| /* |
| * Copyright (c) 2016 Wind River Systems, Inc. |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| /** |
| * @file |
| * |
| * @brief Pipes |
| */ |
| |
| #include <kernel.h> |
| #include <kernel_structs.h> |
| #include <debug/object_tracing_common.h> |
| #include <toolchain.h> |
| #include <linker/sections.h> |
| #include <wait_q.h> |
| #include <sys/dlist.h> |
| #include <init.h> |
| #include <syscall_handler.h> |
| #include <sys/__assert.h> |
| #include <kernel_internal.h> |
| |
| struct k_pipe_desc { |
| unsigned char *buffer; /* Position in src/dest buffer */ |
| size_t bytes_to_xfer; /* # bytes left to transfer */ |
| #if (CONFIG_NUM_PIPE_ASYNC_MSGS > 0) |
| struct k_mem_block *block; /* Pointer to memory block */ |
| struct k_mem_block copy_block; /* For backwards compatibility */ |
| struct k_sem *sem; /* Semaphore to give if async */ |
| #endif |
| }; |
| |
| struct k_pipe_async { |
| struct _thread_base thread; /* Dummy thread object */ |
| struct k_pipe_desc desc; /* Pipe message descriptor */ |
| }; |
| |
| #ifdef CONFIG_OBJECT_TRACING |
| struct k_pipe *_trace_list_k_pipe; |
| #endif /* CONFIG_OBJECT_TRACING */ |
| |
| #if (CONFIG_NUM_PIPE_ASYNC_MSGS > 0) |
| |
| /* stack of unused asynchronous message descriptors */ |
| K_STACK_DEFINE(pipe_async_msgs, CONFIG_NUM_PIPE_ASYNC_MSGS); |
| |
| /* Allocate an asynchronous message descriptor */ |
| static void pipe_async_alloc(struct k_pipe_async **async) |
| { |
| (void)k_stack_pop(&pipe_async_msgs, (stack_data_t *)async, K_FOREVER); |
| } |
| |
| /* Free an asynchronous message descriptor */ |
| static void pipe_async_free(struct k_pipe_async *async) |
| { |
| k_stack_push(&pipe_async_msgs, (stack_data_t)async); |
| } |
| |
| /* Finish an asynchronous operation */ |
| static void pipe_async_finish(struct k_pipe_async *async_desc) |
| { |
| /* |
| * An asynchronous operation is finished with the scheduler locked |
| * to prevent the called routines from scheduling a new thread. |
| */ |
| |
| k_mem_pool_free(async_desc->desc.block); |
| |
| if (async_desc->desc.sem != NULL) { |
| k_sem_give(async_desc->desc.sem); |
| } |
| |
| pipe_async_free(async_desc); |
| } |
| #endif /* CONFIG_NUM_PIPE_ASYNC_MSGS > 0 */ |
| |
| #if (CONFIG_NUM_PIPE_ASYNC_MSGS > 0) || \ |
| defined(CONFIG_OBJECT_TRACING) |
| |
| /* |
| * Do run-time initialization of pipe object subsystem. |
| */ |
| static int init_pipes_module(struct device *dev) |
| { |
| ARG_UNUSED(dev); |
| |
| /* Array of asynchronous message descriptors */ |
| static struct k_pipe_async __noinit async_msg[CONFIG_NUM_PIPE_ASYNC_MSGS]; |
| |
| #if (CONFIG_NUM_PIPE_ASYNC_MSGS > 0) |
| /* |
| * Create pool of asynchronous pipe message descriptors. |
| * |
| * A dummy thread requires minimal initialization, since it never gets |
| * to execute. The _THREAD_DUMMY flag is sufficient to distinguish a |
| * dummy thread from a real one. The threads are *not* added to the |
| * kernel's list of known threads. |
| * |
| * Once initialized, the address of each descriptor is added to a stack |
| * that governs access to them. |
| */ |
| |
| for (int i = 0; i < CONFIG_NUM_PIPE_ASYNC_MSGS; i++) { |
| async_msg[i].thread.thread_state = _THREAD_DUMMY; |
| async_msg[i].thread.swap_data = &async_msg[i].desc; |
| |
| z_init_thread_timeout(&async_msg[i].thread); |
