| /* |
| * Copyright (c) 2014-2015 Wind River Systems, Inc. |
| * Copyright (c) 2018 Synopsys Inc, Inc. |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| #include <zephyr/device.h> |
| #include <zephyr/drivers/timer/system_timer.h> |
| #include <zephyr/sys_clock.h> |
| #include <zephyr/spinlock.h> |
| #include <zephyr/arch/arc/v2/aux_regs.h> |
| #include <zephyr/irq.h> |
| /* |
| * note: This implementation assumes Timer0 is present. Be sure |
| * to build the ARC CPU with Timer0. |
| * |
| * If secureshield is present and secure firmware is configured, |
| * use secure Timer 0 |
| */ |
| |
| #ifdef CONFIG_ARC_SECURE_FIRMWARE |
| |
| #undef _ARC_V2_TMR0_COUNT |
| #undef _ARC_V2_TMR0_CONTROL |
| #undef _ARC_V2_TMR0_LIMIT |
| |
| #define _ARC_V2_TMR0_COUNT _ARC_V2_S_TMR0_COUNT |
| #define _ARC_V2_TMR0_CONTROL _ARC_V2_S_TMR0_CONTROL |
| #define _ARC_V2_TMR0_LIMIT _ARC_V2_S_TMR0_LIMIT |
| #define IRQ_TIMER0 DT_IRQN(DT_NODELABEL(sectimer0)) |
| |
| #else |
| #define IRQ_TIMER0 DT_IRQN(DT_NODELABEL(timer0)) |
| #endif |
| |
| #define _ARC_V2_TMR_CTRL_IE 0x1 /* interrupt enable */ |
| #define _ARC_V2_TMR_CTRL_NH 0x2 /* count only while not halted */ |
| #define _ARC_V2_TMR_CTRL_W 0x4 /* watchdog mode enable */ |
| #define _ARC_V2_TMR_CTRL_IP 0x8 /* interrupt pending flag */ |
| |
| /* Minimum cycles in the future to try to program. */ |
| #define MIN_DELAY 1024 |
| /* arc timer has 32 bit, here use 31 bit to avoid the possible |
| * overflow,e.g, 0xffffffff + any value will cause overflow |
| */ |
| #define COUNTER_MAX 0x7fffffff |
| #define TIMER_STOPPED 0x0 |
| #define CYC_PER_TICK (sys_clock_hw_cycles_per_sec() \ |
| / CONFIG_SYS_CLOCK_TICKS_PER_SEC) |
| |
| #define MAX_TICKS ((COUNTER_MAX / CYC_PER_TICK) - 1) |
| #define MAX_CYCLES (MAX_TICKS * CYC_PER_TICK) |
| |
| #define TICKLESS (IS_ENABLED(CONFIG_TICKLESS_KERNEL)) |
| |
| #define SMP_TIMER_DRIVER (CONFIG_SMP && CONFIG_MP_MAX_NUM_CPUS > 1) |
| |
| #if defined(CONFIG_TEST) |
| const int32_t z_sys_timer_irq_for_test = IRQ_TIMER0; |
| #endif |
| static struct k_spinlock lock; |
| |
| |
| #if SMP_TIMER_DRIVER |
| volatile static uint64_t last_time; |
| volatile static uint64_t start_time; |
| |
| #else |
| static uint32_t last_load; |
| |
| |
| /* |
| * This local variable holds the amount of timer cycles elapsed |
| * and it is updated in timer_int_handler and sys_clock_set_timeout(). |
| * |
| * Note: |
| * At an arbitrary point in time the "current" value of the |
| * HW timer is calculated as: |
| * |
| * t = cycle_counter + elapsed(); |
| */ |
| static uint32_t cycle_count; |
| |
| /* |
| * This local variable holds the amount of elapsed HW cycles |
| * that have been announced to the kernel. |
| */ |
| static uint32_t announced_cycles; |
| |
| |
| /* |
| * This local variable holds the amount of elapsed HW cycles due to |
| * timer wraps ('overflows') and is used in the calculation |
| * in elapsed() function, as well as in the updates to cycle_count. |
| * |
| * Note: |
| * Each time cycle_count is updated with the value from overflow_cycles, |
| * the overflow_cycles must be reset to zero. |
| */ |
| static volatile uint32_t overflow_cycles; |
| #endif |
| |
| /** |
| * @brief Get contents of Timer0 count register |
| * |
