| /* |
| * Copyright (c) 2021 STMicroelectronics |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| #define LOG_DOMAIN flash_stm32l5 |
| #define LOG_LEVEL CONFIG_FLASH_LOG_LEVEL |
| #include <zephyr/logging/log.h> |
| LOG_MODULE_REGISTER(LOG_DOMAIN); |
| |
| #include <zephyr/kernel.h> |
| #include <zephyr/device.h> |
| #include <string.h> |
| #include <zephyr/drivers/flash.h> |
| #include <zephyr/init.h> |
| #include <soc.h> |
| #include <stm32_ll_icache.h> |
| #include <stm32_ll_system.h> |
| |
| #include "flash_stm32.h" |
| |
| #if defined(CONFIG_SOC_SERIES_STM32H5X) |
| /* at this time stm32h5 mcus have 128KB (stm32h50x) or 2MB (stm32h56x/57x) */ |
| #define STM32_SERIES_MAX_FLASH 2048 |
| #elif defined(CONFIG_SOC_SERIES_STM32L5X) |
| #define STM32_SERIES_MAX_FLASH 512 |
| #elif defined(CONFIG_SOC_SERIES_STM32U5X) |
| /* It is used to handle the 2 banks discontinuity case, the discontinuity is not happen on STM32U5, |
| * so define it to flash size to avoid the unexptected check. |
| */ |
| #define STM32_SERIES_MAX_FLASH (CONFIG_FLASH_SIZE) |
| #endif |
| |
| #define PAGES_PER_BANK ((FLASH_SIZE / FLASH_PAGE_SIZE) / 2) |
| |
| #define BANK2_OFFSET (KB(STM32_SERIES_MAX_FLASH) / 2) |
| |
| #define ICACHE_DISABLE_TIMEOUT_VALUE 1U /* 1ms */ |
| #define ICACHE_INVALIDATE_TIMEOUT_VALUE 1U /* 1ms */ |
| |
| static int stm32_icache_disable(void) |
| { |
| int status = 0; |
| uint32_t tickstart; |
| |
| LOG_DBG("I-cache Disable"); |
| /* Clear BSYENDF flag first and then disable the instruction cache |
| * that starts a cache invalidation procedure |
| */ |
| CLEAR_BIT(ICACHE->FCR, ICACHE_FCR_CBSYENDF); |
| |
| LL_ICACHE_Disable(); |
| |
| /* Get tick */ |
| tickstart = k_uptime_get_32(); |
| |
| /* Wait for instruction cache to get disabled */ |
| while (LL_ICACHE_IsEnabled()) { |
| if ((k_uptime_get_32() - tickstart) > |
| ICACHE_DISABLE_TIMEOUT_VALUE) { |
| /* New check to avoid false timeout detection in case |
| * of preemption. |
| */ |
| if (LL_ICACHE_IsEnabled()) { |
| status = -ETIMEDOUT; |
| break; |
| } |
| } |
| } |
| |
| return status; |
| } |
| |
| static void stm32_icache_enable(void) |
| { |
| LOG_DBG("I-cache Enable"); |
| LL_ICACHE_Enable(); |
| } |
| |
| static int icache_wait_for_invalidate_complete(void) |
| { |
| int status = -EIO; |
| uint32_t tickstart; |
| |
| /* Check if ongoing invalidation operation */ |
| if (LL_ICACHE_IsActiveFlag_BUSY()) { |
| /* Get tick */ |
| tickstart = k_uptime_get_32(); |
| |
| /* Wait for end of cache invalidation */ |
| while (!LL_ICACHE_IsActiveFlag_BSYEND()) { |
| if ((k_uptime_get_32() - tickstart) > |
| ICACHE_INVALIDATE_TIMEOUT_VALUE) { |
| break; |
| } |
| } |
| } |
| |
| /* Clear any pending flags */ |
| if (LL_ICACHE_IsActiveFlag_BSYEND()) { |
| LOG_DBG("I-cache Invalidation complete"); |
| |
| LL_ICACHE_ClearFlag_BSYEND(); |
| status = 0; |
| } else { |
| LOG_ERR("I-cache Invalidation timeout"); |
| |
| status = -ETIMEDOUT; |
| } |
| |
| if (LL_ICACHE_IsActiveFlag_ERR()) { |
| LOG_ERR("I-cache error"); |
| |
| LL_ICACHE_ClearFlag_ERR(); |
| status = -EIO; |
| } |
| |
| return status; |
| } |
| |
| /* Macro to check if the flash is Dual bank or not */ |
| #if defined(CONFIG_SOC_SERIES_STM32H5X) |