| |
| k_stack_push(&pipe_async_msgs, (stack_data_t)&async_msg[i]); |
| } |
| #endif /* CONFIG_NUM_PIPE_ASYNC_MSGS > 0 */ |
| |
| /* Complete initialization of statically defined mailboxes. */ |
| |
| #ifdef CONFIG_OBJECT_TRACING |
| Z_STRUCT_SECTION_FOREACH(k_pipe, pipe) { |
| SYS_TRACING_OBJ_INIT(k_pipe, pipe); |
| } |
| #endif /* CONFIG_OBJECT_TRACING */ |
| |
| return 0; |
| } |
| |
| SYS_INIT(init_pipes_module, PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_OBJECTS); |
| |
| #endif /* CONFIG_NUM_PIPE_ASYNC_MSGS or CONFIG_OBJECT_TRACING */ |
| |
| void k_pipe_init(struct k_pipe *pipe, unsigned char *buffer, size_t size) |
| { |
| pipe->buffer = buffer; |
| pipe->size = size; |
| pipe->bytes_used = 0; |
| pipe->read_index = 0; |
| pipe->write_index = 0; |
| pipe->flags = 0; |
| z_waitq_init(&pipe->wait_q.writers); |
| z_waitq_init(&pipe->wait_q.readers); |
| SYS_TRACING_OBJ_INIT(k_pipe, pipe); |
| z_object_init(pipe); |
| } |
| |
| int z_impl_k_pipe_alloc_init(struct k_pipe *pipe, size_t size) |
| { |
| void *buffer; |
| int ret; |
| |
| if (size != 0) { |
| buffer = z_thread_malloc(size); |
| if (buffer != NULL) { |
| k_pipe_init(pipe, buffer, size); |
| pipe->flags = K_PIPE_FLAG_ALLOC; |
| ret = 0; |
| } else { |
| ret = -ENOMEM; |
| } |
| } else { |
| k_pipe_init(pipe, NULL, 0); |
| ret = 0; |
| } |
| |
| return ret; |
| } |
| |
| #ifdef CONFIG_USERSPACE |
| static inline int z_vrfy_k_pipe_alloc_init(struct k_pipe *pipe, size_t size) |
| { |
| Z_OOPS(Z_SYSCALL_OBJ_NEVER_INIT(pipe, K_OBJ_PIPE)); |
| |
| return z_impl_k_pipe_alloc_init(pipe, size); |
| } |
| #include <syscalls/k_pipe_alloc_init_mrsh.c> |
| #endif |
| |
| void k_pipe_cleanup(struct k_pipe *pipe) |
| { |
| __ASSERT_NO_MSG(!z_waitq_head(&pipe->wait_q.readers)); |
| __ASSERT_NO_MSG(!z_waitq_head(&pipe->wait_q.writers)); |
| |
| if ((pipe->flags & K_PIPE_FLAG_ALLOC) != 0) { |
| k_free(pipe->buffer); |
| pipe->buffer = NULL; |
| pipe->flags &= ~K_PIPE_FLAG_ALLOC; |
| } |
| } |
| |
| /** |
| * @brief Copy bytes from @a src to @a dest |
| * |
| * @return Number of bytes copied |
| */ |
| static size_t pipe_xfer(unsigned char *dest, size_t dest_size, |
| const unsigned char *src, size_t src_size) |
| { |
| size_t num_bytes = MIN(dest_size, src_size); |
| const unsigned char *end = src + num_bytes; |
| |
| while (src != end) { |
| *dest = *src; |
| dest++; |
| src++; |
| } |
| |
| return num_bytes; |
| } |
| |
| /** |
| * @brief Put data from @a src into the pipe's circular buffer |
| * |
| * Modifies the following fields in @a pipe: |
| * buffer, bytes_used, write_index |
| * |
| * @return Number of bytes written to the pipe's circular buffer |
| */ |
| static size_t pipe_buffer_put(struct k_pipe *pipe, |
| const unsigned char *src, size_t src_size) |
| { |
| size_t bytes_copied; |
| size_t run_length; |
| size_t num_bytes_written = 0; |
| int i; |
| |
| |
| for (i = 0; i < 2; i++) { |
| run_length = MIN(pipe->size - pipe->bytes_used, |
| pipe->size - pipe->write_index); |
| |
| bytes_copied = pipe_xfer(pipe->buffer + pipe->write_index, |
| run_length, |
| src + num_bytes_written, |
| src_size - num_bytes_written); |
| |
| num_bytes_written += bytes_copied; |
| pipe->bytes_used += bytes_copied; |
| pipe->write_index += bytes_copied; |
| if (pipe->write_index == pipe->size) { |
