blob: f77710b3e08d05907866ca91ff0a25bdab50ad91 [file] [log] [blame]
/* conn.c - Bluetooth connection handling */
/*
* Copyright (c) 2015-2016 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/kernel.h>
#include <string.h>
#include <errno.h>
#include <stdbool.h>
#include <zephyr/sys/atomic.h>
#include <zephyr/sys/byteorder.h>
#include <zephyr/sys/check.h>
#include <zephyr/sys/iterable_sections.h>
#include <zephyr/sys/util.h>
#include <zephyr/sys/util_macro.h>
#include <zephyr/sys/slist.h>
#include <zephyr/debug/stack.h>
#include <zephyr/sys/__assert.h>
#include <zephyr/bluetooth/hci.h>
#include <zephyr/bluetooth/bluetooth.h>
#include <zephyr/bluetooth/direction.h>
#include <zephyr/bluetooth/conn.h>
#include <zephyr/drivers/bluetooth/hci_driver.h>
#include <zephyr/bluetooth/att.h>
#include "common/assert.h"
#include "common/bt_str.h"
#include "buf_view.h"
#include "addr_internal.h"
#include "hci_core.h"
#include "id.h"
#include "adv.h"
#include "scan.h"
#include "conn_internal.h"
#include "l2cap_internal.h"
#include "keys.h"
#include "smp.h"
#include "classic/ssp.h"
#include "att_internal.h"
#include "iso_internal.h"
#include "direction_internal.h"
#include "classic/sco_internal.h"
#define LOG_LEVEL CONFIG_BT_CONN_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(bt_conn);
K_FIFO_DEFINE(free_tx);
#if defined(CONFIG_BT_CONN_TX_NOTIFY_WQ)
static struct k_work_q conn_tx_workq;
static K_KERNEL_STACK_DEFINE(conn_tx_workq_thread_stack, CONFIG_BT_CONN_TX_NOTIFY_WQ_STACK_SIZE);
#endif /* CONFIG_BT_CONN_TX_NOTIFY_WQ */
static void tx_free(struct bt_conn_tx *tx);
static void conn_tx_destroy(struct bt_conn *conn, struct bt_conn_tx *tx)
{
__ASSERT_NO_MSG(tx);
bt_conn_tx_cb_t cb = tx->cb;
void *user_data = tx->user_data;
LOG_DBG("conn %p tx %p cb %p ud %p", conn, tx, cb, user_data);
/* Free up TX metadata before calling callback in case the callback
* tries to allocate metadata
*/
tx_free(tx);
if (cb) {
cb(conn, user_data, -ESHUTDOWN);
}
}
#if defined(CONFIG_BT_CONN_TX)
static void tx_complete_work(struct k_work *work);
#endif /* CONFIG_BT_CONN_TX */
static void notify_recycled_conn_slot(void);
void bt_tx_irq_raise(void);
/* Group Connected BT_CONN only in this */
#if defined(CONFIG_BT_CONN)
/* Peripheral timeout to initialize Connection Parameter Update procedure */
#define CONN_UPDATE_TIMEOUT K_MSEC(CONFIG_BT_CONN_PARAM_UPDATE_TIMEOUT)
static void deferred_work(struct k_work *work);
static void notify_connected(struct bt_conn *conn);
static struct bt_conn acl_conns[CONFIG_BT_MAX_CONN];
NET_BUF_POOL_DEFINE(acl_tx_pool, CONFIG_BT_L2CAP_TX_BUF_COUNT,
BT_L2CAP_BUF_SIZE(CONFIG_BT_L2CAP_TX_MTU),
CONFIG_BT_CONN_TX_USER_DATA_SIZE, NULL);
#if defined(CONFIG_BT_SMP) || defined(CONFIG_BT_CLASSIC)
const struct bt_conn_auth_cb *bt_auth;
sys_slist_t bt_auth_info_cbs = SYS_SLIST_STATIC_INIT(&bt_auth_info_cbs);
#endif /* CONFIG_BT_SMP || CONFIG_BT_CLASSIC */
static sys_slist_t conn_cbs = SYS_SLIST_STATIC_INIT(&conn_cbs);
static struct bt_conn_tx conn_tx[CONFIG_BT_CONN_TX_MAX];
#if defined(CONFIG_BT_CLASSIC)
static int bt_hci_connect_br_cancel(struct bt_conn *conn);
static struct bt_conn sco_conns[CONFIG_BT_MAX_SCO_CONN];
#endif /* CONFIG_BT_CLASSIC */
#endif /* CONFIG_BT_CONN */
#if defined(CONFIG_BT_CONN_TX)
void frag_destroy(struct net_buf *buf);
/* Storage for fragments (views) into the upper layers' PDUs. */
/* TODO: remove user-data requirements */
NET_BUF_POOL_FIXED_DEFINE(fragments, CONFIG_BT_CONN_FRAG_COUNT, 0,
CONFIG_BT_CONN_TX_USER_DATA_SIZE, frag_destroy);
struct frag_md {
struct bt_buf_view_meta view_meta;
};
struct frag_md frag_md_pool[CONFIG_BT_CONN_FRAG_COUNT];
struct frag_md *get_frag_md(struct net_buf *fragment)
{
return &frag_md_pool[net_buf_id(fragment)];
}
void frag_destroy(struct net_buf *frag)
{
/* allow next view to be allocated (and unlock the parent buf) */
bt_buf_destroy_view(frag, &get_frag_md(frag)->view_meta);
LOG_DBG("");
/* Kick the TX processor to send the rest of the frags. */
bt_tx_irq_raise();
}
static struct net_buf *get_data_frag(struct net_buf *outside, size_t winsize)
{
struct net_buf *window;
__ASSERT_NO_MSG(!bt_buf_has_view(outside));
/* Keeping a ref is the caller's responsibility */
window = net_buf_alloc_len(&fragments, 0, K_NO_WAIT);
if (!window) {
return window;
}
window = bt_buf_make_view(window, outside,
winsize, &get_frag_md(window)->view_meta);
LOG_DBG("get-acl-frag: outside %p window %p size %zu", outside, window, winsize);
return window;
}
#else /* !CONFIG_BT_CONN_TX */
static struct net_buf *get_data_frag(struct net_buf *outside, size_t winsize)
{
ARG_UNUSED(outside);
ARG_UNUSED(winsize);
/* This will never get called. It's only to allow compilation to take
* place and the later linker stage to remove this implementation.
*/
return NULL;
}
#endif /* CONFIG_BT_CONN_TX */
#if defined(CONFIG_BT_ISO)
extern struct bt_conn iso_conns[CONFIG_BT_ISO_MAX_CHAN];
/* Callback TX buffers for ISO */
static struct bt_conn_tx iso_tx[CONFIG_BT_ISO_TX_BUF_COUNT];
int bt_conn_iso_init(void)
{
for (size_t i = 0; i < ARRAY_SIZE(iso_tx); i++) {
k_fifo_put(&free_tx, &iso_tx[i]);
}
return 0;
}
#endif /* CONFIG_BT_ISO */
struct k_sem *bt_conn_get_pkts(struct bt_conn *conn)
{
#if defined(CONFIG_BT_CLASSIC)
if (conn->type == BT_CONN_TYPE_BR || !bt_dev.le.acl_mtu) {
return &bt_dev.br.pkts;
}
#endif /* CONFIG_BT_CLASSIC */
#if defined(CONFIG_BT_ISO)
/* Use ISO pkts semaphore if LE Read Buffer Size command returned
* dedicated ISO buffers.
*/
if (conn->type == BT_CONN_TYPE_ISO) {
if (bt_dev.le.iso_mtu && bt_dev.le.iso_limit != 0) {
return &bt_dev.le.iso_pkts;
}
return NULL;
}
#endif /* CONFIG_BT_ISO */
#if defined(CONFIG_BT_CONN)
if (bt_dev.le.acl_mtu) {
return &bt_dev.le.acl_pkts;
}
#endif /* CONFIG_BT_CONN */
return NULL;
}
static inline const char *state2str(bt_conn_state_t state)
{
switch (state) {
case BT_CONN_DISCONNECTED:
return "disconnected";
case BT_CONN_DISCONNECT_COMPLETE:
return "disconnect-complete";
case BT_CONN_INITIATING:
return "initiating";
case BT_CONN_SCAN_BEFORE_INITIATING:
return "scan-before-initiating";
case BT_CONN_INITIATING_FILTER_LIST:
return "initiating-filter-list";
case BT_CONN_ADV_CONNECTABLE:
return "adv-connectable";
case BT_CONN_ADV_DIR_CONNECTABLE:
return "adv-dir-connectable";
case BT_CONN_CONNECTED:
return "connected";
case BT_CONN_DISCONNECTING:
return "disconnecting";
default:
return "(unknown)";
}
}
static void tx_free(struct bt_conn_tx *tx)
{
LOG_DBG("%p", tx);
tx->cb = NULL;
tx->user_data = NULL;
k_fifo_put(&free_tx, tx);
}
#if defined(CONFIG_BT_CONN_TX)
static struct k_work_q *tx_notify_workqueue_get(void)
{
#if defined(CONFIG_BT_CONN_TX_NOTIFY_WQ)
return &conn_tx_workq;
#else
return &k_sys_work_q;
#endif /* CONFIG_BT_CONN_TX_NOTIFY_WQ */
}
static void tx_notify_process(struct bt_conn *conn)
{
/* TX notify processing is done only from a single thread. */
__ASSERT_NO_MSG(k_current_get() == k_work_queue_thread_get(tx_notify_workqueue_get()));
LOG_DBG("conn %p", (void *)conn);
while (1) {
struct bt_conn_tx *tx = NULL;
unsigned int key;
bt_conn_tx_cb_t cb;
void *user_data;
key = irq_lock();
if (!sys_slist_is_empty(&conn->tx_complete)) {
const sys_snode_t *node = sys_slist_get_not_empty(&conn->tx_complete);
tx = CONTAINER_OF(node, struct bt_conn_tx, node);
}
irq_unlock(key);
if (!tx) {
return;
}
LOG_DBG("tx %p cb %p user_data %p", tx, tx->cb, tx->user_data);
/* Copy over the params */
cb = tx->cb;
user_data = tx->user_data;
/* Free up TX notify since there may be user waiting */
tx_free(tx);
/* Run the callback, at this point it should be safe to
* allocate new buffers since the TX should have been
* unblocked by tx_free.
