blob: 7111afe7373f696e2e4aa02ce37dcbb5f0004931 [file] [log] [blame]
/*
* Copyright (c) 2017, NXP
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT nxp_lpc_usart
/** @file
* @brief USART driver for LPC54XXX and LPC55xxx families.
*
* Note:
* - The driver is implemented for only one device, multiple instances
* will be implemented in the future.
*/
#include <errno.h>
#include <zephyr/device.h>
#include <zephyr/drivers/uart.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/irq.h>
#include <fsl_usart.h>
#include <soc.h>
#include <fsl_device_registers.h>
#ifdef CONFIG_PINCTRL
#include <zephyr/drivers/pinctrl.h>
#endif
struct mcux_flexcomm_config {
USART_Type *base;
const struct device *clock_dev;
clock_control_subsys_t clock_subsys;
uint32_t baud_rate;
uint8_t parity;
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
void (*irq_config_func)(const struct device *dev);
#endif
#ifdef CONFIG_PINCTRL
const struct pinctrl_dev_config *pincfg;
#endif
};
struct mcux_flexcomm_data {
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
uart_irq_callback_user_data_t callback;
void *cb_data;
#endif
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
struct uart_config uart_config;
#endif
};
static int mcux_flexcomm_poll_in(const struct device *dev, unsigned char *c)
{
const struct mcux_flexcomm_config *config = dev->config;
uint32_t flags = USART_GetStatusFlags(config->base);
int ret = -1;
if (flags & kUSART_RxFifoNotEmptyFlag) {
*c = USART_ReadByte(config->base);
ret = 0;
}
return ret;
}
static void mcux_flexcomm_poll_out(const struct device *dev,
unsigned char c)
{
const struct mcux_flexcomm_config *config = dev->config;
/* Wait until space is available in TX FIFO */
while (!(USART_GetStatusFlags(config->base) & kUSART_TxFifoEmptyFlag)) {
}
USART_WriteByte(config->base, c);
}
static int mcux_flexcomm_err_check(const struct device *dev)
{
const struct mcux_flexcomm_config *config = dev->config;
uint32_t flags = USART_GetStatusFlags(config->base);
int err = 0;
if (flags & kStatus_USART_RxRingBufferOverrun) {
err |= UART_ERROR_OVERRUN;
}
if (flags & kStatus_USART_ParityError) {
err |= UART_ERROR_PARITY;
}
if (flags & kStatus_USART_FramingError) {
err |= UART_ERROR_FRAMING;
}
USART_ClearStatusFlags(config->base,
kStatus_USART_RxRingBufferOverrun |
kStatus_USART_ParityError |
kStatus_USART_FramingError);
return err;
}
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static int mcux_flexcomm_fifo_fill(const struct device *dev,
const uint8_t *tx_data,
int len)
{
const struct mcux_flexcomm_config *config = dev->config;
uint8_t num_tx = 0U;
while ((len - num_tx > 0) &&
(USART_GetStatusFlags(config->base)
& kUSART_TxFifoNotFullFlag)) {
USART_WriteByte(config->base, tx_data[num_tx++]);
}
return num_tx;
}
static int mcux_flexcomm_fifo_read(const struct device *dev, uint8_t *rx_data,
const int len)
{
const struct mcux_flexcomm_config *config = dev->config;
uint8_t num_rx = 0U;
while ((len - num_rx > 0) &&
(USART_GetStatusFlags(config->base)
& kUSART_RxFifoNotEmptyFlag)) {
rx_data[num_rx++] = USART_ReadByte(config->base);
}
return num_rx;
}
static void mcux_flexcomm_irq_tx_enable(const struct device *dev)
{
const struct mcux_flexcomm_config *config = dev->config;
uint32_t mask = kUSART_TxLevelInterruptEnable;
USART_EnableInterrupts(config->base, mask);
}
static void mcux_flexcomm_irq_tx_disable(const struct device *dev)
{