| pipe->write_index = 0; |
| } |
| } |
| |
| return num_bytes_written; |
| } |
| |
| /** |
| * @brief Get data from the pipe's circular buffer |
| * |
| * Modifies the following fields in @a pipe: |
| * bytes_used, read_index |
| * |
| * @return Number of bytes read from the pipe's circular buffer |
| */ |
| static size_t pipe_buffer_get(struct k_pipe *pipe, |
| unsigned char *dest, size_t dest_size) |
| { |
| size_t bytes_copied; |
| size_t run_length; |
| size_t num_bytes_read = 0; |
| int i; |
| |
| for (i = 0; i < 2; i++) { |
| run_length = MIN(pipe->bytes_used, |
| pipe->size - pipe->read_index); |
| |
| bytes_copied = pipe_xfer(dest + num_bytes_read, |
| dest_size - num_bytes_read, |
| pipe->buffer + pipe->read_index, |
| run_length); |
| |
| num_bytes_read += bytes_copied; |
| pipe->bytes_used -= bytes_copied; |
| pipe->read_index += bytes_copied; |
| if (pipe->read_index == pipe->size) { |
| pipe->read_index = 0; |
| } |
| } |
| |
| return num_bytes_read; |
| } |
| |
| /** |
| * @brief Prepare a working set of readers/writers |
| * |
| * Prepare a list of "working threads" into/from which the data |
| * will be directly copied. This list is useful as it is used to ... |
| * |
| * 1. avoid double copying |
| * 2. minimize interrupt latency as interrupts are unlocked |
| * while copying data |
| * 3. ensure a timeout can not make the request impossible to satisfy |
| * |
| * The list is populated with previously pended threads that will be ready to |
| * run after the pipe call is complete. |
| * |
| * Important things to remember when reading from the pipe ... |
| * 1. If there are writers int @a wait_q, then the pipe's buffer is full. |
| * 2. Conversely if the pipe's buffer is not full, there are no writers. |
| * 3. The amount of available data in the pipe is the sum the bytes used in |
| * the pipe (@a pipe_space) and all the requests from the waiting writers. |
| * 4. Since data is read from the pipe's buffer first, the working set must |
| * include writers that will (try to) re-fill the pipe's buffer afterwards. |
| * |
| * Important things to remember when writing to the pipe ... |
| * 1. If there are readers in @a wait_q, then the pipe's buffer is empty. |
| * 2. Conversely if the pipe's buffer is not empty, then there are no readers. |
| * 3. The amount of space available in the pipe is the sum of the bytes unused |
| * in the pipe (@a pipe_space) and all the requests from the waiting readers. |
| * |
| * @return false if request is unsatisfiable, otherwise true |
| */ |
| static bool pipe_xfer_prepare(sys_dlist_t *xfer_list, |
| struct k_thread **waiter, |
| _wait_q_t *wait_q, |
| size_t pipe_space, |
| size_t bytes_to_xfer, |
| size_t min_xfer, |
| s32_t timeout) |
| { |
| struct k_thread *thread; |
| struct k_pipe_desc *desc; |
| size_t num_bytes = 0; |
| |
| if (timeout == K_NO_WAIT) { |
| _WAIT_Q_FOR_EACH(wait_q, thread) { |
| desc = (struct k_pipe_desc *)thread->base.swap_data; |
| |
| num_bytes += desc->bytes_to_xfer; |
| |
| if (num_bytes >= bytes_to_xfer) { |
| break; |
| } |
| } |
| |
| if (num_bytes + pipe_space < min_xfer) { |
| return false; |
| } |
| } |
| |
| /* |
| * Either @a timeout is not K_NO_WAIT (so the thread may pend) or |
| * the entire request can be satisfied. Generate the working list. |
