blob: 58836c2ba9b98024d9631ab3755b396e0e959d9a [file] [log] [blame]
/*
* Copyright (c) 2016 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdlib.h>
#include <zephyr/ztest.h>
#include <zephyr/types.h>
struct timer_data {
int expire_cnt;
int stop_cnt;
int64_t timestamp;
};
#define DURATION 100
#define PERIOD 50
#define EXPIRE_TIMES 4
#define WITHIN_ERROR(var, target, epsilon) (llabs((int64_t) ((target) - (var))) <= (epsilon))
/* ms can be converted precisely to ticks only when a ms is exactly
* represented by an integral number of ticks. If the conversion is
* not precise, then the reverse conversion of a difference in ms can
* end up being off by a tick depending on the relative error between
* the first and second ms conversion, and we need to adjust the
* tolerance interval.
*/
#define INEXACT_MS_CONVERT ((CONFIG_SYS_CLOCK_TICKS_PER_SEC % MSEC_PER_SEC) != 0)
#if CONFIG_NRF_RTC_TIMER
/* On Nordic SOCs one or both of the tick and busy-wait clocks may
* derive from sources that have slews that sum to +/- 13%.
*/
#define BUSY_TICK_SLEW_PPM 130000U
#else
/* On other platforms assume the clocks are perfectly aligned. */
#define BUSY_TICK_SLEW_PPM 0U
#endif
#define PPM_DIVISOR 1000000U
/* If the tick clock is faster or slower than the busywait clock the
* remaining time for a partially elapsed timer in ticks will be
* larger or smaller than expected by a value that depends on the slew
* between the two clocks. Produce a maximum error for a given
* duration in microseconds.
*/
#define BUSY_SLEW_THRESHOLD_TICKS(_us) \
k_us_to_ticks_ceil32((_us) * BUSY_TICK_SLEW_PPM \
/ PPM_DIVISOR)
static void duration_expire(struct k_timer *timer);
static void duration_stop(struct k_timer *timer);
/** TESTPOINT: init timer via K_TIMER_DEFINE */
K_TIMER_DEFINE(ktimer, duration_expire, duration_stop);
static struct k_timer duration_timer;
static struct k_timer period0_timer;
static struct k_timer expire_timer;
static struct k_timer sync_timer;
static struct k_timer periodicity_timer;
static struct k_timer status_timer;
static struct k_timer status_anytime_timer;
static struct k_timer status_sync_timer;
static struct k_timer remain_timer;
static ZTEST_BMEM struct timer_data tdata;
#define TIMER_ASSERT(exp, tmr) \
do { \
if (!(exp)) { \
k_timer_stop(tmr); \
zassert_true(exp); \
} \
} while (0)
static void init_timer_data(void)
{
tdata.expire_cnt = 0;
tdata.stop_cnt = 0;
if (IS_ENABLED(CONFIG_MULTITHREADING)) {
k_usleep(1); /* align to tick */
}
tdata.timestamp = k_uptime_get();
}
static bool interval_check(int64_t interval, int64_t desired)
{
int64_t slop = INEXACT_MS_CONVERT ? 1 : 0;
/* Tickless kernels will advance time inside of an ISR, so it
* is always possible (especially with high tick rates and
* slow CPUs) for us to arrive at the uptime check above too
* late to see a full period elapse before the next period.
* We can alias at both sides of the interval, so two
* one-ticks deltas (NOT one two-tick delta!)
*/
if (IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
slop += 2 * k_ticks_to_ms_ceil32(1);
}
if (!WITHIN_ERROR(interval, desired, slop)) {
return false;
}
return true;
}
/* entry routines */
static void duration_expire(struct k_timer *timer)
{
/** TESTPOINT: expire function */
int64_t interval = k_uptime_delta(&tdata.timestamp);
tdata.expire_cnt++;
if (tdata.expire_cnt == 1) {
TIMER_ASSERT(interval_check(interval, DURATION), timer);
} else {
TIMER_ASSERT(interval_check(interval, PERIOD), timer);
}
if (tdata.expire_cnt >= EXPIRE_TIMES) {
k_timer_stop(timer);
}
}
static void duration_stop(struct k_timer *timer)
{
tdata.stop_cnt++;
}
static void period0_expire(struct k_timer *timer)
{
tdata.expire_cnt++;
}
static void status_expire(struct k_timer *timer)
{
/** TESTPOINT: status get upon timer expired */
TIMER_ASSERT(k_timer_status_get(timer) == 1, timer);
/** TESTPOINT: remaining get upon timer expired */
TIMER_ASSERT(k_timer_remaining_get(timer) >= PERIOD, timer);
if (tdata.expire_cnt >= EXPIRE_TIMES) {
k_timer_stop(timer);
}
}
static void busy_wait_ms(int32_t ms)
{
k_busy_wait(ms*1000);
}
static void status_stop(struct k_timer *timer)
{
/** TESTPOINT: remaining get upon timer stopped */
TIMER_ASSERT(k_timer_remaining_get(timer) == 0, timer);
}
/**
* @brief Tests for the Timer kernel object
* @defgroup kernel_timer_tests Timer
* @ingroup all_tests
* @{
* @}
*/
/**
* @brief Test duration and period of Timer
*
* Validates initial duration and period of timer.