const struct mcux_flexcomm_config *config = dev->config;
uint32_t mask = kUSART_TxLevelInterruptEnable;
USART_DisableInterrupts(config->base, mask);
}
static int mcux_flexcomm_irq_tx_complete(const struct device *dev)
{
const struct mcux_flexcomm_config *config = dev->config;
return (config->base->STAT & USART_STAT_TXIDLE_MASK) != 0;
}
static int mcux_flexcomm_irq_tx_ready(const struct device *dev)
{
const struct mcux_flexcomm_config *config = dev->config;
uint32_t mask = kUSART_TxLevelInterruptEnable;
uint32_t flags = USART_GetStatusFlags(config->base);
return (USART_GetEnabledInterrupts(config->base) & mask)
&& (flags & kUSART_TxFifoEmptyFlag);
}
static void mcux_flexcomm_irq_rx_enable(const struct device *dev)
{
const struct mcux_flexcomm_config *config = dev->config;
uint32_t mask = kUSART_RxLevelInterruptEnable;
USART_EnableInterrupts(config->base, mask);
}
static void mcux_flexcomm_irq_rx_disable(const struct device *dev)
{
const struct mcux_flexcomm_config *config = dev->config;
uint32_t mask = kUSART_RxLevelInterruptEnable;
USART_DisableInterrupts(config->base, mask);
}
static int mcux_flexcomm_irq_rx_full(const struct device *dev)
{
const struct mcux_flexcomm_config *config = dev->config;
uint32_t flags = USART_GetStatusFlags(config->base);
return (flags & kUSART_RxFifoNotEmptyFlag) != 0U;
}
static int mcux_flexcomm_irq_rx_pending(const struct device *dev)
{
const struct mcux_flexcomm_config *config = dev->config;
uint32_t mask = kUSART_RxLevelInterruptEnable;
return (USART_GetEnabledInterrupts(config->base) & mask)
&& mcux_flexcomm_irq_rx_full(dev);
}
static void mcux_flexcomm_irq_err_enable(const struct device *dev)
{
const struct mcux_flexcomm_config *config = dev->config;
uint32_t mask = kStatus_USART_NoiseError |
kStatus_USART_FramingError |
kStatus_USART_ParityError;
USART_EnableInterrupts(config->base, mask);
}
static void mcux_flexcomm_irq_err_disable(const struct device *dev)
{
const struct mcux_flexcomm_config *config = dev->config;
uint32_t mask = kStatus_USART_NoiseError |
kStatus_USART_FramingError |
kStatus_USART_ParityError;
USART_DisableInterrupts(config->base, mask);
}
static int mcux_flexcomm_irq_is_pending(const struct device *dev)
{
return (mcux_flexcomm_irq_tx_ready(dev)
|| mcux_flexcomm_irq_rx_pending(dev));
}
static int mcux_flexcomm_irq_update(const struct device *dev)
{
return 1;
}
static void mcux_flexcomm_irq_callback_set(const struct device *dev,
uart_irq_callback_user_data_t cb,
void *cb_data)
{
struct mcux_flexcomm_data *data = dev->data;
data->callback = cb;
data->cb_data = cb_data;
}
static void mcux_flexcomm_isr(const struct device *dev)
{
struct mcux_flexcomm_data *data = dev->data;
if (data->callback) {
data->callback(dev, data->cb_data);
}
}
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
static int mcux_flexcomm_uart_configure(const struct device *dev, const struct uart_config *cfg)
{
const struct mcux_flexcomm_config *config = dev->config;
struct mcux_flexcomm_data *data = dev->data;
struct uart_config *uart_config = &data->uart_config;
usart_config_t usart_config;
usart_parity_mode_t parity_mode;
usart_stop_bit_count_t stop_bits;
usart_data_len_t data_bits = kUSART_8BitsPerChar;
bool nine_bit_mode = false;
uint32_t clock_freq;
/* Set up structure to reconfigure UART */
USART_GetDefaultConfig(&usart_config);
/* Set parity */
if (cfg->parity == UART_CFG_PARITY_ODD) {
parity_mode = kUSART_ParityOdd;