| */ |
| |
| sys_dlist_init(xfer_list); |
| num_bytes = 0; |
| |
| while ((thread = z_waitq_head(wait_q)) != NULL) { |
| desc = (struct k_pipe_desc *)thread->base.swap_data; |
| num_bytes += desc->bytes_to_xfer; |
| |
| if (num_bytes > bytes_to_xfer) { |
| /* |
| * This request can not be fully satisfied. |
| * Do not remove it from the wait_q. |
| * Do not abort its timeout (if applicable). |
| * Do not add it to the transfer list |
| */ |
| break; |
| } |
| |
| /* |
| * This request can be fully satisfied. |
| * Remove it from the wait_q. |
| * Abort its timeout. |
| * Add it to the transfer list. |
| */ |
| z_unpend_thread(thread); |
| sys_dlist_append(xfer_list, &thread->base.qnode_dlist); |
| } |
| |
| *waiter = (num_bytes > bytes_to_xfer) ? thread : NULL; |
| |
| return true; |
| } |
| |
| /** |
| * @brief Determine the correct return code |
| * |
| * Bytes Xferred No Wait Wait |
| * >= Minimum 0 0 |
| * < Minimum -EIO* -EAGAIN |
| * |
| * * The "-EIO No Wait" case was already checked when the "working set" |
| * was created in _pipe_xfer_prepare(). |
| * |
| * @return See table above |
| */ |
| static int pipe_return_code(size_t min_xfer, size_t bytes_remaining, |
| size_t bytes_requested) |
| { |
| if (bytes_requested - bytes_remaining >= min_xfer) { |
| /* |
| * At least the minimum number of requested |
| * bytes have been transferred. |
| */ |
| return 0; |
| } |
| |
| return -EAGAIN; |
| } |
| |
| /** |
| * @brief Ready a pipe thread |
| * |
| * If the pipe thread is a real thread, then add it to the ready queue. |
| * If it is a dummy thread, then finish the asynchronous work. |
| * |
| * @return N/A |
| */ |
| static void pipe_thread_ready(struct k_thread *thread) |
| { |
| #if (CONFIG_NUM_PIPE_ASYNC_MSGS > 0) |
| if ((thread->base.thread_state & _THREAD_DUMMY) != 0U) { |
| pipe_async_finish((struct k_pipe_async *)thread); |
| return; |
| } |
| #endif |
| |
| z_ready_thread(thread); |
| } |
| |
| /** |
| * @brief Internal API used to send data to a pipe |
| */ |
| int z_pipe_put_internal(struct k_pipe *pipe, struct k_pipe_async *async_desc, |
| unsigned char *data, size_t bytes_to_write, |
| size_t *bytes_written, size_t min_xfer, |
| s32_t timeout) |
| { |
| struct k_thread *reader; |
| struct k_pipe_desc *desc; |
| sys_dlist_t xfer_list; |
| size_t num_bytes_written = 0; |
| size_t bytes_copied; |
| |
| #if (CONFIG_NUM_PIPE_ASYNC_MSGS == 0) |
| ARG_UNUSED(async_desc); |
| #endif |
| |
| k_spinlock_key_t key = k_spin_lock(&pipe->lock); |
| |
| /* |
| * Create a list of "working readers" into which the data will be |
| * directly copied. |
| */ |
| |
| if (!pipe_xfer_prepare(&xfer_list, &reader, &pipe->wait_q.readers, |
| pipe->size - pipe->bytes_used, bytes_to_write, |
| min_xfer, timeout)) { |
| k_spin_unlock(&pipe->lock, key); |
| *bytes_written = 0; |
| return -EIO; |
| } |
| |
| z_sched_lock(); |
| k_spin_unlock(&pipe->lock, key); |
| |
| /* |
| * 1. 'xfer_list' currently contains a list of reader threads that can |
| * have their read requests fulfilled by the current call. |
| * 2. 'reader' if not NULL points to a thread on the reader wait_q |
| * that can get some of its requested data. |
| * 3. Interrupts are unlocked but the scheduler is locked to allow |
| * ticks to be delivered but no scheduling to occur |
