash[0] != 0xFFFFFFFFUL || |
| flash[1] != 0xFFFFFFFFUL) && val != 0UL) { |
| LOG_ERR("Word at offs %ld not erased", (long)offset); |
| return -EIO; |
| } |
| |
| /* Set the PG bit */ |
| regs->CR |= FLASH_CR_PG; |
| |
| /* Flush the register write */ |
| tmp = regs->CR; |
| |
| /* Perform the data write operation at the desired memory address */ |
| flash[0] = (uint32_t)val; |
| flash[1] = (uint32_t)(val >> 32); |
| |
| /* Wait until the BSY bit is cleared */ |
| rc = flash_stm32_wait_flash_idle(dev); |
| |
| /* Clear the PG bit */ |
| regs->CR &= (~FLASH_CR_PG); |
| |
| return rc; |
| } |
| |
| static int erase_page(const struct device *dev, unsigned int offset) |
| { |
| FLASH_TypeDef *regs = FLASH_STM32_REGS(dev); |
| uint32_t tmp; |
| int rc; |
| int page; |
| |
| /* if the control register is locked, do not fail silently */ |
| if (regs->CR & FLASH_CR_LOCK) { |
| return -EIO; |
| } |
| |
| /* Check that no Flash memory operation is ongoing */ |
| rc = flash_stm32_wait_flash_idle(dev); |
| if (rc < 0) { |
| return rc; |
| } |
| |
| /* |
| * If an erase operation in Flash memory also concerns data |
| * in the instruction cache, the user has to ensure that these data |
| * are rewritten before they are accessed during code execution. |
| */ |
| flush_cache(regs); |
| |
| tmp = regs->CR; |
| page = offset / STM32G0_FLASH_PAGE_SIZE; |
| |
| #if defined(STM32G0_DBANK_SUPPORT) |
| bool swap_enabled = (regs->OPTR & FLASH_OPTR_nSWAP_BANK) == 0; |
| |
| /* big page-nr w/o swap or small page-nr w/ swap indicate bank2 */ |
| if ((page >= STM32G0_PAGES_PER_BANK) != swap_enabled) { |
| page = (page % STM32G0_PAGES_PER_BANK) + STM32G0_BANK2_START_PAGE_NR; |
| tmp |= FLASH_CR_BKER; |
| LOG_DBG("Erase page %d on bank 2", page); |
| } else { |
| page = page % STM32G0_PAGES_PER_BANK; |
| tmp &= ~FLASH_CR_BKER; |
| LOG_DBG("Erase page %d on bank 1", page); |
| } |
| #endif |
| |
| /* Set the PER bit and select the page you wish to erase */ |
| tmp |= FLASH_CR_PER; |
| tmp &= ~FLASH_CR_PNB_Msk; |
| tmp |= ((page << FLASH_CR_PNB_Pos) & FLASH_CR_PNB_Msk); |
| |
| /* Set the STRT bit and write the reg */ |
| tmp |= FLASH_CR_STRT; |
| regs->CR = tmp; |
| |
| /* Wait for the BSY bit */ |
| rc = flash_stm32_wait_flash_idle(dev); |
| |
| regs->CR &= ~FLASH_CR_PER; |
| |
| return rc; |
| } |
| |
| int flash_stm32_block_erase_loop(const struct device *dev, |
| unsigned int offset, |
| unsigned int len) |
| { |
| unsigned int addr = offset; |
| int rc = 0; |
| |
| for (; addr <= offset + len - 1 ; addr += STM32G0_FLASH_PAGE_SIZE) { |
| rc = erase_page(dev, addr); |
| if (rc < 0) { |
| break; |
| } |
| } |
| |
| return rc; |
| } |
| |
| int flash_stm32_write_range(const struct device *dev, unsigned int offset, |
| const void *data, unsigned int len) |
| { |
| int i, rc = 0; |
| |
| for (i = 0; i < len; i += 8, offset += 8) { |
| rc = write_dword(dev, offset, |
| UNALIGNED_GET((const uint64_t *) data + (i >> 3))); |
| if (rc < 0) { |
| return rc; |
| } |
| } |
| |
| return rc; |
| } |
| |
| /* |
| * The address space is always continuous, even though a subset of G0 SoCs has |
| * two flash banks. |
| * Only the "physical" flash page-NRs are not continuous on those SoCs. |
| * As a result the page numbers used in the zephyr flash api differs |
| * from the "physical" flash page number. |
| * The first is equal to the address offset divided by the page size, while |
| * "physical" pages are numbered starting with 0 on bank1 and 256 on bank2. |
| * As a result only a single homogeneous flash page layout needs to be defined. |
| */ |
| void flash_stm32_page_layout(const struct device *dev, |
| const struct flash_pages_layout **layout, |
| size_t *layout_size) |
| { |
| static struct flash_pages_layout stm32g0_flash_layout = { |
| .pages_count = 0, |
| .pages_size = 0, |
| }; |
| |
| ARG_UNUSED(dev); |
| |
| if (stm32g0_flash_layout.pages_count == 0) { |
| stm32g0_flash_layout.pages_count = |
| STM32G0_FLASH_SIZE / STM32G0_FLASH_PAGE_SIZE; |
| stm32g0_flash_layout.pages_size = STM32G0_FLASH_PAGE_SIZE; |
| } |
| |
| *layout = &stm32g0_flash_layout; |
| *layout_size = 1; |
| } |
| |
| /* Override weak function */ |
| int flash_stm32_check_configuration(void) |
| { |
| #if defined(STM32G0_DBANK_SUPPORT) && (CONFIG_FLASH_SIZE == 256) |
| /* Single bank mode not supported on dual bank SoCs with 256kiB flash */ |
| if ((regs->OPTR & FLASH_OPTR_DUAL_BANK) == 0) { |
| LOG_ERR("Single bank configuration not supported by the driver"); |
| return -ENOTSUP; |
| } |
| #endif |
| return 0; |
| } |