*/
if (cb) {
cb(conn, user_data, 0);
}
LOG_DBG("raise TX IRQ");
bt_tx_irq_raise();
}
}
#endif /* CONFIG_BT_CONN_TX */
void bt_conn_tx_notify(struct bt_conn *conn, bool wait_for_completion)
{
#if defined(CONFIG_BT_CONN_TX)
/* Ensure that function is called only from a single context. */
if (k_current_get() == k_work_queue_thread_get(tx_notify_workqueue_get())) {
tx_notify_process(conn);
} else {
struct k_work_sync sync;
int err;
err = k_work_submit_to_queue(tx_notify_workqueue_get(), &conn->tx_complete_work);
__ASSERT(err >= 0, "couldn't submit (err %d)", err);
if (wait_for_completion) {
(void)k_work_flush(&conn->tx_complete_work, &sync);
}
}
#else
ARG_UNUSED(conn);
ARG_UNUSED(wait_for_completion);
#endif /* CONFIG_BT_CONN_TX */
}
struct bt_conn *bt_conn_new(struct bt_conn *conns, size_t size)
{
struct bt_conn *conn = NULL;
int i;
for (i = 0; i < size; i++) {
if (atomic_cas(&conns[i].ref, 0, 1)) {
conn = &conns[i];
break;
}
}
if (!conn) {
return NULL;
}
(void)memset(conn, 0, offsetof(struct bt_conn, ref));
#if defined(CONFIG_BT_CONN)
k_work_init_delayable(&conn->deferred_work, deferred_work);
#endif /* CONFIG_BT_CONN */
#if defined(CONFIG_BT_CONN_TX)
k_work_init(&conn->tx_complete_work, tx_complete_work);
#endif /* CONFIG_BT_CONN_TX */
return conn;
}
void bt_conn_reset_rx_state(struct bt_conn *conn)
{
if (!conn->rx) {
return;
}
net_buf_unref(conn->rx);
conn->rx = NULL;
}
static void bt_acl_recv(struct bt_conn *conn, struct net_buf *buf, uint8_t flags)
{
uint16_t acl_total_len;
bt_acl_set_ncp_sent(buf, false);
/* Check packet boundary flags */
switch (flags) {
case BT_ACL_START:
if (conn->rx) {
LOG_ERR("Unexpected first L2CAP frame");
bt_conn_reset_rx_state(conn);
}
LOG_DBG("First, len %u final %u", buf->len,
(buf->len < sizeof(uint16_t)) ? 0 : sys_get_le16(buf->data));
conn->rx = net_buf_ref(buf);
break;
case BT_ACL_CONT:
if (!conn->rx) {
LOG_ERR("Unexpected L2CAP continuation");
bt_conn_reset_rx_state(conn);
net_buf_unref(buf);
return;
}
if (!buf->len) {
LOG_DBG("Empty ACL_CONT");
net_buf_unref(buf);
return;
}
if (buf->len > net_buf_tailroom(conn->rx)) {
LOG_ERR("Not enough buffer space for L2CAP data");
/* Frame is not complete but we still pass it to L2CAP
* so that it may handle error on protocol level
* eg disconnect channel.
*/
bt_l2cap_recv(conn, conn->rx, false);
conn->rx = NULL;
net_buf_unref(buf);
return;
}
net_buf_add_mem(conn->rx, buf->data, buf->len);
break;
default:
/* BT_ACL_START_NO_FLUSH and BT_ACL_COMPLETE are not allowed on
* LE-U from Controller to Host.
* Only BT_ACL_POINT_TO_POINT is supported.
*/
LOG_ERR("Unexpected ACL flags (0x%02x)", flags);
bt_conn_reset_rx_state(conn);
net_buf_unref(buf);
return;
}
if (conn->rx->len < sizeof(uint16_t)) {
/* Still not enough data received to retrieve the L2CAP header
* length field.
*/
bt_send_one_host_num_completed_packets(conn->handle);
bt_acl_set_ncp_sent(buf, true);
net_buf_unref(buf);
return;
}
acl_total_len = sys_get_le16(conn->rx->data) + sizeof(struct bt_l2cap_hdr);
if (conn->rx->len < acl_total_len) {
/* L2CAP frame not complete. */
bt_send_one_host_num_completed_packets(conn->handle);
bt_acl_set_ncp_sent(buf, true);
net_buf_unref(buf);
return;
}
net_buf_unref(buf);
if (conn->rx->len > acl_total_len) {
LOG_ERR("ACL len mismatch (%u > %u)", conn->rx->len, acl_total_len);
bt_conn_reset_rx_state(conn);
return;
}
/* L2CAP frame complete. */
buf = conn->rx;
conn->rx = NULL;
__ASSERT(buf->ref == 1, "buf->ref %d", buf->ref);
LOG_DBG("Successfully parsed %u byte L2CAP packet", buf->len);
bt_l2cap_recv(conn, buf, true);
}
void bt_conn_recv(struct bt_conn *conn, struct net_buf *buf, uint8_t flags)
{
/* Make sure we notify any pending TX callbacks before processing
* new data for this connection.
*
* Always do so from the same context for sanity. In this case that will
* be either a dedicated Bluetooth connection TX workqueue or system workqueue.
*/
bt_conn_tx_notify(conn, true);
LOG_DBG("handle %u len %u flags %02x", conn->handle, buf->len, flags);
if (IS_ENABLED(CONFIG_BT_ISO_RX) && conn->type == BT_CONN_TYPE_ISO) {
bt_iso_recv(conn, buf, flags);
return;
} else if (IS_ENABLED(CONFIG_BT_CONN)) {
bt_acl_recv(conn, buf, flags);
} else {
__ASSERT(false, "Invalid connection type %u", conn->type);
}
}
static bool dont_have_tx_context(struct bt_conn *conn)
{
return k_fifo_is_empty(&free_tx);
}
static struct bt_conn_tx *conn_tx_alloc(void)
{
struct bt_conn_tx *ret = k_fifo_get(&free_tx, K_NO_WAIT);
LOG_DBG("%p", ret);
return ret;
}
enum {
FRAG_START,
FRAG_CONT,
FRAG_SINGLE,
FRAG_END
};
static int send_acl(struct bt_conn *conn, struct net_buf *buf, uint8_t flags)
{
struct bt_hci_acl_hdr *hdr;
switch (flags) {
case FRAG_START:
case FRAG_SINGLE:
flags = BT_ACL_START_NO_FLUSH;
break;
case FRAG_CONT:
case FRAG_END:
flags = BT_ACL_CONT;
break;
default:
return -EINVAL;
}
hdr = net_buf_push(buf, sizeof(*hdr));
hdr->handle = sys_cpu_to_le16(bt_acl_handle_pack(conn->handle, flags));
hdr->len = sys_cpu_to_le16(buf->len - sizeof(*hdr));
bt_buf_set_type(buf, BT_BUF_ACL_OUT);
return bt_send(buf);
}
static enum bt_iso_timestamp contains_iso_timestamp(struct net_buf *buf)
{
enum bt_iso_timestamp ts;
if (net_buf_headroom(buf) ==
(BT_BUF_ISO_SIZE(0) - sizeof(struct bt_hci_iso_sdu_ts_hdr))) {
ts = BT_ISO_TS_PRESENT;
} else {
ts = BT_ISO_TS_ABSENT;
}
return ts;
}
static int send_iso(struct bt_conn *conn, struct net_buf *buf, uint8_t flags)
{
struct bt_hci_iso_hdr *hdr;
enum bt_iso_timestamp ts;
switch (flags) {
case FRAG_START:
flags = BT_ISO_START;
break;
case FRAG_CONT:
flags = BT_ISO_CONT;
break;
case FRAG_SINGLE:
flags = BT_ISO_SINGLE;
break;
case FRAG_END:
flags = BT_ISO_END;
break;
default:
return -EINVAL;
}
/* The TS bit is set by `iso.c:conn_iso_send`. This special byte
* prepends the whole SDU, and won't be there for individual fragments.
*
* Conveniently, it is only legal to set the TS bit on the first HCI
* fragment, so we don't have to pass this extra metadata around for
* every fragment, only the first one.
*/
if (flags == BT_ISO_SINGLE || flags == BT_ISO_START) {
ts = contains_iso_timestamp(buf);
} else {
ts = BT_ISO_TS_ABSENT;
}
hdr = net_buf_push(buf, sizeof(*hdr));
hdr->handle = sys_cpu_to_le16(bt_iso_handle_pack(conn->handle, flags, ts));
hdr->len = sys_cpu_to_le16(buf->len - sizeof(*hdr));
bt_buf_set_type(buf, BT_BUF_ISO_OUT);
return bt_send(buf);
}
static inline uint16_t conn_mtu(struct bt_conn *conn)
{
#if defined(CONFIG_BT_CLASSIC)
if (conn->type == BT_CONN_TYPE_BR ||
(conn->type != BT_CONN_TYPE_ISO && !bt_dev.le.acl_mtu)) {
return bt_dev.br.mtu;
}
#endif /* CONFIG_BT_CLASSIC */
#if defined(CONFIG_BT_ISO)
if (conn->type == BT_CONN_TYPE_ISO) {
return bt_dev.le.iso_mtu;
}
#endif /* CONFIG_BT_ISO */
#if defined(CONFIG_BT_CONN)
return bt_dev.le.acl_mtu;
#else
return 0;
#endif /* CONFIG_BT_CONN */
}
static bool is_classic_conn(struct bt_conn *conn)
{
return (IS_ENABLED(CONFIG_BT_CLASSIC) &&
conn->type == BT_CONN_TYPE_BR);
}
static bool is_iso_tx_conn(struct bt_conn *conn)
{
return IS_ENABLED(CONFIG_BT_ISO_TX) &&
conn->type == BT_CONN_TYPE_ISO;
}
static bool is_le_conn(struct bt_conn *conn)
{
return IS_ENABLED(CONFIG_BT_CONN) && conn->type == BT_CONN_TYPE_LE;
}
static bool is_acl_conn(struct bt_conn *conn)
{
return is_le_conn(conn) || is_classic_conn(conn);
}
static int send_buf(struct bt_conn *conn, struct net_buf *buf,
size_t len, void *cb, void *ud)
{
struct net_buf *frag = NULL;
struct bt_conn_tx *tx = NULL;
uint8_t flags;
int err;
if (buf->len == 0) {
__ASSERT_NO_MSG(0);
return -EMSGSIZE;
}
if (bt_buf_has_view(buf)) {
__ASSERT_NO_MSG(0);
return -EIO;
}
LOG_DBG("conn %p buf %p len %zu buf->len %u cb %p ud %p",
conn, buf, len, buf->len, cb, ud);
/* Acquire the right to send 1 packet to the controller */
if (k_sem_take(bt_conn_get_pkts(conn), K_NO_WAIT)) {
/* This shouldn't happen now that we acquire the resources
* before calling `send_buf` (in `get_conn_ready`). We say
* "acquire" as `tx_processor()` is not re-entrant and the
* thread is non-preemptible. So the sem value shouldn't change.