} else if (cfg->parity == UART_CFG_PARITY_EVEN) {
parity_mode = kUSART_ParityEven;
} else if (cfg->parity == UART_CFG_PARITY_NONE) {
parity_mode = kUSART_ParityDisabled;
} else {
return -ENOTSUP;
}
usart_config.parityMode = parity_mode;
/* Set baudrate */
usart_config.baudRate_Bps = cfg->baudrate;
/* Set stop bits */
if (cfg->stop_bits == UART_CFG_STOP_BITS_1) {
stop_bits = kUSART_OneStopBit;
} else if (cfg->stop_bits == UART_CFG_STOP_BITS_2) {
stop_bits = kUSART_TwoStopBit;
} else {
return -ENOTSUP;
}
usart_config.stopBitCount = stop_bits;
/* Set data bits */
if (cfg->data_bits == UART_CFG_DATA_BITS_5 ||
cfg->data_bits == UART_CFG_DATA_BITS_6) {
return -ENOTSUP;
} else if (cfg->data_bits == UART_CFG_DATA_BITS_7) {
data_bits = kUSART_7BitsPerChar;
} else if (cfg->data_bits == UART_CFG_DATA_BITS_8) {
data_bits = kUSART_8BitsPerChar;
} else if (cfg->data_bits == UART_CFG_DATA_BITS_9) {
nine_bit_mode = true;
} else {
return -EINVAL;
}
usart_config.bitCountPerChar = data_bits;
/* Set flow control */
if (cfg->flow_ctrl == UART_CFG_FLOW_CTRL_NONE) {
usart_config.enableHardwareFlowControl = false;
} else if (cfg->flow_ctrl == UART_CFG_FLOW_CTRL_RTS_CTS) {
usart_config.enableHardwareFlowControl = true;
} else {
return -ENOTSUP;
}
/* Wait for USART to finish transmission and turn off */
USART_Deinit(config->base);
/* Get UART clock frequency */
clock_control_get_rate(config->clock_dev,
config->clock_subsys, &clock_freq);
/* Handle 9 bit mode */
USART_Enable9bitMode(config->base, nine_bit_mode);
/* Reconfigure UART */
USART_Init(config->base, &usart_config, clock_freq);
/* Update driver device data */
uart_config->parity = cfg->parity;
uart_config->baudrate = cfg->baudrate;
uart_config->stop_bits = cfg->stop_bits;
uart_config->data_bits = cfg->data_bits;
uart_config->flow_ctrl = cfg->flow_ctrl;
return 0;
}
static int mcux_flexcomm_uart_config_get(const struct device *dev,
struct uart_config *cfg)
{
struct mcux_flexcomm_data *data = dev->data;
*cfg = data->uart_config;
return 0;
}
#endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */
static int mcux_flexcomm_init(const struct device *dev)
{
const struct mcux_flexcomm_config *config = dev->config;
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
struct mcux_flexcomm_data *data = dev->data;
struct uart_config *cfg = &data->uart_config;
#endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */
usart_config_t usart_config;
usart_parity_mode_t parity_mode;
uint32_t clock_freq;
#ifdef CONFIG_PINCTRL
int err;
err = pinctrl_apply_state(config->pincfg, PINCTRL_STATE_DEFAULT);
if (err) {
return err;
}
#endif /* CONFIG_PINCTRL */
if (!device_is_ready(config->clock_dev)) {
return -ENODEV;
}
/* Get the clock frequency */
if (clock_control_get_rate(config->clock_dev, config->clock_subsys,
&clock_freq)) {
return -EINVAL;
}
if (config->parity == UART_CFG_PARITY_ODD) {
parity_mode = kUSART_ParityOdd;
} else if (config->parity == UART_CFG_PARITY_EVEN) {
parity_mode = kUSART_ParityEven;
} else {
parity_mode = kUSART_ParityDisabled;
}
USART_GetDefaultConfig(&usart_config);
usart_config.enableTx = true;
usart_config.enableRx = true;
usart_config.parityMode = parity_mode;
usart_config.baudRate_Bps = config->baud_rate;
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
cfg->baudrate = config->baud_rate;
cfg->parity = config->parity;
/* From USART_GetDefaultConfig */
cfg->stop_bits = UART_CFG_STOP_BITS_1;