| * 4. If 'reader' times out while we are copying data, not only do we |
| * still have a pointer to it, but it can not execute until this call |
| * is complete so it is still safe to copy data to it. |
| */ |
| |
| struct k_thread *thread = (struct k_thread *) |
| sys_dlist_get(&xfer_list); |
| while (thread != NULL) { |
| desc = (struct k_pipe_desc *)thread->base.swap_data; |
| bytes_copied = pipe_xfer(desc->buffer, desc->bytes_to_xfer, |
| data + num_bytes_written, |
| bytes_to_write - num_bytes_written); |
| |
| num_bytes_written += bytes_copied; |
| desc->buffer += bytes_copied; |
| desc->bytes_to_xfer -= bytes_copied; |
| |
| /* The thread's read request has been satisfied. Ready it. */ |
| z_ready_thread(thread); |
| |
| thread = (struct k_thread *)sys_dlist_get(&xfer_list); |
| } |
| |
| /* |
| * Copy any data to the reader that we left on the wait_q. |
| * It is possible no data will be copied. |
| */ |
| if (reader != NULL) { |
| desc = (struct k_pipe_desc *)reader->base.swap_data; |
| bytes_copied = pipe_xfer(desc->buffer, desc->bytes_to_xfer, |
| data + num_bytes_written, |
| bytes_to_write - num_bytes_written); |
| |
| num_bytes_written += bytes_copied; |
| desc->buffer += bytes_copied; |
| desc->bytes_to_xfer -= bytes_copied; |
| } |
| |
| /* |
| * As much data as possible has been directly copied to any waiting |
| * readers. Add as much as possible to the pipe's circular buffer. |
| */ |
| |
| num_bytes_written += |
| pipe_buffer_put(pipe, data + num_bytes_written, |
| bytes_to_write - num_bytes_written); |
| |
| if (num_bytes_written == bytes_to_write) { |
| *bytes_written = num_bytes_written; |
| #if (CONFIG_NUM_PIPE_ASYNC_MSGS > 0) |
| if (async_desc != NULL) { |
| pipe_async_finish(async_desc); |
| } |
| #endif |
| k_sched_unlock(); |
| return 0; |
| } |
| |
| /* Not all data was copied. */ |
| |
| #if (CONFIG_NUM_PIPE_ASYNC_MSGS > 0) |
| if (async_desc != NULL) { |
| /* |
| * Lock interrupts and unlock the scheduler before |
| * manipulating the writers wait_q. |
| */ |
| k_spinlock_key_t key = k_spin_lock(&pipe->lock); |
| z_sched_unlock_no_reschedule(); |
| |
| async_desc->desc.buffer = data + num_bytes_written; |
| async_desc->desc.bytes_to_xfer = |
| bytes_to_write - num_bytes_written; |
| |
| z_pend_thread((struct k_thread *) &async_desc->thread, |
| &pipe->wait_q.writers, K_FOREVER); |
| z_reschedule(&pipe->lock, key); |
| return 0; |
| } |
| #endif |
| |
| struct k_pipe_desc pipe_desc; |
| |
| pipe_desc.buffer = data + num_bytes_written; |
| pipe_desc.bytes_to_xfer = bytes_to_write - num_bytes_written; |
| |
| if (timeout != K_NO_WAIT) { |
| _current->base.swap_data = &pipe_desc; |
| /* |
| * Lock interrupts and unlock the scheduler before |
| * manipulating the writers wait_q. |
| */ |
| k_spinlock_key_t key = k_spin_lock(&pipe->lock); |
| z_sched_unlock_no_reschedule(); |
| (void)z_pend_curr(&pipe->lock, key, |
| &pipe->wait_q.writers, timeout); |
| } else { |
| k_sched_unlock(); |
| } |
| |
| *bytes_written = bytes_to_write - pipe_desc.bytes_to_xfer; |
| |
| return pipe_return_code(min_xfer, pipe_desc.bytes_to_xfer, |
| bytes_to_write); |
| } |
| |
| int z_impl_k_pipe_get(struct k_pipe *pipe, void *data, size_t bytes_to_read, |
| size_t *bytes_read, size_t min_xfer, s32_t timeout) |
| { |
| struct k_thread *writer; |