*
* It initializes the timer with k_timer_init(), then starts the timer
* using k_timer_start() with specific initial duration and period.
* Stops the timer using k_timer_stop() and checks for proper completion
* of duration and period.
*
* @ingroup kernel_timer_tests
*
* @see k_timer_init(), k_timer_start(), k_timer_stop(), k_uptime_get(),
* k_busy_wait()
*/
ZTEST_USER(timer_api, test_timer_duration_period)
{
init_timer_data();
/** TESTPOINT: init timer via k_timer_init */
k_timer_start(&duration_timer, K_MSEC(DURATION), K_MSEC(PERIOD));
busy_wait_ms(DURATION + PERIOD * EXPIRE_TIMES + PERIOD / 2);
/** TESTPOINT: check expire and stop times */
TIMER_ASSERT(tdata.expire_cnt == EXPIRE_TIMES, &duration_timer);
TIMER_ASSERT(tdata.stop_cnt == 1, &duration_timer);
k_timer_start(&duration_timer, K_FOREVER, K_MSEC(PERIOD));
TIMER_ASSERT(tdata.stop_cnt == 1, &duration_timer);
/* cleanup environment */
k_timer_stop(&duration_timer);
}
/**
*
* @brief Test restart the timer
*
* @details Validates initial duration and period of timer. Start the timer with
* specific duration and period. Then starts the timer again, and check
* the status of timer.
*
* @ingroup kernel_timer_tests
*
* @see k_timer_init(), k_timer_start(), k_timer_stop, k_uptime_get(),
* k_busy_wait()
*
*/
ZTEST_USER(timer_api, test_timer_restart)
{
init_timer_data();
k_timer_start(&status_anytime_timer, K_MSEC(DURATION),
K_MSEC(PERIOD));
busy_wait_ms(DURATION + PERIOD * (EXPIRE_TIMES - 1) + PERIOD / 2);
/** TESTPOINT: restart the timer */
k_timer_start(&status_anytime_timer, K_MSEC(DURATION),
K_MSEC(PERIOD));
/* Restart timer, timer's status is reset to zero */
TIMER_ASSERT(k_timer_status_get(&status_anytime_timer) == 0,
&status_anytime_timer);
/* cleanup environment */
k_timer_stop(&status_anytime_timer);
}
/**
* @brief Test Timer with zero period value
*
* Validates initial timer duration, keeping timer period to zero.
* Basically, acting as one-shot timer.
* It initializes the timer with k_timer_init(), then starts the timer
* using k_timer_start() with specific initial duration and period as
* zero. Stops the timer using k_timer_stop() and checks for proper
* completion.
*
* @ingroup kernel_timer_tests
*
* @see k_timer_init(), k_timer_start(), k_timer_stop(), k_uptime_get(),
* k_busy_wait()
*/
ZTEST_USER(timer_api, test_timer_period_0)
{
init_timer_data();
/** TESTPOINT: set period 0 */
k_timer_start(&period0_timer,
K_TICKS(k_ms_to_ticks_floor32(DURATION)
- BUSY_SLEW_THRESHOLD_TICKS(DURATION
* USEC_PER_MSEC)),
K_NO_WAIT);
/* Need to wait at least 2 durations to ensure one-shot behavior. */
busy_wait_ms(2 * DURATION + 1);
/** TESTPOINT: ensure it is one-shot timer */
TIMER_ASSERT((tdata.expire_cnt == 1)
|| (INEXACT_MS_CONVERT
&& (tdata.expire_cnt == 0)), &period0_timer);
TIMER_ASSERT(tdata.stop_cnt == 0, &period0_timer);
/* cleanup environment */
k_timer_stop(&period0_timer);
}
/**
* @brief Test Timer with K_FOREVER period value
*
* Validates initial timer duration, keeping timer period to K_FOREVER.