| * @return Current Timer0 count |
| */ |
| static ALWAYS_INLINE uint32_t timer0_count_register_get(void) |
| { |
| return z_arc_v2_aux_reg_read(_ARC_V2_TMR0_COUNT); |
| } |
| |
| /** |
| * @brief Set Timer0 count register to the specified value |
| */ |
| static ALWAYS_INLINE void timer0_count_register_set(uint32_t value) |
| { |
| z_arc_v2_aux_reg_write(_ARC_V2_TMR0_COUNT, value); |
| } |
| |
| /** |
| * @brief Get contents of Timer0 control register |
| * |
| * @return Contents of Timer0 control register. |
| */ |
| static ALWAYS_INLINE uint32_t timer0_control_register_get(void) |
| { |
| return z_arc_v2_aux_reg_read(_ARC_V2_TMR0_CONTROL); |
| } |
| |
| /** |
| * @brief Set Timer0 control register to the specified value |
| */ |
| static ALWAYS_INLINE void timer0_control_register_set(uint32_t value) |
| { |
| z_arc_v2_aux_reg_write(_ARC_V2_TMR0_CONTROL, value); |
| } |
| |
| /** |
| * @brief Get contents of Timer0 limit register |
| * |
| * @return Contents of Timer0 limit register. |
| */ |
| static ALWAYS_INLINE uint32_t timer0_limit_register_get(void) |
| { |
| return z_arc_v2_aux_reg_read(_ARC_V2_TMR0_LIMIT); |
| } |
| |
| /** |
| * @brief Set Timer0 limit register to the specified value |
| */ |
| static ALWAYS_INLINE void timer0_limit_register_set(uint32_t count) |
| { |
| z_arc_v2_aux_reg_write(_ARC_V2_TMR0_LIMIT, count); |
| } |
| |
| #if !SMP_TIMER_DRIVER |
| /* This internal function calculates the amount of HW cycles that have |
| * elapsed since the last time the absolute HW cycles counter has been |
| * updated. 'cycle_count' may be updated either by the ISR, or |
| * in sys_clock_set_timeout(). |
| * |
| * Additionally, the function updates the 'overflow_cycles' counter, that |
| * holds the amount of elapsed HW cycles due to (possibly) multiple |
| * timer wraps (overflows). |
| * |
| * Prerequisites: |
| * - reprogramming of LIMIT must be clearing the COUNT |
| * - ISR must be clearing the 'overflow_cycles' counter. |
| * - no more than one counter-wrap has occurred between |
| * - the timer reset or the last time the function was called |
| * - and until the current call of the function is completed. |
| * - the function is invoked with interrupts disabled. |
| */ |
| static uint32_t elapsed(void) |
| { |
| uint32_t val, ctrl; |
| |
| do { |
| val = timer0_count_register_get(); |
| ctrl = timer0_control_register_get(); |
| } while (timer0_count_register_get() < val); |
| |
| if (ctrl & _ARC_V2_TMR_CTRL_IP) { |
| overflow_cycles += last_load; |
| /* clear the IP bit of the control register */ |
| timer0_control_register_set(_ARC_V2_TMR_CTRL_NH | |
| _ARC_V2_TMR_CTRL_IE); |
| /* use sw triggered irq to remember the timer irq request |
| * which may be cleared by the above operation. when elapsed () |
| * is called in timer_int_handler, no need to do this. |
| */ |
| if (!z_arc_v2_irq_unit_is_in_isr() || |
| z_arc_v2_aux_reg_read(_ARC_V2_ICAUSE) != IRQ_TIMER0) { |
| z_arc_v2_aux_reg_write(_ARC_V2_AUX_IRQ_HINT, |
| IRQ_TIMER0); |
| } |
| } |
| |
| return val + overflow_cycles; |
| } |
| #endif |
| |
| /** |
| * @brief System clock periodic tick handler |
| * |
| * This routine handles the system clock tick interrupt. It always |
| * announces one tick when TICKLESS is not enabled, or multiple ticks |