| #define stm32_flash_has_2_banks(flash_device) true |
| #else |
| #define stm32_flash_has_2_banks(flash_device) \ |
| (((FLASH_STM32_REGS(flash_device)->OPTR & FLASH_STM32_DBANK) \ |
| == FLASH_STM32_DBANK) \ |
| ? (true) : (false)) |
| #endif /* CONFIG_SOC_SERIES_STM32H5X */ |
| |
| /* |
| * offset and len must be aligned on write-block-size for write, |
| * positive and not beyond end of flash |
| */ |
| bool flash_stm32_valid_range(const struct device *dev, off_t offset, |
| uint32_t len, |
| bool write) |
| { |
| if (stm32_flash_has_2_banks(dev) && |
| (CONFIG_FLASH_SIZE < STM32_SERIES_MAX_FLASH)) { |
| /* |
| * In case of bank1/2 discontinuity, the range should not |
| * start before bank2 and end beyond bank1 at the same time. |
| * Locations beyond bank2 are caught by |
| * flash_stm32_range_exists. |
| */ |
| if ((offset < BANK2_OFFSET) && |
| (offset + len > FLASH_SIZE / 2)) { |
| return 0; |
| } |
| } |
| |
| if (write && !flash_stm32_valid_write(offset, len)) { |
| return false; |
| } |
| return flash_stm32_range_exists(dev, offset, len); |
| } |
| |
| static int write_nwords(const struct device *dev, off_t offset, const uint32_t *buff, size_t n) |
| { |
| FLASH_TypeDef *regs = FLASH_STM32_REGS(dev); |
| volatile uint32_t *flash = (uint32_t *)(offset |
| + FLASH_STM32_BASE_ADDRESS); |
| bool full_zero = true; |
| uint32_t tmp; |
| int rc; |
| int i; |
| |
| /* if the non-secure control register is locked,do not fail silently */ |
| if (regs->NSCR & FLASH_STM32_NSLOCK) { |
| LOG_ERR("NSCR locked\n"); |
| return -EIO; |
| } |
| |
| /* Check that no Flash main memory operation is ongoing */ |
| rc = flash_stm32_wait_flash_idle(dev); |
| if (rc < 0) { |
| return rc; |
| } |
| |
| /* Check if this double/quad word is erased and value isn't 0. |
| * |
| * It is allowed to write only zeros over an already written dword / qword |
| * See 6.3.7 in STM32L5 reference manual. |
| * See 7.3.7 in STM32U5 reference manual. |
| * See 7.3.5 in STM32H5 reference manual. |
| */ |
| for (i = 0; i < n; i++) { |
| if (buff[i] != 0) { |
| full_zero = false; |
| break; |
| } |
| } |
| if (!full_zero) { |
| for (i = 0; i < n; i++) { |
| if (flash[i] != 0xFFFFFFFFUL) { |
| LOG_ERR("Word at offs %ld not erased", (long)(offset + i)); |
| return -EIO; |
| } |
| } |
| } |
| |
| /* Set the NSPG bit */ |
| regs->NSCR |= FLASH_STM32_NSPG; |
| |
| /* Flush the register write */ |
| tmp = regs->NSCR; |
| |
| /* Perform the data write operation at the desired memory address */ |
| for (i = 0; i < n; i++) { |
| flash[i] = buff[i]; |
| } |
| |
| /* Wait until the NSBSY bit is cleared */ |
| rc = flash_stm32_wait_flash_idle(dev); |
| |
| /* Clear the NSPG bit */ |
| regs->NSCR &= (~FLASH_STM32_NSPG); |
| |
| return rc; |
| } |
| |
| static int erase_page(const struct device *dev, unsigned int offset) |
| { |
| FLASH_TypeDef *regs = FLASH_STM32_REGS(dev); |
| uint32_t tmp; |
| int rc; |
| int page; |
| |
| /* if the non-secure control register is locked,do not fail silently */ |
| if (regs->NSCR & FLASH_STM32_NSLOCK) { |
| LOG_ERR("NSCR locked\n"); |
| return -EIO; |
| } |
| |
| /* Check that no Flash memory operation is ongoing */ |
| rc = flash_stm32_wait_flash_idle(dev); |
| if (rc < 0) { |
| return rc; |