*/
__ASSERT(0, "No controller bufs");
return -ENOMEM;
}
/* Allocate and set the TX context */
tx = conn_tx_alloc();
/* See big comment above */
if (!tx) {
__ASSERT(0, "No TX context");
return -ENOMEM;
}
tx->cb = cb;
tx->user_data = ud;
uint16_t frag_len = MIN(conn_mtu(conn), len);
__ASSERT_NO_MSG(buf->ref == 1);
if (buf->len > frag_len) {
LOG_DBG("keep %p around", buf);
frag = get_data_frag(net_buf_ref(buf), frag_len);
} else {
LOG_DBG("move %p ref in", buf);
/* Move the ref into `frag` for the last TX. That way `buf` will
* get destroyed when `frag` is destroyed.
*/
frag = get_data_frag(buf, frag_len);
}
/* Caller is supposed to check we have all resources to send */
__ASSERT_NO_MSG(frag != NULL);
/* If the current buffer doesn't fit a controller buffer */
if (len > conn_mtu(conn)) {
flags = conn->next_is_frag ? FRAG_CONT : FRAG_START;
conn->next_is_frag = true;
} else {
flags = conn->next_is_frag ? FRAG_END : FRAG_SINGLE;
conn->next_is_frag = false;
}
LOG_DBG("send frag: buf %p len %d", buf, frag_len);
/* At this point, the buffer is either a fragment or a full HCI packet.
* The flags are also valid.
*/
LOG_DBG("conn %p buf %p len %u flags 0x%02x",
conn, frag, frag->len, flags);
/* Keep track of sent buffers. We have to append _before_
* sending, as we might get pre-empted if the HCI driver calls
* k_yield() before returning.
*
* In that case, the controller could also send a num-complete-packets
* event and our handler will be confused that there is no corresponding
* callback node in the `tx_pending` list.
*/
atomic_inc(&conn->in_ll);
sys_slist_append(&conn->tx_pending, &tx->node);
if (is_iso_tx_conn(conn)) {
err = send_iso(conn, frag, flags);
} else if (is_acl_conn(conn)) {
err = send_acl(conn, frag, flags);
} else {
err = -EINVAL; /* Some animals disable asserts (╯°□°)╯︵ ┻━┻ */
__ASSERT(false, "Invalid connection type %u", conn->type);
}
if (!err) {
return 0;
}
/* Remove buf from pending list */
atomic_dec(&conn->in_ll);
(void)sys_slist_find_and_remove(&conn->tx_pending, &tx->node);
LOG_ERR("Unable to send to driver (err %d)", err);
/* If we get here, something has seriously gone wrong: the `parent` buf
* (of which the current fragment belongs) should also be destroyed.
*/
net_buf_unref(frag);
/* `buf` might not get destroyed right away, and its `tx`
* pointer will still be reachable. Make sure that we don't try
* to use the destroyed context later.
*/
conn_tx_destroy(conn, tx);
k_sem_give(bt_conn_get_pkts(conn));
/* Merge HCI driver errors */
return -EIO;
}
static struct k_poll_signal conn_change =
K_POLL_SIGNAL_INITIALIZER(conn_change);
static void conn_destroy(struct bt_conn *conn, void *data)
{
if (conn->state == BT_CONN_CONNECTED ||
conn->state == BT_CONN_DISCONNECTING) {
bt_conn_set_state(conn, BT_CONN_DISCONNECT_COMPLETE);
}
if (conn->state != BT_CONN_DISCONNECTED) {
bt_conn_set_state(conn, BT_CONN_DISCONNECTED);
}
}
void bt_conn_cleanup_all(void)
{
bt_conn_foreach(BT_CONN_TYPE_ALL, conn_destroy, NULL);
}
#if defined(CONFIG_BT_CONN)
/* Returns true if L2CAP has data to send on this conn */
static bool acl_has_data(struct bt_conn *conn)
{
return sys_slist_peek_head(&conn->l2cap_data_ready) != NULL;
}
#endif /* defined(CONFIG_BT_CONN) */
/* Connection "Scheduler" of sorts:
*
* Will try to get the optimal number of queued buffers for the connection.
*
* Partitions the controller's buffers to each connection according to some
* heuristic. This is made to be tunable, fairness, simplicity, throughput etc.
*
* In the future, this will be a hook exposed to the application.
*/
static bool should_stop_tx(struct bt_conn *conn)
{
LOG_DBG("%p", conn);
if (conn->state != BT_CONN_CONNECTED) {
return true;
}
/* TODO: This function should be overridable by the application: they
* should be able to provide their own heuristic.
*/
if (!conn->has_data(conn)) {
LOG_DBG("No more data for %p", conn);
return true;
}
/* Queue only 3 buffers per-conn for now */
if (atomic_get(&conn->in_ll) < 3) {
/* The goal of this heuristic is to allow the link-layer to
* extend an ACL connection event as long as the application
* layer can provide data.
*
* Here we chose three buffers, as some LLs need two enqueued
* packets to be able to set the more-data bit, and one more
* buffer to allow refilling by the app while one of them is
* being sent over-the-air.
*/
return false;
}
return true;
}
void bt_conn_data_ready(struct bt_conn *conn)
{
LOG_DBG("DR");
/* The TX processor will call the `pull_cb` to get the buf */
if (!atomic_set(&conn->_conn_ready_lock, 1)) {
/* Attach a reference to the `bt_dev.le.conn_ready` list.
*
* This reference will be consumed when the conn is popped off
* the list (in `get_conn_ready`).
*/
bt_conn_ref(conn);
sys_slist_append(&bt_dev.le.conn_ready,
&conn->_conn_ready);
LOG_DBG("raised");
} else {
LOG_DBG("already in list");
}
/* Kick the TX processor */
bt_tx_irq_raise();
}
static bool cannot_send_to_controller(struct bt_conn *conn)
{
return k_sem_count_get(bt_conn_get_pkts(conn)) == 0;
}
static bool dont_have_viewbufs(void)
{
#if defined(CONFIG_BT_CONN_TX)
/* The LIFO only tracks buffers that have been destroyed at least once,
* hence the uninit check beforehand.
*/
if (fragments.uninit_count > 0) {
/* If there are uninitialized bufs, we are guaranteed allocation. */
return false;
}
/* In practice k_fifo == k_lifo ABI. */
return k_fifo_is_empty(&fragments.free);
#else /* !CONFIG_BT_CONN_TX */
return false;
#endif /* CONFIG_BT_CONN_TX */
}
__maybe_unused static bool dont_have_methods(struct bt_conn *conn)
{
return (conn->tx_data_pull == NULL) ||
(conn->get_and_clear_cb == NULL) ||
(conn->has_data == NULL);
}
struct bt_conn *get_conn_ready(void)
{
/* Here we only peek: we pop the conn (and insert it at the back if it
* still has data) after the QoS function returns false.
*/
sys_snode_t *node = sys_slist_peek_head(&bt_dev.le.conn_ready);
if (node == NULL) {
return NULL;
}
/* `conn` borrows from the list node. That node is _not_ popped yet.
*
* If we end up not popping that conn off the list, we have to make sure
* to increase the refcount before returning a pointer to that
* connection out of this function.
*/
struct bt_conn *conn = CONTAINER_OF(node, struct bt_conn, _conn_ready);
if (dont_have_viewbufs()) {
/* We will get scheduled again when the (view) buffers are freed. If you
* hit this a lot, try increasing `CONFIG_BT_CONN_FRAG_COUNT`
*/
LOG_DBG("no view bufs");
return NULL;
}
if (cannot_send_to_controller(conn)) {
/* We will get scheduled again when the buffers are freed. */
LOG_DBG("no LL bufs for %p", conn);
return NULL;
}
if (dont_have_tx_context(conn)) {
/* We will get scheduled again when TX contexts are available. */
LOG_DBG("no TX contexts");
return NULL;
}
CHECKIF(dont_have_methods(conn)) {
LOG_DBG("conn %p (type %d) is missing mandatory methods",
conn, conn->type);
return NULL;
}
if (should_stop_tx(conn)) {
/* Move reference off the list and into the `conn` variable. */
__maybe_unused sys_snode_t *s = sys_slist_get(&bt_dev.le.conn_ready);
__ASSERT_NO_MSG(s == node);
(void)atomic_set(&conn->_conn_ready_lock, 0);
/* Append connection to list if it still has data */
if (conn->has_data(conn)) {
LOG_DBG("appending %p to back of TX queue", conn);
bt_conn_data_ready(conn);
}
return conn;
}
return bt_conn_ref(conn);
}
/* Crazy that this file is compiled even if this is not true, but here we are. */
#if defined(CONFIG_BT_CONN)
static void acl_get_and_clear_cb(struct bt_conn *conn, struct net_buf *buf,
bt_conn_tx_cb_t *cb, void **ud)
{
__ASSERT_NO_MSG(is_acl_conn(conn));
*cb = closure_cb(buf->user_data);
*ud = closure_data(buf->user_data);
memset(buf->user_data, 0, buf->user_data_size);
}
#endif /* defined(CONFIG_BT_CONN) */
/* Acts as a "null-routed" bt_send(). This fn will decrease the refcount of
* `buf` and call the user callback with an error code.
*/
static void destroy_and_callback(struct bt_conn *conn,
struct net_buf *buf,
bt_conn_tx_cb_t cb,
void *ud)
{
if (!cb) {
conn->get_and_clear_cb(conn, buf, &cb, &ud);
}
LOG_DBG("pop: cb %p userdata %p", cb, ud);
/* bt_send() would've done an unref. Do it here also, so the buffer is
* hopefully destroyed and the user callback can allocate a new one.
*/
net_buf_unref(buf);
if (cb) {
cb(conn, ud, -ESHUTDOWN);
}
}
static volatile bool _suspend_tx;
#if defined(CONFIG_BT_TESTING)
void bt_conn_suspend_tx(bool suspend)
{
_suspend_tx = suspend;
LOG_DBG("%sing all data TX", suspend ? "suspend" : "resum");
bt_tx_irq_raise();
}
#endif /* CONFIG_BT_TESTING */
void bt_conn_tx_processor(void)
{
LOG_DBG("start");
struct bt_conn *conn;
struct net_buf *buf;
bt_conn_tx_cb_t cb = NULL;
size_t buf_len;
void *ud = NULL;
if (!IS_ENABLED(CONFIG_BT_CONN_TX)) {
/* Mom, can we have a real compiler? */
return;
}
if (IS_ENABLED(CONFIG_BT_TESTING) && _suspend_tx) {
return;
}
conn = get_conn_ready();
if (!conn) {
LOG_DBG("no connection wants to do stuff");
return;
}
LOG_DBG("processing conn %p", conn);
if (conn->state != BT_CONN_CONNECTED) {
LOG_WRN("conn %p: not connected", conn);
/* Call the user callbacks & destroy (final-unref) the buffers
* we were supposed to send.