* Basically, acting as one-shot timer.
* It initializes the timer with k_timer_init(), then starts the timer
* using k_timer_start() with specific initial duration and period as
* zero. Stops the timer using k_timer_stop() and checks for proper
* completion.
*
* @ingroup kernel_timer_tests
*
* @see k_timer_init(), k_timer_start(), k_timer_stop(), k_uptime_get(),
* k_busy_wait()
*/
ZTEST_USER(timer_api, test_timer_period_k_forever)
{
init_timer_data();
/** TESTPOINT: set period 0 */
k_timer_start(
&period0_timer,
K_TICKS(k_ms_to_ticks_floor32(DURATION) -
BUSY_SLEW_THRESHOLD_TICKS(DURATION * USEC_PER_MSEC)),
K_FOREVER);
tdata.timestamp = k_uptime_get();
/* Need to wait at least 2 durations to ensure one-shot behavior. */
busy_wait_ms(2 * DURATION + 1);
/** TESTPOINT: ensure it is one-shot timer */
TIMER_ASSERT((tdata.expire_cnt == 1) ||
(INEXACT_MS_CONVERT && (tdata.expire_cnt == 0)),
&period0_timer);
TIMER_ASSERT(tdata.stop_cnt == 0, &period0_timer);
/* cleanup environment */
k_timer_stop(&period0_timer);
}
/**
* @brief Test Timer without any timer expiry callback function
*
* Validates timer without any expiry_fn(set to NULL). expiry_fn() is a
* function that is invoked each time the timer expires.
*
* It initializes the timer with k_timer_init(), then starts the timer
* using k_timer_start(). Stops the timer using k_timer_stop() and
* checks for expire_cnt to zero, as expiry_fn was not defined at all.
*
* @ingroup kernel_timer_tests
*
* @see k_timer_init(), k_timer_start(), k_timer_stop(), k_uptime_get(),
* k_busy_wait()
*/
ZTEST_USER(timer_api, test_timer_expirefn_null)
{
init_timer_data();
/** TESTPOINT: expire function NULL */
k_timer_start(&expire_timer, K_MSEC(DURATION), K_MSEC(PERIOD));
busy_wait_ms(DURATION + PERIOD * EXPIRE_TIMES + PERIOD / 2);
k_timer_stop(&expire_timer);
/** TESTPOINT: expire handler is not invoked */
TIMER_ASSERT(tdata.expire_cnt == 0, &expire_timer);
/** TESTPOINT: stop handler is invoked */
TIMER_ASSERT(tdata.stop_cnt == 1, &expire_timer);
/* cleanup environment */
k_timer_stop(&expire_timer);
}
/* Wait for the next expiration of an OS timer tick, to synchronize
* test start
*/
static void tick_sync(void)
{
k_timer_start(&sync_timer, K_NO_WAIT, K_MSEC(1));
k_timer_status_sync(&sync_timer);
k_timer_stop(&sync_timer);
}
/**
* @brief Test to check timer periodicity
*
* Timer test to check for the predictability with which the timer
* expires depending on the period configured.
*
* It initializes the timer with k_timer_init(), then starts the timer
* using k_timer_start() with specific period. It resets the timer’s
* status to zero with k_timer_status_sync and identifies the delta
* between each timer expiry to check for the timer expiration period
* correctness. Finally, stops the timer using k_timer_stop().
*
* @ingroup kernel_timer_tests
*
* @see k_timer_init(), k_timer_start(), k_timer_status_sync(),
* k_timer_stop(), k_uptime_get(), k_uptime_delta()
*/
ZTEST_USER(timer_api, test_timer_periodicity)
{
uint64_t period_ms = k_ticks_to_ms_floor64(k_ms_to_ticks_ceil32(PERIOD));
int64_t delta;
/* Start at a tick boundary, otherwise a tick expiring between
* the unlocked (and unlockable) start/uptime/sync steps below
* will throw off the math.