| } |
| |
| if (stm32_flash_has_2_banks(dev)) { |
| bool bank_swap; |
| /* Check whether bank1/2 are swapped */ |
| bank_swap = |
| ((regs->OPTR & FLASH_OPTR_SWAP_BANK) == FLASH_OPTR_SWAP_BANK); |
| |
| if ((offset < (FLASH_SIZE / 2)) && !bank_swap) { |
| /* The pages to be erased is in bank 1 */ |
| regs->NSCR &= ~FLASH_STM32_NSBKER_MSK; |
| page = offset / FLASH_PAGE_SIZE; |
| LOG_DBG("Erase page %d on bank 1", page); |
| } else if ((offset >= BANK2_OFFSET) && bank_swap) { |
| /* The pages to be erased is in bank 1 */ |
| regs->NSCR &= ~FLASH_STM32_NSBKER_MSK; |
| page = (offset - BANK2_OFFSET) / FLASH_PAGE_SIZE; |
| LOG_DBG("Erase page %d on bank 1", page); |
| } else if ((offset < (FLASH_SIZE / 2)) && bank_swap) { |
| /* The pages to be erased is in bank 2 */ |
| regs->NSCR |= FLASH_STM32_NSBKER; |
| page = offset / FLASH_PAGE_SIZE; |
| LOG_DBG("Erase page %d on bank 2", page); |
| } else if ((offset >= BANK2_OFFSET) && !bank_swap) { |
| /* The pages to be erased is in bank 2 */ |
| regs->NSCR |= FLASH_STM32_NSBKER; |
| page = (offset - BANK2_OFFSET) / FLASH_PAGE_SIZE; |
| LOG_DBG("Erase page %d on bank 2", page); |
| } else { |
| LOG_ERR("Offset %d does not exist", offset); |
| return -EINVAL; |
| } |
| } else { |
| page = offset / FLASH_PAGE_SIZE_128_BITS; |
| LOG_DBG("Erase page %d\n", page); |
| } |
| |
| /* Set the NSPER bit and select the page you wish to erase */ |
| regs->NSCR |= FLASH_STM32_NSPER; |
| regs->NSCR &= ~FLASH_STM32_NSPNB_MSK; |
| regs->NSCR |= (page << FLASH_STM32_NSPNB_POS); |
| |
| /* Set the NSSTRT bit */ |
| regs->NSCR |= FLASH_STM32_NSSTRT; |
| |
| /* flush the register write */ |
| tmp = regs->NSCR; |
| |
| /* Wait for the NSBSY bit */ |
| rc = flash_stm32_wait_flash_idle(dev); |
| |
| if (stm32_flash_has_2_banks(dev)) { |
| regs->NSCR &= ~(FLASH_STM32_NSPER | FLASH_STM32_NSBKER); |
| } else { |
| regs->NSCR &= ~(FLASH_STM32_NSPER); |
| } |
| |
| return rc; |
| } |
| |
| int flash_stm32_block_erase_loop(const struct device *dev, |
| unsigned int offset, |
| unsigned int len) |
| { |
| unsigned int address = offset; |
| int rc = 0; |
| bool icache_enabled = LL_ICACHE_IsEnabled(); |
| |
| if (icache_enabled) { |
| /* Disable icache, this will start the invalidation procedure. |
| * All changes(erase/write) to flash memory should happen when |
| * i-cache is disabled. A write to flash performed without |
| * disabling i-cache will set ERRF error flag in SR register. |
| */ |
| rc = stm32_icache_disable(); |
| if (rc != 0) { |
| return rc; |
| } |
| } |
| |
| for (; address <= offset + len - 1 ; address += FLASH_PAGE_SIZE) { |
| rc = erase_page(dev, address); |
| if (rc < 0) { |
| break; |
| } |
| } |
| |
| if (icache_enabled) { |
| /* Since i-cache was disabled, this would start the |
| * invalidation procedure, so wait for completion. |
| */ |
| rc = icache_wait_for_invalidate_complete(); |
| |
| /* I-cache should be enabled only after the |
| * invalidation is complete. |
| */ |
| stm32_icache_enable(); |
| } |
| |
| return rc; |
| } |
| |
| int flash_stm32_write_range(const struct device *dev, unsigned int offset, |
| const void *data, unsigned int len) |
| { |
| int i, rc = 0; |
| bool icache_enabled = LL_ICACHE_IsEnabled(); |
| |