*/
buf = conn->tx_data_pull(conn, SIZE_MAX, &buf_len);
while (buf) {
destroy_and_callback(conn, buf, cb, ud);
buf = conn->tx_data_pull(conn, SIZE_MAX, &buf_len);
}
goto exit;
}
/* now that we are guaranteed resources, we can pull data from the upper
* layer (L2CAP or ISO).
*/
buf = conn->tx_data_pull(conn, conn_mtu(conn), &buf_len);
if (!buf) {
/* Either there is no more data, or the buffer is already in-use
* by a view on it. In both cases, the TX processor will be
* triggered again, either by the view's destroy callback, or by
* the upper layer when it has more data.
*/
LOG_DBG("no buf returned");
goto exit;
}
bool last_buf = conn_mtu(conn) >= buf_len;
if (last_buf) {
/* Only pull the callback info from the last buffer.
* We still allocate one TX context per-fragment though.
*/
conn->get_and_clear_cb(conn, buf, &cb, &ud);
LOG_DBG("pop: cb %p userdata %p", cb, ud);
}
LOG_DBG("TX process: conn %p buf %p (%s)",
conn, buf, last_buf ? "last" : "frag");
int err = send_buf(conn, buf, buf_len, cb, ud);
if (err) {
/* -EIO means `unrecoverable error`. It can be an assertion that
* failed or an error from the HCI driver.
*
* -ENOMEM means we thought we had all the resources to send the
* buf (ie. TX context + controller buffer) but one of them was
* not available. This is likely due to a failure of
* assumption, likely that we have been pre-empted somehow and
* that `tx_processor()` has been re-entered.
*
* In both cases, we destroy the buffer and mark the connection
* as dead.
*/
LOG_ERR("Fatal error (%d). Disconnecting %p", err, conn);
destroy_and_callback(conn, buf, cb, ud);
bt_conn_disconnect(conn, BT_HCI_ERR_REMOTE_USER_TERM_CONN);
goto exit;
}
/* Always kick the TX work. It will self-suspend if it doesn't get
* resources or there is nothing left to send.
*/
bt_tx_irq_raise();
exit:
/* Give back the ref that `get_conn_ready()` gave us */
bt_conn_unref(conn);
}
static void process_unack_tx(struct bt_conn *conn)
{
LOG_DBG("%p", conn);
/* Return any unacknowledged packets */
while (1) {
struct bt_conn_tx *tx;
sys_snode_t *node;
node = sys_slist_get(&conn->tx_pending);
if (!node) {
bt_tx_irq_raise();
return;
}
tx = CONTAINER_OF(node, struct bt_conn_tx, node);
conn_tx_destroy(conn, tx);
k_sem_give(bt_conn_get_pkts(conn));
}
}
struct bt_conn *conn_lookup_handle(struct bt_conn *conns, size_t size,
uint16_t handle)
{
int i;
for (i = 0; i < size; i++) {
struct bt_conn *conn = bt_conn_ref(&conns[i]);
if (!conn) {
continue;
}
/* We only care about connections with a valid handle */
if (!bt_conn_is_handle_valid(conn)) {
bt_conn_unref(conn);
continue;
}
if (conn->handle != handle) {
bt_conn_unref(conn);
continue;
}
return conn;
}
return NULL;
}
void bt_conn_set_state(struct bt_conn *conn, bt_conn_state_t state)
{
bt_conn_state_t old_state;
LOG_DBG("%s -> %s", state2str(conn->state), state2str(state));
if (conn->state == state) {
LOG_WRN("no transition %s", state2str(state));
return;
}
old_state = conn->state;
conn->state = state;
/* Actions needed for exiting the old state */
switch (old_state) {
case BT_CONN_DISCONNECTED:
/* Take a reference for the first state transition after
* bt_conn_add_le() and keep it until reaching DISCONNECTED
* again.
*/
if (conn->type != BT_CONN_TYPE_ISO) {
bt_conn_ref(conn);
}
break;
case BT_CONN_INITIATING:
if (IS_ENABLED(CONFIG_BT_CENTRAL) &&
conn->type == BT_CONN_TYPE_LE) {
k_work_cancel_delayable(&conn->deferred_work);
}
break;
default:
break;
}
/* Actions needed for entering the new state */
switch (conn->state) {
case BT_CONN_CONNECTED:
if (conn->type == BT_CONN_TYPE_SCO) {
if (IS_ENABLED(CONFIG_BT_CLASSIC)) {
bt_sco_connected(conn);
}
break;
}
k_poll_signal_raise(&conn_change, 0);
if (IS_ENABLED(CONFIG_BT_ISO) &&
conn->type == BT_CONN_TYPE_ISO) {
bt_iso_connected(conn);
break;
}
#if defined(CONFIG_BT_CONN)
sys_slist_init(&conn->channels);
if (IS_ENABLED(CONFIG_BT_PERIPHERAL) &&
conn->role == BT_CONN_ROLE_PERIPHERAL) {
#if defined(CONFIG_BT_GAP_AUTO_UPDATE_CONN_PARAMS)
if (conn->type == BT_CONN_TYPE_LE) {
conn->le.conn_param_retry_countdown =
CONFIG_BT_CONN_PARAM_RETRY_COUNT;
}
#endif /* CONFIG_BT_GAP_AUTO_UPDATE_CONN_PARAMS */
k_work_schedule(&conn->deferred_work,
CONN_UPDATE_TIMEOUT);
}
#endif /* CONFIG_BT_CONN */
break;
case BT_CONN_DISCONNECTED:
#if defined(CONFIG_BT_CONN)
if (conn->type == BT_CONN_TYPE_SCO) {
if (IS_ENABLED(CONFIG_BT_CLASSIC)) {
bt_sco_disconnected(conn);
}
bt_conn_unref(conn);
break;
}
/* Notify disconnection and queue a dummy buffer to wake
* up and stop the tx thread for states where it was
* running.
*/
switch (old_state) {
case BT_CONN_DISCONNECT_COMPLETE:
bt_conn_tx_notify(conn, true);
bt_conn_reset_rx_state(conn);
LOG_DBG("trigger disconnect work");
k_work_reschedule(&conn->deferred_work, K_NO_WAIT);
/* The last ref will be dropped during cleanup */
break;
case BT_CONN_INITIATING:
/* LE Create Connection command failed. This might be
* directly from the API, don't notify application in
* this case.
*/
if (conn->err) {
notify_connected(conn);
}
bt_conn_unref(conn);
break;
case BT_CONN_SCAN_BEFORE_INITIATING:
/* This indicates that connection establishment
* has been stopped. This could either be triggered by
* the application through bt_conn_disconnect or by
* timeout set by bt_conn_le_create_param.timeout.
*/
if (IS_ENABLED(CONFIG_BT_CENTRAL)) {
int err = bt_le_scan_user_remove(BT_LE_SCAN_USER_CONN);
if (err) {
LOG_WRN("Error while removing conn user from scanner (%d)",
err);
}
if (conn->err) {
notify_connected(conn);
}
}
bt_conn_unref(conn);
break;
case BT_CONN_ADV_DIR_CONNECTABLE:
/* this indicate Directed advertising stopped */
if (conn->err) {
notify_connected(conn);
}
bt_conn_unref(conn);
break;
case BT_CONN_INITIATING_FILTER_LIST:
/* this indicates LE Create Connection with filter
* policy has been stopped. This can only be triggered
* by the application, so don't notify.
*/
bt_conn_unref(conn);
break;
case BT_CONN_ADV_CONNECTABLE:
/* This can only happen when application stops the
* advertiser, conn->err is never set in this case.
*/
bt_conn_unref(conn);
break;
case BT_CONN_CONNECTED:
case BT_CONN_DISCONNECTING:
case BT_CONN_DISCONNECTED:
/* Cannot happen. */
LOG_WRN("Invalid (%u) old state", state);
break;
}
break;
case BT_CONN_INITIATING_FILTER_LIST:
break;
case BT_CONN_ADV_CONNECTABLE:
break;
case BT_CONN_SCAN_BEFORE_INITIATING:
break;
case BT_CONN_ADV_DIR_CONNECTABLE:
break;
case BT_CONN_INITIATING:
if (conn->type == BT_CONN_TYPE_SCO) {
break;
}
/*
* Timer is needed only for LE. For other link types controller
* will handle connection timeout.
*/
if (IS_ENABLED(CONFIG_BT_CENTRAL) &&
conn->type == BT_CONN_TYPE_LE &&
bt_dev.create_param.timeout != 0) {
k_work_schedule(&conn->deferred_work,
K_MSEC(10 * bt_dev.create_param.timeout));
}
break;
case BT_CONN_DISCONNECTING:
break;
#endif /* CONFIG_BT_CONN */
case BT_CONN_DISCONNECT_COMPLETE:
if (conn->err == BT_HCI_ERR_CONN_FAIL_TO_ESTAB) {
/* No ACK or data was ever received. The peripheral may be
* unaware of the connection attempt.
*
* Beware of confusing higher layer errors. Anything that looks
* like it's from the remote is synthetic.
*/
LOG_WRN("conn %p failed to establish. RF noise?", conn);
}
process_unack_tx(conn);
break;
default:
LOG_WRN("no valid (%u) state was set", state);
break;
}
}
struct bt_conn *bt_conn_lookup_handle(uint16_t handle, enum bt_conn_type type)
{
struct bt_conn *conn;
#if defined(CONFIG_BT_CONN)
conn = conn_lookup_handle(acl_conns, ARRAY_SIZE(acl_conns), handle);
if (conn) {
goto found;
}
#endif /* CONFIG_BT_CONN */
#if defined(CONFIG_BT_ISO)
conn = conn_lookup_handle(iso_conns, ARRAY_SIZE(iso_conns), handle);
if (conn) {
goto found;
}
#endif
#if defined(CONFIG_BT_CLASSIC)
conn = conn_lookup_handle(sco_conns, ARRAY_SIZE(sco_conns), handle);
if (conn) {
goto found;
}
#endif
found:
if (conn) {
if (type & conn->type) {
return conn;
}
LOG_WRN("incompatible handle %u", handle);
bt_conn_unref(conn);
}
return NULL;
}
struct bt_conn *bt_hci_conn_lookup_handle(uint16_t handle)
{
return bt_conn_lookup_handle(handle, BT_CONN_TYPE_ALL);
}
void bt_conn_foreach(enum bt_conn_type type,
void (*func)(struct bt_conn *conn, void *data),
void *data)
{
int i;
#if defined(CONFIG_BT_CONN)
for (i = 0; i < ARRAY_SIZE(acl_conns); i++) {
struct bt_conn *conn = bt_conn_ref(&acl_conns[i]);
if (!conn) {
continue;
}
if (!(conn->type & type)) {
bt_conn_unref(conn);
continue;
}
func(conn, data);
bt_conn_unref(conn);
}
#if defined(CONFIG_BT_CLASSIC)
if (type & BT_CONN_TYPE_SCO) {
for (i = 0; i < ARRAY_SIZE(sco_conns); i++) {
struct bt_conn *conn = bt_conn_ref(&sco_conns[i]);
if (!conn) {
continue;
}
func(conn, data);
bt_conn_unref(conn);
}
}
#endif /* defined(CONFIG_BT_CLASSIC) */
#endif /* CONFIG_BT_CONN */
#if defined(CONFIG_BT_ISO)
if (type & BT_CONN_TYPE_ISO) {
for (i = 0; i < ARRAY_SIZE(iso_conns); i++) {
struct bt_conn *conn = bt_conn_ref(&iso_conns[i]);
if (!conn) {
continue;
}
func(conn, data);
bt_conn_unref(conn);
}
}
#endif /* defined(CONFIG_BT_ISO) */
}
struct bt_conn *bt_conn_ref(struct bt_conn *conn)
{
atomic_val_t old;
__ASSERT_NO_MSG(conn);
/* Reference counter must be checked to avoid incrementing ref from
* zero, then we should return NULL instead.