| * when TICKLESS is enabled. |
| */ |
| static void timer_int_handler(const void *unused) |
| { |
| ARG_UNUSED(unused); |
| uint32_t dticks; |
| |
| #if defined(CONFIG_SMP) && CONFIG_MP_MAX_NUM_CPUS > 1 |
| uint64_t curr_time; |
| k_spinlock_key_t key; |
| |
| /* clear the IP bit of the control register */ |
| timer0_control_register_set(_ARC_V2_TMR_CTRL_NH | |
| _ARC_V2_TMR_CTRL_IE); |
| key = k_spin_lock(&lock); |
| /* gfrc is the wall clock */ |
| curr_time = z_arc_connect_gfrc_read(); |
| |
| dticks = (curr_time - last_time) / CYC_PER_TICK; |
| /* last_time should be aligned to ticks */ |
| last_time += dticks * CYC_PER_TICK; |
| |
| k_spin_unlock(&lock, key); |
| |
| sys_clock_announce(dticks); |
| #else |
| /* timer_int_handler may be triggered by timer irq or |
| * software helper irq |
| */ |
| |
| /* irq with higher priority may call sys_clock_set_timeout |
| * so need a lock here |
| */ |
| uint32_t key; |
| |
| key = arch_irq_lock(); |
| |
| elapsed(); |
| cycle_count += overflow_cycles; |
| overflow_cycles = 0; |
| |
| arch_irq_unlock(key); |
| |
| dticks = (cycle_count - announced_cycles) / CYC_PER_TICK; |
| announced_cycles += dticks * CYC_PER_TICK; |
| sys_clock_announce(TICKLESS ? dticks : 1); |
| #endif |
| |
| } |
| |
| void sys_clock_set_timeout(int32_t ticks, bool idle) |
| { |
| /* If the kernel allows us to miss tick announcements in idle, |
| * then shut off the counter. (Note: we can assume if idle==true |
| * that interrupts are already disabled) |
| */ |
| #if SMP_TIMER_DRIVER |
| /* as 64-bits GFRC is used as wall clock, it's ok to ignore idle |
| * systick will not be missed. |
| * However for single core using 32-bits arc timer, idle cannot |
| * be ignored, as 32-bits timer will overflow in a not-long time. |
| */ |
| if (IS_ENABLED(CONFIG_TICKLESS_KERNEL) && ticks == K_TICKS_FOREVER) { |
| timer0_control_register_set(0); |
| timer0_count_register_set(0); |
| timer0_limit_register_set(0); |
| return; |
| } |
| |
| #if defined(CONFIG_TICKLESS_KERNEL) |
| uint32_t delay; |
| uint32_t key; |
| |
| ticks = MIN(MAX_TICKS, ticks); |
| |
| /* Desired delay in the future |
| * use MIN_DEALY here can trigger the timer |
| * irq more soon, no need to go to CYC_PER_TICK |
| * later. |
| */ |
| delay = MAX(ticks * CYC_PER_TICK, MIN_DELAY); |
| |
| key = arch_irq_lock(); |
| |
| timer0_limit_register_set(delay - 1); |
| timer0_count_register_set(0); |
| timer0_control_register_set(_ARC_V2_TMR_CTRL_NH | |
| _ARC_V2_TMR_CTRL_IE); |
| |
| arch_irq_unlock(key); |
| #endif |
| #else |
| if (IS_ENABLED(CONFIG_TICKLESS_KERNEL) && idle && ticks == K_TICKS_FOREVER) { |
| timer0_control_register_set(0); |
| timer0_count_register_set(0); |
| timer0_limit_register_set(0); |
| last_load = TIMER_STOPPED; |
| return; |
| } |
| |
| #if defined(CONFIG_TICKLESS_KERNEL) |
| uint32_t delay; |
| uint32_t unannounced; |
| |
| ticks = MIN(MAX_TICKS, (uint32_t)(MAX((int32_t)(ticks - 1), 0))); |
| |
| k_spinlock_key_t key = k_spin_lock(&lock); |
| |
| |
| cycle_count += elapsed(); |
| /* clear counter early to avoid cycle loss as few as possible, |
| * between cycle_count and clearing 0, few cycles are possible |
| * to loss |
| */ |
| timer0_count_register_set(0); |