*/
tick_sync();
init_timer_data();
/** TESTPOINT: set duration 0 */
k_timer_start(&periodicity_timer, K_NO_WAIT, K_MSEC(PERIOD));
/* clear the expiration that would have happened due to
* whatever duration that was set. Since timer is likely
* to fire before call to k_timer_status_sync(), we have
* to synchronize twice to ensure that the timestamp will
* be fetched as soon as possible after timer firing.
*/
k_timer_status_sync(&periodicity_timer);
k_timer_status_sync(&periodicity_timer);
tdata.timestamp = k_uptime_get();
for (int i = 0; i < EXPIRE_TIMES; i++) {
/** TESTPOINT: expired times returned by status sync */
TIMER_ASSERT(k_timer_status_sync(&periodicity_timer) == 1,
&periodicity_timer);
delta = k_uptime_delta(&tdata.timestamp);
/** TESTPOINT: check if timer fired within 1ms of the
* expected period (firing time).
*
* Please note, that expected firing time is not the
* one requested, as the kernel uses the ticks to manage
* time. The actual period will be equal to [tick time]
* multiplied by k_ms_to_ticks_ceil32(PERIOD).
*
* In the case of inexact conversion the delta will
* occasionally be one less than the expected number.
*/
TIMER_ASSERT(WITHIN_ERROR(delta, period_ms, 1)
|| (INEXACT_MS_CONVERT
&& (delta == period_ms - 1)),
&periodicity_timer);
}
/* cleanup environment */
k_timer_stop(&periodicity_timer);
}
/**
* @brief Test Timer status and time remaining before next expiry
*
* Timer test to validate timer status and next trigger expiry time
*
* It initializes the timer with k_timer_init(), then starts the timer
* using k_timer_start() and checks for timer current status with
* k_timer_status_get() and remaining time before next expiry using
* k_timer_remaining_get(). Stops the timer using k_timer_stop().
*
* @ingroup kernel_timer_tests
*
* @see k_timer_init(), k_timer_start(), k_timer_status_get(),
* k_timer_remaining_get(), k_timer_stop()
*/
ZTEST_USER(timer_api, test_timer_status_get)
{
init_timer_data();
k_timer_start(&status_timer, K_MSEC(DURATION), K_MSEC(PERIOD));
/** TESTPOINT: status get upon timer starts */
TIMER_ASSERT(k_timer_status_get(&status_timer) == 0, &status_timer);
/** TESTPOINT: remaining get upon timer starts */
TIMER_ASSERT(k_timer_remaining_get(&status_timer) >= DURATION / 2,
&status_timer);
/* cleanup environment */
k_timer_stop(&status_timer);
}
/**
* @brief Test Timer status randomly after certain duration
*
* Validate timer status function using k_timer_status_get().
*
* It initializes the timer with k_timer_init(), then starts the timer
* using k_timer_start() with specific initial duration and period.
* Checks for timer status randomly after certain duration.
* Stops the timer using k_timer_stop().
*
* @ingroup kernel_timer_tests
*
* @see k_timer_init(), k_timer_start(), k_timer_status_get(),
* k_timer_stop(), k_busy_wait()
*/
ZTEST_USER(timer_api, test_timer_status_get_anytime)
{
init_timer_data();
k_timer_start(&status_anytime_timer, K_MSEC(DURATION),
K_MSEC(PERIOD));
busy_wait_ms(DURATION + PERIOD * (EXPIRE_TIMES - 1) + PERIOD / 2);
/** TESTPOINT: status get at any time */
TIMER_ASSERT(k_timer_status_get(&status_anytime_timer) == EXPIRE_TIMES,
&status_anytime_timer);
busy_wait_ms(PERIOD);
TIMER_ASSERT(k_timer_status_get(&status_anytime_timer) == 1,
&status_anytime_timer);
/* cleanup environment */
k_timer_stop(&status_anytime_timer);
}
/**
* @brief Test Timer thread synchronization
*
* Validate thread synchronization by blocking the calling thread until
* the timer expires.
*
* It initializes the timer with k_timer_init(), then starts the timer
* using k_timer_start() and checks timer status with
* k_timer_status_sync() for thread synchronization with expiry count.
* Stops the timer using k_timer_stop.