* Loop on clear-and-set in case someone has modified the reference
* count since the read, and start over again when that happens.
*/
do {
old = atomic_get(&conn->ref);
if (!old) {
return NULL;
}
} while (!atomic_cas(&conn->ref, old, old + 1));
LOG_DBG("handle %u ref %ld -> %ld", conn->handle, old, old + 1);
return conn;
}
static K_SEM_DEFINE(pending_recycled_events, 0, K_SEM_MAX_LIMIT);
static void recycled_work_handler(struct k_work *work)
{
if (k_sem_take(&pending_recycled_events, K_NO_WAIT) == 0) {
notify_recycled_conn_slot();
k_work_submit(work);
}
}
static K_WORK_DEFINE(recycled_work, recycled_work_handler);
void bt_conn_unref(struct bt_conn *conn)
{
atomic_val_t old;
bool deallocated;
enum bt_conn_type conn_type;
uint8_t conn_role;
uint16_t conn_handle;
__ASSERT(conn, "Invalid connection reference");
/* Storing parameters of interest so we don't access the object
* after decrementing its ref-count
*/
conn_type = conn->type;
conn_role = conn->role;
conn_handle = conn->handle;
old = atomic_dec(&conn->ref);
/* Prevent from accessing connection object */
conn = NULL;
deallocated = (atomic_get(&old) == 1);
LOG_DBG("handle %u ref %ld -> %ld", conn_handle, old, (old - 1));
__ASSERT(old > 0, "Conn reference counter is 0");
/* Slot has been freed and can be taken. No guarantees are made on requests
* to claim connection object as only the first claim will be served.
*/
if (deallocated) {
k_sem_give(&pending_recycled_events);
k_work_submit(&recycled_work);
}
if (IS_ENABLED(CONFIG_BT_PERIPHERAL) && conn_type == BT_CONN_TYPE_LE &&
conn_role == BT_CONN_ROLE_PERIPHERAL && deallocated) {
bt_le_adv_resume();
}
}
uint8_t bt_conn_index(const struct bt_conn *conn)
{
ptrdiff_t index = 0;
switch (conn->type) {
#if defined(CONFIG_BT_ISO)
case BT_CONN_TYPE_ISO:
index = conn - iso_conns;
__ASSERT(index >= 0 && index < ARRAY_SIZE(iso_conns),
"Invalid bt_conn pointer");
break;
#endif
#if defined(CONFIG_BT_CLASSIC)
case BT_CONN_TYPE_SCO:
index = conn - sco_conns;
__ASSERT(index >= 0 && index < ARRAY_SIZE(sco_conns),
"Invalid bt_conn pointer");
break;
#endif
default:
#if defined(CONFIG_BT_CONN)
index = conn - acl_conns;
__ASSERT(index >= 0 && index < ARRAY_SIZE(acl_conns),
"Invalid bt_conn pointer");
#else
__ASSERT(false, "Invalid connection type %u", conn->type);
#endif /* CONFIG_BT_CONN */
break;
}
return (uint8_t)index;
}
#if defined(CONFIG_NET_BUF_LOG)
struct net_buf *bt_conn_create_pdu_timeout_debug(struct net_buf_pool *pool,
size_t reserve,
k_timeout_t timeout,
const char *func, int line)
#else
struct net_buf *bt_conn_create_pdu_timeout(struct net_buf_pool *pool,
size_t reserve, k_timeout_t timeout)
#endif
{
struct net_buf *buf;
/*
* PDU must not be allocated from ISR as we block with 'K_FOREVER'
* during the allocation
*/
__ASSERT_NO_MSG(!k_is_in_isr());
if (!K_TIMEOUT_EQ(timeout, K_NO_WAIT) &&
k_current_get() == k_work_queue_thread_get(&k_sys_work_q)) {
LOG_WRN("Timeout discarded. No blocking in syswq.");
timeout = K_NO_WAIT;
}
if (!pool) {
#if defined(CONFIG_BT_CONN)
pool = &acl_tx_pool;
#else
return NULL;
#endif /* CONFIG_BT_CONN */
}
if (IS_ENABLED(CONFIG_BT_CONN_LOG_LEVEL_DBG)) {
#if defined(CONFIG_NET_BUF_LOG)
buf = net_buf_alloc_fixed_debug(pool, K_NO_WAIT, func, line);
#else
buf = net_buf_alloc(pool, K_NO_WAIT);
#endif
if (!buf) {
LOG_WRN("Unable to allocate buffer with K_NO_WAIT");
#if defined(CONFIG_NET_BUF_LOG)
buf = net_buf_alloc_fixed_debug(pool, timeout, func,
line);
#else
buf = net_buf_alloc(pool, timeout);
#endif
}
} else {
#if defined(CONFIG_NET_BUF_LOG)
buf = net_buf_alloc_fixed_debug(pool, timeout, func,
line);
#else
buf = net_buf_alloc(pool, timeout);
#endif
}
if (!buf) {
LOG_WRN("Unable to allocate buffer within timeout");
return NULL;
}
reserve += sizeof(struct bt_hci_acl_hdr) + BT_BUF_RESERVE;
net_buf_reserve(buf, reserve);
return buf;
}
#if defined(CONFIG_BT_CONN_TX)
static void tx_complete_work(struct k_work *work)
{
struct bt_conn *conn = CONTAINER_OF(work, struct bt_conn, tx_complete_work);
tx_notify_process(conn);
}
#endif /* CONFIG_BT_CONN_TX */
static void notify_recycled_conn_slot(void)
{
#if defined(CONFIG_BT_CONN)
struct bt_conn_cb *callback;
SYS_SLIST_FOR_EACH_CONTAINER(&conn_cbs, callback, _node) {
if (callback->recycled) {
callback->recycled();
}
}
STRUCT_SECTION_FOREACH(bt_conn_cb, cb) {
if (cb->recycled) {
cb->recycled();
}
}
#endif
}
#if !defined(CONFIG_BT_CONN)
int bt_conn_disconnect(struct bt_conn *conn, uint8_t reason)
{
ARG_UNUSED(conn);
ARG_UNUSED(reason);
/* Dummy implementation to satisfy the compiler */
return 0;
}
#endif /* !CONFIG_BT_CONN */
/* Group Connected BT_CONN only in this */
#if defined(CONFIG_BT_CONN)
/* We don't want the application to get a PHY update callback upon connection
* establishment on 2M PHY. Therefore we must prevent issuing LE Set PHY
* in this scenario.
*
* It is ifdef'd because the struct fields don't exist in some configs.
*/
static bool uses_symmetric_2mbit_phy(struct bt_conn *conn)
{
#if defined(CONFIG_BT_USER_PHY_UPDATE)
if (IS_ENABLED(CONFIG_BT_EXT_ADV)) {
if (conn->le.phy.tx_phy == BT_HCI_LE_PHY_2M &&
conn->le.phy.rx_phy == BT_HCI_LE_PHY_2M) {
return true;
}
}
#else
ARG_UNUSED(conn);
#endif
return false;
}
static bool can_initiate_feature_exchange(struct bt_conn *conn)
{
/* Spec says both central and peripheral can send the command. However,
* peripheral-initiated feature exchange is an optional feature.
*
* We provide an optimization if we are in the same image as the
* controller, as we know at compile time whether it supports or not
* peripheral feature exchange.
*/
bool onboard_controller = IS_ENABLED(CONFIG_BT_CTLR);
bool supports_peripheral_feature_exchange = IS_ENABLED(CONFIG_BT_CTLR_PER_INIT_FEAT_XCHG);
bool is_central = IS_ENABLED(CONFIG_BT_CENTRAL) && conn->role == BT_HCI_ROLE_CENTRAL;
if (is_central) {
return true;
}
if (onboard_controller && supports_peripheral_feature_exchange) {
return true;
}
return BT_FEAT_LE_PER_INIT_FEAT_XCHG(bt_dev.le.features);
}
static void perform_auto_initiated_procedures(struct bt_conn *conn, void *unused)
{
int err;
ARG_UNUSED(unused);
LOG_DBG("[%p] Running auto-initiated procedures", conn);
if (conn->state != BT_CONN_CONNECTED) {
/* It is possible that connection was disconnected directly from
* connected callback so we must check state before doing
* connection parameters update.
*/
return;
}
if (atomic_test_and_set_bit(conn->flags, BT_CONN_AUTO_INIT_PROCEDURES_DONE)) {
/* We have already run the auto-initiated procedures */
return;
}
if (!atomic_test_bit(conn->flags, BT_CONN_LE_FEATURES_EXCHANGED) &&
can_initiate_feature_exchange(conn)) {
err = bt_hci_le_read_remote_features(conn);
if (err) {
LOG_ERR("Failed read remote features (%d)", err);
}
if (conn->state != BT_CONN_CONNECTED) {
return;
}
}
if (IS_ENABLED(CONFIG_BT_REMOTE_VERSION) &&
!atomic_test_bit(conn->flags, BT_CONN_AUTO_VERSION_INFO)) {
err = bt_hci_read_remote_version(conn);
if (err) {
LOG_ERR("Failed read remote version (%d)", err);
}
if (conn->state != BT_CONN_CONNECTED) {
return;
}
}
if (IS_ENABLED(CONFIG_BT_AUTO_PHY_UPDATE) && BT_FEAT_LE_PHY_2M(bt_dev.le.features) &&
!uses_symmetric_2mbit_phy(conn)) {
err = bt_le_set_phy(conn, 0U, BT_HCI_LE_PHY_PREFER_2M, BT_HCI_LE_PHY_PREFER_2M,
BT_HCI_LE_PHY_CODED_ANY);
if (err) {
LOG_ERR("Failed LE Set PHY (%d)", err);
}
if (conn->state != BT_CONN_CONNECTED) {
return;
}
}
/* Data length should be automatically updated to the maximum by the
* controller. Not updating it is a quirk and this is the workaround.