| struct k_pipe_desc *desc; |
| sys_dlist_t xfer_list; |
| size_t num_bytes_read = 0; |
| size_t bytes_copied; |
| |
| __ASSERT(min_xfer <= bytes_to_read, ""); |
| __ASSERT(bytes_read != NULL, ""); |
| |
| k_spinlock_key_t key = k_spin_lock(&pipe->lock); |
| |
| /* |
| * Create a list of "working readers" into which the data will be |
| * directly copied. |
| */ |
| |
| if (!pipe_xfer_prepare(&xfer_list, &writer, &pipe->wait_q.writers, |
| pipe->bytes_used, bytes_to_read, |
| min_xfer, timeout)) { |
| k_spin_unlock(&pipe->lock, key); |
| *bytes_read = 0; |
| return -EIO; |
| } |
| |
| z_sched_lock(); |
| k_spin_unlock(&pipe->lock, key); |
| |
| num_bytes_read = pipe_buffer_get(pipe, data, bytes_to_read); |
| |
| /* |
| * 1. 'xfer_list' currently contains a list of writer threads that can |
| * have their write requests fulfilled by the current call. |
| * 2. 'writer' if not NULL points to a thread on the writer wait_q |
| * that can post some of its requested data. |
| * 3. Data will be copied from each writer's buffer to either the |
| * reader's buffer and/or to the pipe's circular buffer. |
| * 4. Interrupts are unlocked but the scheduler is locked to allow |
| * ticks to be delivered but no scheduling to occur |
| * 5. If 'writer' times out while we are copying data, not only do we |
| * still have a pointer to it, but it can not execute until this |
| * call is complete so it is still safe to copy data from it. |
| */ |
| |
| struct k_thread *thread = (struct k_thread *) |
| sys_dlist_get(&xfer_list); |
| while ((thread != NULL) && (num_bytes_read < bytes_to_read)) { |
| desc = (struct k_pipe_desc *)thread->base.swap_data; |
| bytes_copied = pipe_xfer((u8_t *)data + num_bytes_read, |
| bytes_to_read - num_bytes_read, |
| desc->buffer, desc->bytes_to_xfer); |
| |
| num_bytes_read += bytes_copied; |
| desc->buffer += bytes_copied; |
| desc->bytes_to_xfer -= bytes_copied; |
| |
| /* |
| * It is expected that the write request will be satisfied. |
| * However, if the read request was satisfied before the |
| * write request was satisfied, then the write request must |
| * finish later when writing to the pipe's circular buffer. |
| */ |
| if (num_bytes_read == bytes_to_read) { |
| break; |
| } |
| pipe_thread_ready(thread); |
| |
| thread = (struct k_thread *)sys_dlist_get(&xfer_list); |
| } |
| |
| if ((writer != NULL) && (num_bytes_read < bytes_to_read)) { |
| desc = (struct k_pipe_desc *)writer->base.swap_data; |
| bytes_copied = pipe_xfer((u8_t *)data + num_bytes_read, |
| bytes_to_read - num_bytes_read, |
| desc->buffer, desc->bytes_to_xfer); |
| |
| num_bytes_read += bytes_copied; |
| desc->buffer += bytes_copied; |
| desc->bytes_to_xfer -= bytes_copied; |
| } |
| |
| /* |
| * Copy as much data as possible from the writers (if any) |
| * into the pipe's circular buffer. |
| */ |
| |
| while (thread != NULL) { |
| desc = (struct k_pipe_desc *)thread->base.swap_data; |
| bytes_copied = pipe_buffer_put(pipe, desc->buffer, |
| desc->bytes_to_xfer); |
| |
| desc->buffer += bytes_copied; |
| desc->bytes_to_xfer -= bytes_copied; |
| |
| /* Write request has been satisfied */ |
| pipe_thread_ready(thread); |
| |
| thread = (struct k_thread *)sys_dlist_get(&xfer_list); |
| } |
| |
| if (writer != NULL) { |