*
* @ingroup kernel_timer_tests
*
* @see k_timer_init(), k_timer_start(), k_timer_status_sync(),
* k_timer_stop()
*/
ZTEST_USER(timer_api, test_timer_status_sync)
{
init_timer_data();
k_timer_start(&status_sync_timer, K_MSEC(DURATION), K_MSEC(PERIOD));
for (int i = 0; i < EXPIRE_TIMES; i++) {
/** TESTPOINT: check timer not expire */
TIMER_ASSERT(tdata.expire_cnt == i, &status_sync_timer);
/** TESTPOINT: expired times returned by status sync */
TIMER_ASSERT(k_timer_status_sync(&status_sync_timer) == 1,
&status_sync_timer);
/** TESTPOINT: check timer not expire */
TIMER_ASSERT(tdata.expire_cnt == (i + 1), &status_sync_timer);
}
init_timer_data();
k_timer_start(&status_sync_timer, K_MSEC(DURATION), K_MSEC(PERIOD));
busy_wait_ms(PERIOD*2);
zassert_true(k_timer_status_sync(&status_sync_timer));
/* cleanup environment */
k_timer_stop(&status_sync_timer);
zassert_false(k_timer_status_sync(&status_sync_timer));
}
/**
* @brief Test statically defined Timer init
*
* Validate statically defined timer init using K_TIMER_DEFINE
*
* It creates prototype of K_TIMER_DEFINE to statically define timer
* init and starts the timer with k_timer_start() with specific initial
* duration and period. Stops the timer using k_timer_stop() and checks
* for proper completion of duration and period.
*
* @ingroup kernel_timer_tests
*
* @see k_timer_start(), K_TIMER_DEFINE(), k_timer_stop()
* k_uptime_get(), k_busy_wait()
*/
ZTEST_USER(timer_api, test_timer_k_define)
{
init_timer_data();
/** TESTPOINT: init timer via k_timer_init */
k_timer_start(&ktimer, K_MSEC(DURATION), K_MSEC(PERIOD));
busy_wait_ms(DURATION + PERIOD * EXPIRE_TIMES + PERIOD / 2);
/** TESTPOINT: check expire and stop times */
TIMER_ASSERT(tdata.expire_cnt == EXPIRE_TIMES, &ktimer);
TIMER_ASSERT(tdata.stop_cnt == 1, &ktimer);
/* cleanup environment */
k_timer_stop(&ktimer);
init_timer_data();
/** TESTPOINT: init timer via k_timer_init */
k_timer_start(&ktimer, K_MSEC(DURATION), K_MSEC(PERIOD));
/* Call the k_timer_start() again to make sure that
* the initial timeout request gets cancelled and new
* one will get added.
*/
busy_wait_ms(DURATION / 2);
k_timer_start(&ktimer, K_MSEC(DURATION), K_MSEC(PERIOD));
tdata.timestamp = k_uptime_get();
busy_wait_ms(DURATION + PERIOD * EXPIRE_TIMES + PERIOD / 2);
/** TESTPOINT: check expire and stop times */
TIMER_ASSERT(tdata.expire_cnt == EXPIRE_TIMES, &ktimer);
TIMER_ASSERT(tdata.stop_cnt == 1, &ktimer);
/* cleanup environment */
k_timer_stop(&ktimer);
}
static void user_data_timer_handler(struct k_timer *timer);
K_TIMER_DEFINE(timer0, user_data_timer_handler, NULL);
K_TIMER_DEFINE(timer1, user_data_timer_handler, NULL);
K_TIMER_DEFINE(timer2, user_data_timer_handler, NULL);
K_TIMER_DEFINE(timer3, user_data_timer_handler, NULL);
K_TIMER_DEFINE(timer4, user_data_timer_handler, NULL);
static ZTEST_DMEM struct k_timer *user_data_timer[5] = {
&timer0, &timer1, &timer2, &timer3, &timer4
};
static const intptr_t user_data[5] = { 0x1337, 0xbabe, 0xd00d, 0xdeaf, 0xfade };
static ZTEST_BMEM int user_data_correct[5];
static void user_data_timer_handler(struct k_timer *timer)
{
int timer_num = timer == user_data_timer[0] ? 0 :
timer == user_data_timer[1] ? 1 :
timer == user_data_timer[2] ? 2 :
timer == user_data_timer[3] ? 3 :
timer == user_data_timer[4] ? 4 : -1;
if (timer_num == -1) {
return;
}
intptr_t data_retrieved = (intptr_t)k_timer_user_data_get(timer);
user_data_correct[timer_num] = user_data[timer_num] == data_retrieved;
}
/**
* @brief Test user-specific data associated with timer
*
* Validate user-specific data associated with timer
*
* It creates prototype of K_TIMER_DEFINE and starts the timer using
* k_timer_start() with specific initial duration, along with associated
* user data using k_timer_user_data_set and k_timer_user_data_get().