*/
if (IS_ENABLED(CONFIG_BT_AUTO_DATA_LEN_UPDATE) && BT_FEAT_LE_DLE(bt_dev.le.features) &&
bt_drv_quirk_no_auto_dle()) {
uint16_t tx_octets, tx_time;
err = bt_hci_le_read_max_data_len(&tx_octets, &tx_time);
if (!err) {
err = bt_le_set_data_len(conn, tx_octets, tx_time);
if (err) {
LOG_ERR("Failed to set data len (%d)", err);
}
}
}
LOG_DBG("[%p] Successfully ran auto-initiated procedures", conn);
}
/* Executes procedures after a connection is established:
* - read remote features
* - read remote version
* - update PHY
* - update data length
*/
static void auto_initiated_procedures(struct k_work *unused)
{
ARG_UNUSED(unused);
bt_conn_foreach(BT_CONN_TYPE_LE, perform_auto_initiated_procedures, NULL);
}
static K_WORK_DEFINE(procedures_on_connect, auto_initiated_procedures);
static void schedule_auto_initiated_procedures(struct bt_conn *conn)
{
LOG_DBG("[%p] Scheduling auto-init procedures", conn);
k_work_submit(&procedures_on_connect);
}
void bt_conn_connected(struct bt_conn *conn)
{
schedule_auto_initiated_procedures(conn);
bt_l2cap_connected(conn);
notify_connected(conn);
}
static int conn_disconnect(struct bt_conn *conn, uint8_t reason)
{
int err;
err = bt_hci_disconnect(conn->handle, reason);
if (err) {
return err;
}
if (conn->state == BT_CONN_CONNECTED) {
bt_conn_set_state(conn, BT_CONN_DISCONNECTING);
}
return 0;
}
int bt_conn_disconnect(struct bt_conn *conn, uint8_t reason)
{
/* Disconnection is initiated by us, so auto connection shall
* be disabled. Otherwise the passive scan would be enabled
* and we could send LE Create Connection as soon as the remote
* starts advertising.
*/
#if !defined(CONFIG_BT_FILTER_ACCEPT_LIST)
if (IS_ENABLED(CONFIG_BT_CENTRAL) &&
conn->type == BT_CONN_TYPE_LE) {
bt_le_set_auto_conn(&conn->le.dst, NULL);
}
#endif /* !defined(CONFIG_BT_FILTER_ACCEPT_LIST) */
switch (conn->state) {
case BT_CONN_SCAN_BEFORE_INITIATING:
conn->err = reason;
bt_conn_set_state(conn, BT_CONN_DISCONNECTED);
if (IS_ENABLED(CONFIG_BT_CENTRAL)) {
return bt_le_scan_user_add(BT_LE_SCAN_USER_CONN);
}
return 0;
case BT_CONN_INITIATING:
if (conn->type == BT_CONN_TYPE_LE) {
if (IS_ENABLED(CONFIG_BT_CENTRAL)) {
k_work_cancel_delayable(&conn->deferred_work);
return bt_le_create_conn_cancel();
}
}
#if defined(CONFIG_BT_ISO)
else if (conn->type == BT_CONN_TYPE_ISO) {
return conn_disconnect(conn, reason);
}
#endif /* CONFIG_BT_ISO */
#if defined(CONFIG_BT_CLASSIC)
else if (conn->type == BT_CONN_TYPE_BR) {
return bt_hci_connect_br_cancel(conn);
}
#endif /* CONFIG_BT_CLASSIC */
else {
__ASSERT(false, "Invalid conn type %u", conn->type);
}
return 0;
case BT_CONN_CONNECTED:
return conn_disconnect(conn, reason);
case BT_CONN_DISCONNECTING:
return 0;
case BT_CONN_DISCONNECTED:
default:
return -ENOTCONN;
}
}
static void notify_connected(struct bt_conn *conn)
{
struct bt_conn_cb *callback;
SYS_SLIST_FOR_EACH_CONTAINER(&conn_cbs, callback, _node) {
if (callback->connected) {
callback->connected(conn, conn->err);
}
}
STRUCT_SECTION_FOREACH(bt_conn_cb, cb) {
if (cb->connected) {
cb->connected(conn, conn->err);
}
}
}
static void notify_disconnected(struct bt_conn *conn)
{
struct bt_conn_cb *callback;
SYS_SLIST_FOR_EACH_CONTAINER(&conn_cbs, callback, _node) {
if (callback->disconnected) {
callback->disconnected(conn, conn->err);
}
}
STRUCT_SECTION_FOREACH(bt_conn_cb, cb) {
if (cb->disconnected) {
cb->disconnected(conn, conn->err);
}
}
}
#if defined(CONFIG_BT_REMOTE_INFO)
void notify_remote_info(struct bt_conn *conn)
{
struct bt_conn_remote_info remote_info;
int err;
err = bt_conn_get_remote_info(conn, &remote_info);
if (err) {
LOG_DBG("Notify remote info failed %d", err);
return;
}
struct bt_conn_cb *callback;
SYS_SLIST_FOR_EACH_CONTAINER(&conn_cbs, callback, _node) {
if (callback->remote_info_available) {
callback->remote_info_available(conn, &remote_info);
}
}
STRUCT_SECTION_FOREACH(bt_conn_cb, cb) {
if (cb->remote_info_available) {
cb->remote_info_available(conn, &remote_info);
}
}
}
#endif /* defined(CONFIG_BT_REMOTE_INFO) */
void notify_le_param_updated(struct bt_conn *conn)
{
/* If new connection parameters meet requirement of pending
* parameters don't send peripheral conn param request anymore on timeout
*/
if (atomic_test_bit(conn->flags, BT_CONN_PERIPHERAL_PARAM_SET) &&
conn->le.interval >= conn->le.interval_min &&
conn->le.interval <= conn->le.interval_max &&
conn->le.latency == conn->le.pending_latency &&
conn->le.timeout == conn->le.pending_timeout) {
atomic_clear_bit(conn->flags, BT_CONN_PERIPHERAL_PARAM_SET);
}
struct bt_conn_cb *callback;
SYS_SLIST_FOR_EACH_CONTAINER(&conn_cbs, callback, _node) {
if (callback->le_param_updated) {
callback->le_param_updated(conn, conn->le.interval,
conn->le.latency,
conn->le.timeout);
}
}
STRUCT_SECTION_FOREACH(bt_conn_cb, cb) {
if (cb->le_param_updated) {
cb->le_param_updated(conn, conn->le.interval,
conn->le.latency,
conn->le.timeout);
}
}
}
#if defined(CONFIG_BT_USER_DATA_LEN_UPDATE)
void notify_le_data_len_updated(struct bt_conn *conn)
{
struct bt_conn_cb *callback;
SYS_SLIST_FOR_EACH_CONTAINER(&conn_cbs, callback, _node) {
if (callback->le_data_len_updated) {
callback->le_data_len_updated(conn, &conn->le.data_len);
}
}
STRUCT_SECTION_FOREACH(bt_conn_cb, cb) {
if (cb->le_data_len_updated) {
cb->le_data_len_updated(conn, &conn->le.data_len);
}
}
}
#endif
#if defined(CONFIG_BT_USER_PHY_UPDATE)
void notify_le_phy_updated(struct bt_conn *conn)
{
struct bt_conn_cb *callback;
SYS_SLIST_FOR_EACH_CONTAINER(&conn_cbs, callback, _node) {
if (callback->le_phy_updated) {
callback->le_phy_updated(conn, &conn->le.phy);
}
}
STRUCT_SECTION_FOREACH(bt_conn_cb, cb) {
if (cb->le_phy_updated) {
cb->le_phy_updated(conn, &conn->le.phy);
}
}
}
#endif
bool le_param_req(struct bt_conn *conn, struct bt_le_conn_param *param)
{
if (!bt_le_conn_params_valid(param)) {
return false;
}
struct bt_conn_cb *callback;
SYS_SLIST_FOR_EACH_CONTAINER(&conn_cbs, callback, _node) {
if (!callback->le_param_req) {
continue;
}
if (!callback->le_param_req(conn, param)) {
return false;
}
/* The callback may modify the parameters so we need to
* double-check that it returned valid parameters.
*/
if (!bt_le_conn_params_valid(param)) {
return false;
}
}
STRUCT_SECTION_FOREACH(bt_conn_cb, cb) {
if (!cb->le_param_req) {
continue;
}
if (!cb->le_param_req(conn, param)) {
return false;
}
/* The callback may modify the parameters so we need to
* double-check that it returned valid parameters.
*/
if (!bt_le_conn_params_valid(param)) {
return false;
}
}
/* Default to accepting if there's no app callback */
return true;
}
static int send_conn_le_param_update(struct bt_conn *conn,
const struct bt_le_conn_param *param)
{
LOG_DBG("conn %p features 0x%02x params (%d-%d %d %d)", conn, conn->le.features[0],
param->interval_min, param->interval_max, param->latency, param->timeout);
/* Proceed only if connection parameters contains valid values*/
if (!bt_le_conn_params_valid(param)) {
return -EINVAL;
}
/* Use LE connection parameter request if both local and remote support
* it; or if local role is central then use LE connection update.
*/
if ((BT_FEAT_LE_CONN_PARAM_REQ_PROC(bt_dev.le.features) &&
BT_FEAT_LE_CONN_PARAM_REQ_PROC(conn->le.features) &&
!atomic_test_bit(conn->flags, BT_CONN_PERIPHERAL_PARAM_L2CAP)) ||
(conn->role == BT_HCI_ROLE_CENTRAL)) {
int rc;
rc = bt_conn_le_conn_update(conn, param);
/* store those in case of fallback to L2CAP */
if (rc == 0) {
conn->le.interval_min = param->interval_min;
conn->le.interval_max = param->interval_max;
conn->le.pending_latency = param->latency;
conn->le.pending_timeout = param->timeout;
}
return rc;
}
/* If remote central does not support LL Connection Parameters Request
* Procedure
*/
return bt_l2cap_update_conn_param(conn, param);
}
#if defined(CONFIG_BT_ISO_UNICAST)
static struct bt_conn *conn_lookup_iso(struct bt_conn *conn)
{
int i;
for (i = 0; i < ARRAY_SIZE(iso_conns); i++) {
struct bt_conn *iso = bt_conn_ref(&iso_conns[i]);
if (iso == NULL) {
continue;
}
if (iso->iso.acl == conn) {
return iso;
}
bt_conn_unref(iso);
}
return NULL;
}
#endif /* CONFIG_BT_ISO */
#if defined(CONFIG_BT_CLASSIC)
static struct bt_conn *conn_lookup_sco(struct bt_conn *conn)
{
int i;
for (i = 0; i < ARRAY_SIZE(sco_conns); i++) {
struct bt_conn *sco = bt_conn_ref(&sco_conns[i]);
if (sco == NULL) {
continue;
}
if (sco->sco.acl == conn) {
return sco;
}
bt_conn_unref(sco);
}
return NULL;
}
#endif /* CONFIG_BT_CLASSIC */
static void deferred_work(struct k_work *work)
{
struct k_work_delayable *dwork = k_work_delayable_from_work(work);
struct bt_conn *conn = CONTAINER_OF(dwork, struct bt_conn, deferred_work);
const struct bt_le_conn_param *param;
LOG_DBG("conn %p", conn);
if (conn->state == BT_CONN_DISCONNECTED) {
#if defined(CONFIG_BT_ISO_UNICAST)
struct bt_conn *iso;
if (conn->type == BT_CONN_TYPE_ISO) {
/* bt_iso_disconnected is responsible for unref'ing the
* connection pointer, as it is conditional on whether
* the connection is a central or peripheral.