| desc = (struct k_pipe_desc *)writer->base.swap_data; |
| bytes_copied = pipe_buffer_put(pipe, desc->buffer, |
| desc->bytes_to_xfer); |
| |
| desc->buffer += bytes_copied; |
| desc->bytes_to_xfer -= bytes_copied; |
| } |
| |
| if (num_bytes_read == bytes_to_read) { |
| k_sched_unlock(); |
| |
| *bytes_read = num_bytes_read; |
| |
| return 0; |
| } |
| |
| /* Not all data was read. */ |
| |
| struct k_pipe_desc pipe_desc; |
| |
| pipe_desc.buffer = (u8_t *)data + num_bytes_read; |
| pipe_desc.bytes_to_xfer = bytes_to_read - num_bytes_read; |
| |
| if (timeout != K_NO_WAIT) { |
| _current->base.swap_data = &pipe_desc; |
| k_spinlock_key_t key = k_spin_lock(&pipe->lock); |
| |
| z_sched_unlock_no_reschedule(); |
| (void)z_pend_curr(&pipe->lock, key, |
| &pipe->wait_q.readers, timeout); |
| } else { |
| k_sched_unlock(); |
| } |
| |
| *bytes_read = bytes_to_read - pipe_desc.bytes_to_xfer; |
| |
| return pipe_return_code(min_xfer, pipe_desc.bytes_to_xfer, |
| bytes_to_read); |
| } |
| |
| #ifdef CONFIG_USERSPACE |
| int z_vrfy_k_pipe_get(struct k_pipe *pipe, void *data, size_t bytes_to_read, |
| size_t *bytes_read, size_t min_xfer, s32_t timeout) |
| { |
| Z_OOPS(Z_SYSCALL_OBJ(pipe, K_OBJ_PIPE)); |
| Z_OOPS(Z_SYSCALL_MEMORY_WRITE(bytes_read, sizeof(*bytes_read))); |
| Z_OOPS(Z_SYSCALL_MEMORY_WRITE((void *)data, bytes_to_read)); |
| Z_OOPS(Z_SYSCALL_VERIFY(min_xfer <= bytes_to_read)); |
| |
| return z_impl_k_pipe_get((struct k_pipe *)pipe, (void *)data, |
| bytes_to_read, bytes_read, min_xfer, |
| timeout); |
| } |
| #include <syscalls/k_pipe_get_mrsh.c> |
| #endif |
| |
| int z_impl_k_pipe_put(struct k_pipe *pipe, void *data, size_t bytes_to_write, |
| size_t *bytes_written, size_t min_xfer, s32_t timeout) |
| { |
| __ASSERT(min_xfer <= bytes_to_write, ""); |
| __ASSERT(bytes_written != NULL, ""); |
| |
| return z_pipe_put_internal(pipe, NULL, data, |
| bytes_to_write, bytes_written, |
| min_xfer, timeout); |
| } |
| |
| #ifdef CONFIG_USERSPACE |
| int z_vrfy_k_pipe_put(struct k_pipe *pipe, void *data, size_t bytes_to_write, |
| size_t *bytes_written, size_t min_xfer, s32_t timeout) |
| { |
| Z_OOPS(Z_SYSCALL_OBJ(pipe, K_OBJ_PIPE)); |
| Z_OOPS(Z_SYSCALL_MEMORY_WRITE(bytes_written, sizeof(*bytes_written))); |
| Z_OOPS(Z_SYSCALL_MEMORY_READ((void *)data, bytes_to_write)); |
| Z_OOPS(Z_SYSCALL_VERIFY(min_xfer <= bytes_to_write)); |
| |
| return z_impl_k_pipe_put((struct k_pipe *)pipe, (void *)data, |
| bytes_to_write, bytes_written, min_xfer, |
| timeout); |
| } |
| #include <syscalls/k_pipe_put_mrsh.c> |
| #endif |
| |
| #if (CONFIG_NUM_PIPE_ASYNC_MSGS > 0) |
| void k_pipe_block_put(struct k_pipe *pipe, struct k_mem_block *block, |
| size_t bytes_to_write, struct k_sem *sem) |
| { |
| struct k_pipe_async *async_desc; |
| size_t dummy_bytes_written; |
| |
| /* For simplicity, always allocate an asynchronous descriptor */ |
| pipe_async_alloc(&async_desc); |
| |
| async_desc->desc.block = &async_desc->desc.copy_block; |
| async_desc->desc.copy_block = *block; |
| async_desc->desc.sem = sem; |
| async_desc->thread.prio = k_thread_priority_get(_current); |
| #ifdef CONFIG_SMP |
| async_desc->thread.is_idle = 0; |
| #endif |
| |
| (void) z_pipe_put_internal(pipe, async_desc, block->data, |
| bytes_to_write, &dummy_bytes_written, |
| bytes_to_write, K_FOREVER); |
| } |
| #endif |