| overflow_cycles = 0U; |
| |
| |
| /* normal case */ |
| unannounced = cycle_count - announced_cycles; |
| |
| if ((int32_t)unannounced < 0) { |
| /* We haven't announced for more than half the 32-bit |
| * wrap duration, because new timeouts keep being set |
| * before the existing one fires. Force an announce |
| * to avoid loss of a wrap event, making sure the |
| * delay is at least the minimum delay possible. |
| */ |
| last_load = MIN_DELAY; |
| } else { |
| /* Desired delay in the future */ |
| delay = ticks * CYC_PER_TICK; |
| |
| /* Round delay up to next tick boundary */ |
| delay += unannounced; |
| delay = DIV_ROUND_UP(delay, CYC_PER_TICK) * CYC_PER_TICK; |
| |
| delay -= unannounced; |
| delay = MAX(delay, MIN_DELAY); |
| |
| last_load = MIN(delay, MAX_CYCLES); |
| } |
| |
| timer0_limit_register_set(last_load - 1); |
| timer0_control_register_set(_ARC_V2_TMR_CTRL_NH | _ARC_V2_TMR_CTRL_IE); |
| |
| k_spin_unlock(&lock, key); |
| #endif |
| #endif |
| } |
| |
| uint32_t sys_clock_elapsed(void) |
| { |
| if (!TICKLESS) { |
| return 0; |
| } |
| |
| uint32_t cyc; |
| k_spinlock_key_t key = k_spin_lock(&lock); |
| |
| #if SMP_TIMER_DRIVER |
| cyc = (z_arc_connect_gfrc_read() - last_time); |
| #else |
| cyc = elapsed() + cycle_count - announced_cycles; |
| #endif |
| |
| k_spin_unlock(&lock, key); |
| |
| return cyc / CYC_PER_TICK; |
| } |
| |
| uint32_t sys_clock_cycle_get_32(void) |
| { |
| #if SMP_TIMER_DRIVER |
| return z_arc_connect_gfrc_read() - start_time; |
| #else |
| k_spinlock_key_t key = k_spin_lock(&lock); |
| uint32_t ret = elapsed() + cycle_count; |
| |
| k_spin_unlock(&lock, key); |
| return ret; |
| #endif |
| } |
| |
| #if SMP_TIMER_DRIVER |
| void smp_timer_init(void) |
| { |
| /* set the initial status of timer0 of each slave core |
| */ |
| timer0_control_register_set(0); |
| timer0_count_register_set(0); |
| timer0_limit_register_set(0); |
| |
| z_irq_priority_set(IRQ_TIMER0, CONFIG_ARCV2_TIMER_IRQ_PRIORITY, 0); |
| irq_enable(IRQ_TIMER0); |
| } |
| #endif |
| |
| /** |
| * |
| * @brief Initialize and enable the system clock |
| * |
| * This routine is used to program the ARCv2 timer to deliver interrupts at the |
| * rate specified via the CYC_PER_TICK. |
| * |
| * @return 0 |
| */ |
| static int sys_clock_driver_init(void) |
| { |
| |
| /* ensure that the timer will not generate interrupts */ |
| timer0_control_register_set(0); |
| |
| #if SMP_TIMER_DRIVER |
| IRQ_CONNECT(IRQ_TIMER0, CONFIG_ARCV2_TIMER_IRQ_PRIORITY, |
| timer_int_handler, NULL, 0); |
| |
| timer0_limit_register_set(CYC_PER_TICK - 1); |
| last_time = z_arc_connect_gfrc_read(); |
| start_time = last_time; |
| #else |
| last_load = CYC_PER_TICK; |
| overflow_cycles = 0; |
| announced_cycles = 0; |
| |
| IRQ_CONNECT(IRQ_TIMER0, CONFIG_ARCV2_TIMER_IRQ_PRIORITY, |
| timer_int_handler, NULL, 0); |
| |
| timer0_limit_register_set(last_load - 1); |
| #endif |
| timer0_count_register_set(0); |
| timer0_control_register_set(_ARC_V2_TMR_CTRL_NH | _ARC_V2_TMR_CTRL_IE); |
| |
| /* everything has been configured: safe to enable the interrupt */ |
| |
| irq_enable(IRQ_TIMER0); |
| |
| return 0; |
| } |
| |
| SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2, |
| CONFIG_SYSTEM_CLOCK_INIT_PRIORITY); |