*/
bt_iso_disconnected(conn);
return;
}
/* Mark all ISO channels associated
* with ACL conn as not connected, and
* remove ACL reference
*/
iso = conn_lookup_iso(conn);
while (iso != NULL) {
struct bt_iso_chan *chan = iso->iso.chan;
if (chan != NULL) {
bt_iso_chan_set_state(chan,
BT_ISO_STATE_DISCONNECTING);
}
bt_iso_cleanup_acl(iso);
bt_conn_unref(iso);
iso = conn_lookup_iso(conn);
}
#endif
#if defined(CONFIG_BT_CLASSIC)
struct bt_conn *sco;
/* Mark all SCO channels associated
* with ACL conn as not connected, and
* remove ACL reference
*/
sco = conn_lookup_sco(conn);
while (sco != NULL) {
struct bt_sco_chan *chan = sco->sco.chan;
if (chan != NULL) {
bt_sco_chan_set_state(chan,
BT_SCO_STATE_DISCONNECTING);
}
bt_sco_cleanup_acl(sco);
bt_conn_unref(sco);
sco = conn_lookup_sco(conn);
}
#endif /* CONFIG_BT_CLASSIC */
bt_l2cap_disconnected(conn);
notify_disconnected(conn);
/* Release the reference we took for the very first
* state transition.
*/
bt_conn_unref(conn);
return;
}
if (conn->type != BT_CONN_TYPE_LE) {
return;
}
if (IS_ENABLED(CONFIG_BT_CENTRAL) &&
conn->role == BT_CONN_ROLE_CENTRAL) {
/* we don't call bt_conn_disconnect as it would also clear
* auto connect flag if it was set, instead just cancel
* connection directly
*/
bt_le_create_conn_cancel();
return;
}
/* if application set own params use those, otherwise use defaults. */
if (atomic_test_and_clear_bit(conn->flags,
BT_CONN_PERIPHERAL_PARAM_SET)) {
int err;
param = BT_LE_CONN_PARAM(conn->le.interval_min,
conn->le.interval_max,
conn->le.pending_latency,
conn->le.pending_timeout);
err = send_conn_le_param_update(conn, param);
if (!err) {
atomic_clear_bit(conn->flags,
BT_CONN_PERIPHERAL_PARAM_AUTO_UPDATE);
} else {
LOG_WRN("Send LE param update failed (err %d)", err);
}
} else if (IS_ENABLED(CONFIG_BT_GAP_AUTO_UPDATE_CONN_PARAMS)) {
#if defined(CONFIG_BT_GAP_PERIPHERAL_PREF_PARAMS)
int err;
param = BT_LE_CONN_PARAM(
CONFIG_BT_PERIPHERAL_PREF_MIN_INT,
CONFIG_BT_PERIPHERAL_PREF_MAX_INT,
CONFIG_BT_PERIPHERAL_PREF_LATENCY,
CONFIG_BT_PERIPHERAL_PREF_TIMEOUT);
err = send_conn_le_param_update(conn, param);
if (!err) {
atomic_set_bit(conn->flags,
BT_CONN_PERIPHERAL_PARAM_AUTO_UPDATE);
} else {
LOG_WRN("Send auto LE param update failed (err %d)",
err);
}
#endif
}
atomic_set_bit(conn->flags, BT_CONN_PERIPHERAL_PARAM_UPDATE);
}
static struct bt_conn *acl_conn_new(void)
{
return bt_conn_new(acl_conns, ARRAY_SIZE(acl_conns));
}
#if defined(CONFIG_BT_CLASSIC)
void bt_sco_cleanup(struct bt_conn *sco_conn)
{
bt_sco_cleanup_acl(sco_conn);
bt_conn_unref(sco_conn);
}
static struct bt_conn *sco_conn_new(void)
{
return bt_conn_new(sco_conns, ARRAY_SIZE(sco_conns));
}
struct bt_conn *bt_conn_create_br(const bt_addr_t *peer,
const struct bt_br_conn_param *param)
{
struct bt_hci_cp_connect *cp;
struct bt_conn *conn;
struct net_buf *buf;
conn = bt_conn_lookup_addr_br(peer);
if (conn) {
switch (conn->state) {
case BT_CONN_INITIATING:
case BT_CONN_CONNECTED:
return conn;
default:
bt_conn_unref(conn);
return NULL;
}
}
conn = bt_conn_add_br(peer);
if (!conn) {
return NULL;
}
buf = bt_hci_cmd_create(BT_HCI_OP_CONNECT, sizeof(*cp));
if (!buf) {
bt_conn_unref(conn);
return NULL;
}
cp = net_buf_add(buf, sizeof(*cp));
(void)memset(cp, 0, sizeof(*cp));
memcpy(&cp->bdaddr, peer, sizeof(cp->bdaddr));
cp->packet_type = sys_cpu_to_le16(0xcc18); /* DM1 DH1 DM3 DH5 DM5 DH5 */
cp->pscan_rep_mode = 0x02; /* R2 */
cp->allow_role_switch = param->allow_role_switch ? 0x01 : 0x00;
cp->clock_offset = 0x0000; /* TODO used cached clock offset */
if (bt_hci_cmd_send_sync(BT_HCI_OP_CONNECT, buf, NULL) < 0) {
bt_conn_unref(conn);
return NULL;
}
bt_conn_set_state(conn, BT_CONN_INITIATING);
conn->role = BT_CONN_ROLE_CENTRAL;
return conn;
}
struct bt_conn *bt_conn_lookup_addr_sco(const bt_addr_t *peer)
{
int i;
for (i = 0; i < ARRAY_SIZE(sco_conns); i++) {
struct bt_conn *conn = bt_conn_ref(&sco_conns[i]);
if (!conn) {
continue;
}
if (conn->type != BT_CONN_TYPE_SCO) {
bt_conn_unref(conn);
continue;
}
if (!bt_addr_eq(peer, &conn->sco.acl->br.dst)) {
bt_conn_unref(conn);
continue;
}
return conn;
}
return NULL;
}
struct bt_conn *bt_conn_lookup_addr_br(const bt_addr_t *peer)
{
int i;
for (i = 0; i < ARRAY_SIZE(acl_conns); i++) {
struct bt_conn *conn = bt_conn_ref(&acl_conns[i]);
if (!conn) {
continue;
}
if (conn->type != BT_CONN_TYPE_BR) {
bt_conn_unref(conn);
continue;
}
if (!bt_addr_eq(peer, &conn->br.dst)) {
bt_conn_unref(conn);
continue;
}
return conn;
}
return NULL;
}
struct bt_conn *bt_conn_add_sco(const bt_addr_t *peer, int link_type)
{
struct bt_conn *sco_conn = sco_conn_new();
if (!sco_conn) {
return NULL;
}
sco_conn->sco.acl = bt_conn_lookup_addr_br(peer);
if (!sco_conn->sco.acl) {
bt_conn_unref(sco_conn);
return NULL;
}
sco_conn->type = BT_CONN_TYPE_SCO;
if (link_type == BT_HCI_SCO) {
if (BT_FEAT_LMP_ESCO_CAPABLE(bt_dev.features)) {
sco_conn->sco.pkt_type = (bt_dev.br.esco_pkt_type &
ESCO_PKT_MASK);
} else {
sco_conn->sco.pkt_type = (bt_dev.br.esco_pkt_type &
SCO_PKT_MASK);
}
} else if (link_type == BT_HCI_ESCO) {
sco_conn->sco.pkt_type = (bt_dev.br.esco_pkt_type &
~EDR_ESCO_PKT_MASK);
}
return sco_conn;
}
struct bt_conn *bt_conn_add_br(const bt_addr_t *peer)
{
struct bt_conn *conn = acl_conn_new();
if (!conn) {
return NULL;
}
bt_addr_copy(&conn->br.dst, peer);
conn->type = BT_CONN_TYPE_BR;
conn->tx_data_pull = l2cap_br_data_pull;
conn->get_and_clear_cb = acl_get_and_clear_cb;
conn->has_data = acl_has_data;
return conn;
}
static int bt_hci_connect_br_cancel(struct bt_conn *conn)
{
struct bt_hci_cp_connect_cancel *cp;
struct bt_hci_rp_connect_cancel *rp;
struct net_buf *buf, *rsp;
int err;
buf = bt_hci_cmd_create(BT_HCI_OP_CONNECT_CANCEL, sizeof(*cp));
if (!buf) {
return -ENOBUFS;
}
cp = net_buf_add(buf, sizeof(*cp));
memcpy(&cp->bdaddr, &conn->br.dst, sizeof(cp->bdaddr));
err = bt_hci_cmd_send_sync(BT_HCI_OP_CONNECT_CANCEL, buf, &rsp);
if (err) {
return err;
}
rp = (void *)rsp->data;
err = rp->status ? -EIO : 0;
net_buf_unref(rsp);
return err;
}
#endif /* CONFIG_BT_CLASSIC */
#if defined(CONFIG_BT_SMP)
bool bt_conn_ltk_present(const struct bt_conn *conn)
{
const struct bt_keys *keys = conn->le.keys;
if (!keys) {
keys = bt_keys_find_addr(conn->id, &conn->le.dst);
}
if (keys) {
if (conn->role == BT_HCI_ROLE_CENTRAL) {
return keys->keys & (BT_KEYS_LTK_P256 | BT_KEYS_PERIPH_LTK);
} else {
return keys->keys & (BT_KEYS_LTK_P256 | BT_KEYS_LTK);
}
}
return false;
}
void bt_conn_identity_resolved(struct bt_conn *conn)
{
const bt_addr_le_t *rpa;
if (conn->role == BT_HCI_ROLE_CENTRAL) {
rpa = &conn->le.resp_addr;
} else {
rpa = &conn->le.init_addr;
}
struct bt_conn_cb *callback;
SYS_SLIST_FOR_EACH_CONTAINER(&conn_cbs, callback, _node) {
if (callback->identity_resolved) {
callback->identity_resolved(conn, rpa, &conn->le.dst);
}
}
STRUCT_SECTION_FOREACH(bt_conn_cb, cb) {
if (cb->identity_resolved) {
cb->identity_resolved(conn, rpa, &conn->le.dst);
}
}
}
int bt_conn_le_start_encryption(struct bt_conn *conn, uint8_t rand[8],
uint8_t ediv[2], const uint8_t *ltk, size_t len)
{
struct bt_hci_cp_le_start_encryption *cp;
struct net_buf *buf;
if (len > sizeof(cp->ltk)) {
return -EINVAL;
}
buf = bt_hci_cmd_create(BT_HCI_OP_LE_START_ENCRYPTION, sizeof(*cp));