| if (icache_enabled) { |
| /* Disable icache, this will start the invalidation procedure. |
| * All changes(erase/write) to flash memory should happen when |
| * i-cache is disabled. A write to flash performed without |
| * disabling i-cache will set ERRF error flag in SR register. |
| */ |
| rc = stm32_icache_disable(); |
| if (rc != 0) { |
| return rc; |
| } |
| } |
| |
| for (i = 0; i < len; i += FLASH_STM32_WRITE_BLOCK_SIZE) { |
| rc = write_nwords(dev, offset + i, ((const uint32_t *) data + (i>>2)), |
| FLASH_STM32_WRITE_BLOCK_SIZE / 4); |
| if (rc < 0) { |
| break; |
| } |
| } |
| |
| if (icache_enabled) { |
| int rc2; |
| |
| /* Since i-cache was disabled, this would start the |
| * invalidation procedure, so wait for completion. |
| */ |
| rc2 = icache_wait_for_invalidate_complete(); |
| |
| if (!rc) { |
| rc = rc2; |
| } |
| |
| /* I-cache should be enabled only after the |
| * invalidation is complete. |
| */ |
| stm32_icache_enable(); |
| } |
| |
| return rc; |
| } |
| |
| void flash_stm32_page_layout(const struct device *dev, |
| const struct flash_pages_layout **layout, |
| size_t *layout_size) |
| { |
| static struct flash_pages_layout stm32_flash_layout[3]; |
| static size_t stm32_flash_layout_size; |
| |
| *layout = stm32_flash_layout; |
| |
| if (stm32_flash_layout[0].pages_count != 0) { |
| /* Short circuit calculation logic if already performed (size is known) */ |
| *layout_size = stm32_flash_layout_size; |
| return; |
| } |
| |
| if (stm32_flash_has_2_banks(dev) && |
| (CONFIG_FLASH_SIZE < STM32_SERIES_MAX_FLASH)) { |
| /* |
| * For stm32l552xx with 256 kB flash |
| * which have space between banks 1 and 2. |
| */ |
| |
| /* Bank1 */ |
| stm32_flash_layout[0].pages_count = PAGES_PER_BANK; |
| stm32_flash_layout[0].pages_size = FLASH_PAGE_SIZE; |
| |
| /* Dummy page corresponding to space between banks 1 and 2 */ |
| stm32_flash_layout[1].pages_count = 1; |
| stm32_flash_layout[1].pages_size = BANK2_OFFSET |
| - (PAGES_PER_BANK * FLASH_PAGE_SIZE); |
| |
| /* Bank2 */ |
| stm32_flash_layout[2].pages_count = PAGES_PER_BANK; |
| stm32_flash_layout[2].pages_size = FLASH_PAGE_SIZE; |
| |
| stm32_flash_layout_size = ARRAY_SIZE(stm32_flash_layout); |
| } else { |
| /* |
| * For stm32l562xx & stm32l552xx with 512 flash or stm32u5x, |
| * which has no space between banks 1 and 2. |
| */ |
| |
| if (stm32_flash_has_2_banks(dev)) { |
| /* L5 flash with dualbank has 2k pages */ |
| /* U5 flash pages are always 8 kB in size */ |
| /* H5 flash pages are always 8 kB in size */ |
| /* Considering one layout of full flash size, even with 2 banks */ |
| stm32_flash_layout[0].pages_count = FLASH_SIZE / FLASH_PAGE_SIZE; |
| stm32_flash_layout[0].pages_size = FLASH_PAGE_SIZE; |
| #if defined(CONFIG_SOC_SERIES_STM32L5X) |
| } else { |
| /* L5 flash without dualbank has 4k pages */ |
| stm32_flash_layout[0].pages_count = FLASH_PAGE_NB_128_BITS; |
| stm32_flash_layout[0].pages_size = FLASH_PAGE_SIZE_128_BITS; |
| #endif /* CONFIG_SOC_SERIES_STM32L5X */ |
| } |
| |
| /* |
| * In this case the stm32_flash_layout table has one single element |
| * when read by the flash_get_page_info() |
| */ |
| stm32_flash_layout_size = 1; |
| } |
| |
| *layout_size = stm32_flash_layout_size; |
| } |