* Stops the timer using k_timer_stop() and checks for correct data
* retrieval after timer completion.
*
* @ingroup kernel_timer_tests
*
* @see K_TIMER_DEFINE(), k_timer_user_data_set(), k_timer_start(),
* k_timer_user_data_get(), k_timer_stop()
*/
ZTEST_USER(timer_api, test_timer_user_data)
{
int ii;
for (ii = 0; ii < 5; ii++) {
intptr_t check;
k_timer_user_data_set(user_data_timer[ii],
(void *)user_data[ii]);
check = (intptr_t)k_timer_user_data_get(user_data_timer[ii]);
zassert_true(check == user_data[ii]);
}
for (ii = 0; ii < 5; ii++) {
k_timer_start(user_data_timer[ii], K_MSEC(50 + ii * 50),
K_NO_WAIT);
}
uint32_t wait_ms = 50 * ii + 50;
if (IS_ENABLED(CONFIG_MULTITHREADING)) {
k_msleep(wait_ms);
} else {
uint32_t wait_us = 1000 * wait_ms;
k_busy_wait(wait_us + (wait_us * BUSY_TICK_SLEW_PPM) / PPM_DIVISOR);
}
for (ii = 0; ii < 5; ii++) {
k_timer_stop(user_data_timer[ii]);
}
for (ii = 0; ii < 5; ii++) {
zassert_true(user_data_correct[ii]);
}
}
/**
* @brief Test accuracy of k_timer_remaining_get()
*
* Validate countdown of time to expiration
*
* Starts a timer, busy-waits for half the DURATION, then checks the
* remaining time to expiration and stops the timer. The remaining time
* should reflect the passage of at least the busy-wait interval.
*
* @ingroup kernel_timer_tests
*
* @see k_timer_init(), k_timer_start(), k_timer_stop(),
* k_timer_remaining_get()
*/
ZTEST_USER(timer_api, test_timer_remaining)
{
uint32_t dur_ticks = k_ms_to_ticks_ceil32(DURATION);
uint32_t target_rem_ticks = k_ms_to_ticks_ceil32(DURATION / 2);
uint32_t rem_ms, rem_ticks, exp_ticks;
int32_t delta_ticks;
uint32_t slew_ticks;
uint64_t now;
init_timer_data();
k_timer_start(&remain_timer, K_MSEC(DURATION), K_NO_WAIT);
busy_wait_ms(DURATION / 2);
rem_ticks = k_timer_remaining_ticks(&remain_timer);
now = k_uptime_ticks();
rem_ms = k_timer_remaining_get(&remain_timer);
exp_ticks = k_timer_expires_ticks(&remain_timer);
k_timer_stop(&remain_timer);
TIMER_ASSERT(tdata.expire_cnt == 0, &remain_timer);
TIMER_ASSERT(tdata.stop_cnt == 1, &remain_timer);
/*
* While the busy_wait_ms() works with the maximum possible resolution,
* the k_timer api is limited by the system tick abstraction. As result
* the value obtained through k_timer_remaining_get() could be larger
* than actual remaining time with maximum error equal to one tick.
*/
zassert_true(rem_ms <= (DURATION / 2) + k_ticks_to_ms_floor64(1),
NULL);
/* Half the value of DURATION in ticks may not be the value of
* half DURATION in ticks, when DURATION/2 is not an integer
* multiple of ticks, so target_rem_ticks is used rather than
* dur_ticks/2. Also set a threshold based on expected clock
* skew.
*/
delta_ticks = (int32_t)(rem_ticks - target_rem_ticks);
slew_ticks = BUSY_SLEW_THRESHOLD_TICKS(DURATION * USEC_PER_MSEC / 2U);
zassert_true(abs(delta_ticks) <= MAX(slew_ticks, 1U),
"tick/busy slew %d larger than test threshold %u",
delta_ticks, slew_ticks);
/* Note +1 tick precision: even though we're calculating in
* ticks, we're waiting in k_busy_wait(), not for a timer
* interrupt, so it's possible for that to take 1 tick longer
* than expected on systems where the requested microsecond
* delay cannot be exactly represented as an integer number of
* ticks.