cfg->data_bits = UART_CFG_DATA_BITS_8;
cfg->flow_ctrl = UART_CFG_FLOW_CTRL_NONE;
#endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */
USART_Init(config->base, &usart_config, clock_freq);
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
config->irq_config_func(dev);
#endif
return 0;
}
static const struct uart_driver_api mcux_flexcomm_driver_api = {
.poll_in = mcux_flexcomm_poll_in,
.poll_out = mcux_flexcomm_poll_out,
.err_check = mcux_flexcomm_err_check,
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
.configure = mcux_flexcomm_uart_configure,
.config_get = mcux_flexcomm_uart_config_get,
#endif
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.fifo_fill = mcux_flexcomm_fifo_fill,
.fifo_read = mcux_flexcomm_fifo_read,
.irq_tx_enable = mcux_flexcomm_irq_tx_enable,
.irq_tx_disable = mcux_flexcomm_irq_tx_disable,
.irq_tx_complete = mcux_flexcomm_irq_tx_complete,
.irq_tx_ready = mcux_flexcomm_irq_tx_ready,
.irq_rx_enable = mcux_flexcomm_irq_rx_enable,
.irq_rx_disable = mcux_flexcomm_irq_rx_disable,
.irq_rx_ready = mcux_flexcomm_irq_rx_full,
.irq_err_enable = mcux_flexcomm_irq_err_enable,
.irq_err_disable = mcux_flexcomm_irq_err_disable,
.irq_is_pending = mcux_flexcomm_irq_is_pending,
.irq_update = mcux_flexcomm_irq_update,
.irq_callback_set = mcux_flexcomm_irq_callback_set,
#endif
};
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
#define UART_MCUX_FLEXCOMM_CONFIG_FUNC(n) \
static void mcux_flexcomm_config_func_##n(const struct device *dev) \
{ \
IRQ_CONNECT(DT_INST_IRQN(n), \
DT_INST_IRQ(n, priority), \
mcux_flexcomm_isr, DEVICE_DT_INST_GET(n), 0);\
\
irq_enable(DT_INST_IRQN(n)); \
}
#define UART_MCUX_FLEXCOMM_IRQ_CFG_FUNC_INIT(n) \
.irq_config_func = mcux_flexcomm_config_func_##n
#define UART_MCUX_FLEXCOMM_INIT_CFG(n) \
UART_MCUX_FLEXCOMM_DECLARE_CFG(n, \
UART_MCUX_FLEXCOMM_IRQ_CFG_FUNC_INIT(n))
#else
#define UART_MCUX_FLEXCOMM_CONFIG_FUNC(n)
#define UART_MCUX_FLEXCOMM_IRQ_CFG_FUNC_INIT
#define UART_MCUX_FLEXCOMM_INIT_CFG(n) \
UART_MCUX_FLEXCOMM_DECLARE_CFG(n, UART_MCUX_FLEXCOMM_IRQ_CFG_FUNC_INIT)
#endif
#ifdef CONFIG_PINCTRL
#define UART_MCUX_FLEXCOMM_PINCTRL_DEFINE(n) PINCTRL_DT_INST_DEFINE(n)
#define UART_MCUX_FLEXCOMM_PINCTRL_INIT(n) .pincfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n),
#else
#define UART_MCUX_FLEXCOMM_PINCTRL_DEFINE(n)
#define UART_MCUX_FLEXCOMM_PINCTRL_INIT(n)
#endif
#define UART_MCUX_FLEXCOMM_DECLARE_CFG(n, IRQ_FUNC_INIT) \
static const struct mcux_flexcomm_config mcux_flexcomm_##n##_config = { \
.base = (USART_Type *)DT_INST_REG_ADDR(n), \
.clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(n)), \
.clock_subsys = \
(clock_control_subsys_t)DT_INST_CLOCKS_CELL(n, name),\
.baud_rate = DT_INST_PROP(n, current_speed), \
.parity = DT_INST_ENUM_IDX_OR(n, parity, UART_CFG_PARITY_NONE), \
UART_MCUX_FLEXCOMM_PINCTRL_INIT(n) \
IRQ_FUNC_INIT \
}
#define UART_MCUX_FLEXCOMM_INIT(n) \
\
UART_MCUX_FLEXCOMM_PINCTRL_DEFINE(n); \
\
static struct mcux_flexcomm_data mcux_flexcomm_##n##_data; \
\
static const struct mcux_flexcomm_config mcux_flexcomm_##n##_config;\
\
DEVICE_DT_INST_DEFINE(n, \
&mcux_flexcomm_init, \
NULL, \
&mcux_flexcomm_##n##_data, \
&mcux_flexcomm_##n##_config, \
PRE_KERNEL_1, \
CONFIG_SERIAL_INIT_PRIORITY, \
&mcux_flexcomm_driver_api); \
\
UART_MCUX_FLEXCOMM_CONFIG_FUNC(n) \
\
UART_MCUX_FLEXCOMM_INIT_CFG(n);
DT_INST_FOREACH_STATUS_OKAY(UART_MCUX_FLEXCOMM_INIT)