*/
zassert_true(((int64_t)exp_ticks - (int64_t)now) <= (dur_ticks / 2) + 1,
NULL);
}
ZTEST_USER(timer_api, test_timeout_abs)
{
#ifdef CONFIG_TIMEOUT_64BIT
const uint64_t exp_ms = 10000000;
uint64_t rem_ticks;
uint64_t exp_ticks = k_ms_to_ticks_ceil64(exp_ms);
k_timeout_t t = K_TIMEOUT_ABS_TICKS(exp_ticks), t2;
uint64_t t0, t1;
/* Check the other generator macros to make sure they produce
* the same (whiteboxed) converted values
*/
t2 = K_TIMEOUT_ABS_MS(exp_ms);
zassert_true(t2.ticks == t.ticks);
t2 = K_TIMEOUT_ABS_US(1000 * exp_ms);
zassert_true(t2.ticks == t.ticks);
t2 = K_TIMEOUT_ABS_NS(1000 * 1000 * exp_ms);
zassert_true(t2.ticks == t.ticks);
t2 = K_TIMEOUT_ABS_CYC(k_ms_to_cyc_ceil64(exp_ms));
zassert_true(t2.ticks == t.ticks);
/* Now set the timeout and make sure the expiration time is
* correct vs. current time. Tick units and tick alignment
* makes this math exact, no slop is needed. Note that time
* is advancing always, so we add a retry condition to be sure
* that a tick advance did not happen between our reads of
* "now" and "expires".
*/
init_timer_data();
k_timer_start(&remain_timer, t, K_FOREVER);
if (IS_ENABLED(CONFIG_MULTITHREADING)) {
k_usleep(1);
}
do {
t0 = k_uptime_ticks();
rem_ticks = k_timer_remaining_ticks(&remain_timer);
t1 = k_uptime_ticks();
} while (t0 != t1);
zassert_true(t0 + rem_ticks == exp_ticks,
"Wrong remaining: now %lld rem %lld expires %lld (%d)",
(uint64_t)t0, (uint64_t)rem_ticks, (uint64_t)exp_ticks,
t0+rem_ticks-exp_ticks);
k_timer_stop(&remain_timer);
#endif
}
ZTEST_USER(timer_api, test_sleep_abs)
{
if (!IS_ENABLED(CONFIG_MULTITHREADING)) {
/* k_sleep is not supported when multithreading is off. */
return;
}
const int sleep_ticks = 50;
int64_t start, end;
k_usleep(1); /* tick align */
start = k_uptime_ticks();
k_sleep(K_TIMEOUT_ABS_TICKS(start + sleep_ticks));
end = k_uptime_ticks();
/* Systems with very high tick rates and/or slow idle resume
* (I've seen this on intel_adsp) can occasionally take more
* than a tick to return from k_sleep(). Set a 100us real
* time slop or more depending on the time to resume
*/
k_ticks_t late = end - (start + sleep_ticks);
zassert_true(late >= 0 && late <= MAX(2, k_us_to_ticks_ceil32(250)),
"expected wakeup at %lld, got %lld (late %lld)",
start + sleep_ticks, end, late);
}
static void timer_init(struct k_timer *timer, k_timer_expiry_t expiry_fn,
k_timer_stop_t stop_fn)
{
if (IS_ENABLED(CONFIG_MULTITHREADING)) {
k_object_access_grant(timer, k_current_get());
}
k_timer_init(timer, expiry_fn, stop_fn);
}
void *setup_timer_api(void)
{
timer_init(&duration_timer, duration_expire, duration_stop);
timer_init(&period0_timer, period0_expire, NULL);
timer_init(&expire_timer, NULL, duration_stop);
timer_init(&sync_timer, NULL, NULL);
timer_init(&periodicity_timer, NULL, NULL);
timer_init(&status_timer, status_expire, status_stop);
timer_init(&status_anytime_timer, NULL, NULL);
timer_init(&status_sync_timer, duration_expire, duration_stop);
timer_init(&remain_timer, duration_expire, duration_stop);
if (IS_ENABLED(CONFIG_MULTITHREADING)) {
k_thread_access_grant(k_current_get(), &ktimer, &timer0, &timer1,
&timer2, &timer3, &timer4);
}
return NULL;
}
ZTEST_SUITE(timer_api, NULL, setup_timer_api, NULL, NULL, NULL);