if (!buf) {
return -ENOBUFS;
}
cp = net_buf_add(buf, sizeof(*cp));
cp->handle = sys_cpu_to_le16(conn->handle);
memcpy(&cp->rand, rand, sizeof(cp->rand));
memcpy(&cp->ediv, ediv, sizeof(cp->ediv));
memcpy(cp->ltk, ltk, len);
if (len < sizeof(cp->ltk)) {
(void)memset(cp->ltk + len, 0, sizeof(cp->ltk) - len);
}
return bt_hci_cmd_send_sync(BT_HCI_OP_LE_START_ENCRYPTION, buf, NULL);
}
#endif /* CONFIG_BT_SMP */
#if defined(CONFIG_BT_SMP) || defined(CONFIG_BT_CLASSIC)
uint8_t bt_conn_enc_key_size(const struct bt_conn *conn)
{
if (!conn->encrypt) {
return 0;
}
if (IS_ENABLED(CONFIG_BT_CLASSIC) &&
conn->type == BT_CONN_TYPE_BR) {
struct bt_hci_cp_read_encryption_key_size *cp;
struct bt_hci_rp_read_encryption_key_size *rp;
struct net_buf *buf;
struct net_buf *rsp;
uint8_t key_size;
buf = bt_hci_cmd_create(BT_HCI_OP_READ_ENCRYPTION_KEY_SIZE,
sizeof(*cp));
if (!buf) {
return 0;
}
cp = net_buf_add(buf, sizeof(*cp));
cp->handle = sys_cpu_to_le16(conn->handle);
if (bt_hci_cmd_send_sync(BT_HCI_OP_READ_ENCRYPTION_KEY_SIZE,
buf, &rsp)) {
return 0;
}
rp = (void *)rsp->data;
key_size = rp->status ? 0 : rp->key_size;
net_buf_unref(rsp);
return key_size;
}
if (IS_ENABLED(CONFIG_BT_SMP)) {
return conn->le.keys ? conn->le.keys->enc_size : 0;
}
return 0;
}
static void reset_pairing(struct bt_conn *conn)
{
#if defined(CONFIG_BT_CLASSIC)
if (conn->type == BT_CONN_TYPE_BR) {
atomic_clear_bit(conn->flags, BT_CONN_BR_PAIRING);
atomic_clear_bit(conn->flags, BT_CONN_BR_PAIRED);
atomic_clear_bit(conn->flags, BT_CONN_BR_PAIRING_INITIATOR);
atomic_clear_bit(conn->flags, BT_CONN_BR_LEGACY_SECURE);
atomic_clear_bit(conn->flags, BT_CONN_BR_GENERAL_BONDING);
}
#endif /* CONFIG_BT_CLASSIC */
/* Reset required security level to current operational */
conn->required_sec_level = conn->sec_level;
}
void bt_conn_security_changed(struct bt_conn *conn, uint8_t hci_err,
enum bt_security_err err)
{
reset_pairing(conn);
bt_l2cap_security_changed(conn, hci_err);
if (IS_ENABLED(CONFIG_BT_ISO_CENTRAL)) {
bt_iso_security_changed(conn, hci_err);
}
struct bt_conn_cb *callback;
SYS_SLIST_FOR_EACH_CONTAINER(&conn_cbs, callback, _node) {
if (callback->security_changed) {
callback->security_changed(conn, conn->sec_level, err);
}
}
STRUCT_SECTION_FOREACH(bt_conn_cb, cb) {
if (cb->security_changed) {
cb->security_changed(conn, conn->sec_level, err);
}
}
#if defined(CONFIG_BT_KEYS_OVERWRITE_OLDEST)
if (!err && conn->sec_level >= BT_SECURITY_L2) {
if (conn->type == BT_CONN_TYPE_LE) {
bt_keys_update_usage(conn->id, bt_conn_get_dst(conn));
}
#if defined(CONFIG_BT_CLASSIC)
if (conn->type == BT_CONN_TYPE_BR) {
bt_keys_link_key_update_usage(&conn->br.dst);
}
#endif /* CONFIG_BT_CLASSIC */
}
#endif
}
static int start_security(struct bt_conn *conn)
{
if (IS_ENABLED(CONFIG_BT_CLASSIC) && conn->type == BT_CONN_TYPE_BR) {
return bt_ssp_start_security(conn);
}
if (IS_ENABLED(CONFIG_BT_SMP)) {
return bt_smp_start_security(conn);
}
return -EINVAL;
}
int bt_conn_set_security(struct bt_conn *conn, bt_security_t sec)
{
bool force_pair;
int err;
if (conn->state != BT_CONN_CONNECTED) {
return -ENOTCONN;
}
force_pair = sec & BT_SECURITY_FORCE_PAIR;
sec &= ~BT_SECURITY_FORCE_PAIR;
if (IS_ENABLED(CONFIG_BT_SMP_SC_ONLY)) {
sec = BT_SECURITY_L4;
}
if (IS_ENABLED(CONFIG_BT_SMP_OOB_LEGACY_PAIR_ONLY)) {
sec = BT_SECURITY_L3;
}
/* nothing to do */
if (!force_pair && (conn->sec_level >= sec || conn->required_sec_level >= sec)) {
return 0;
}
atomic_set_bit_to(conn->flags, BT_CONN_FORCE_PAIR, force_pair);
conn->required_sec_level = sec;
err = start_security(conn);
/* reset required security level in case of error */
if (err) {
conn->required_sec_level = conn->sec_level;
}
return err;
}
bt_security_t bt_conn_get_security(const struct bt_conn *conn)
{
return conn->sec_level;
}
#else
bt_security_t bt_conn_get_security(const struct bt_conn *conn)
{
return BT_SECURITY_L1;
}
#endif /* CONFIG_BT_SMP */
int bt_conn_cb_register(struct bt_conn_cb *cb)
{
if (sys_slist_find(&conn_cbs, &cb->_node, NULL)) {
return -EEXIST;
}
sys_slist_append(&conn_cbs, &cb->_node);
return 0;
}
int bt_conn_cb_unregister(struct bt_conn_cb *cb)
{
CHECKIF(cb == NULL) {
return -EINVAL;
}
if (!sys_slist_find_and_remove(&conn_cbs, &cb->_node)) {
return -ENOENT;
}
return 0;
}
bool bt_conn_exists_le(uint8_t id, const bt_addr_le_t *peer)
{
struct bt_conn *conn = bt_conn_lookup_addr_le(id, peer);
if (conn) {
/* Connection object already exists.
* If the connection state is not "disconnected",then the
* connection was created but has not yet been disconnected.
* If the connection state is "disconnected" then the connection
* still has valid references. The last reference of the stack
* is released after the disconnected callback.
*/
LOG_WRN("Found valid connection (%p) with address %s in %s state ", conn,
bt_addr_le_str(peer), state2str(conn->state));
bt_conn_unref(conn);
return true;
}
return false;
}
struct bt_conn *bt_conn_add_le(uint8_t id, const bt_addr_le_t *peer)
{
struct bt_conn *conn = acl_conn_new();
if (!conn) {
return NULL;
}
conn->id = id;
bt_addr_le_copy(&conn->le.dst, peer);
#if defined(CONFIG_BT_SMP)
conn->sec_level = BT_SECURITY_L1;
conn->required_sec_level = BT_SECURITY_L1;
#endif /* CONFIG_BT_SMP */
conn->type = BT_CONN_TYPE_LE;
conn->tx_data_pull = l2cap_data_pull;
conn->get_and_clear_cb = acl_get_and_clear_cb;
conn->has_data = acl_has_data;
conn->le.interval_min = BT_GAP_INIT_CONN_INT_MIN;
conn->le.interval_max = BT_GAP_INIT_CONN_INT_MAX;
return conn;
}
bool bt_conn_is_peer_addr_le(const struct bt_conn *conn, uint8_t id,
const bt_addr_le_t *peer)
{
if (id != conn->id) {
return false;
}
/* Check against conn dst address as it may be the identity address */
if (bt_addr_le_eq(peer, &conn->le.dst)) {
return true;
}
/* Check against initial connection address */
if (conn->role == BT_HCI_ROLE_CENTRAL) {
return bt_addr_le_eq(peer, &conn->le.resp_addr);
}
return bt_addr_le_eq(peer, &conn->le.init_addr);
}
struct bt_conn *bt_conn_lookup_addr_le(uint8_t id, const bt_addr_le_t *peer)
{
int i;
for (i = 0; i < ARRAY_SIZE(acl_conns); i++) {
struct bt_conn *conn = bt_conn_ref(&acl_conns[i]);
if (!conn) {
continue;
}
if (conn->type != BT_CONN_TYPE_LE) {
bt_conn_unref(conn);
continue;
}
if (!bt_conn_is_peer_addr_le(conn, id, peer)) {
bt_conn_unref(conn);
continue;
}
return conn;
}
return NULL;
}
struct bt_conn *bt_conn_lookup_state_le(uint8_t id, const bt_addr_le_t *peer,
const bt_conn_state_t state)
{
int i;
for (i = 0; i < ARRAY_SIZE(acl_conns); i++) {
struct bt_conn *conn = bt_conn_ref(&acl_conns[i]);
if (!conn) {
continue;
}
if (conn->type != BT_CONN_TYPE_LE) {
bt_conn_unref(conn);
continue;
}
if (peer && !bt_conn_is_peer_addr_le(conn, id, peer)) {
bt_conn_unref(conn);
continue;
}
if (!(conn->state == state && conn->id == id)) {
bt_conn_unref(conn);
continue;
}
return conn;
}
return NULL;
}
const bt_addr_le_t *bt_conn_get_dst(const struct bt_conn *conn)
{
return &conn->le.dst;
}
static enum bt_conn_state conn_internal_to_public_state(bt_conn_state_t state)
{
switch (state) {
case BT_CONN_DISCONNECTED:
case BT_CONN_DISCONNECT_COMPLETE:
return BT_CONN_STATE_DISCONNECTED;
case BT_CONN_SCAN_BEFORE_INITIATING:
case BT_CONN_INITIATING_FILTER_LIST:
case BT_CONN_ADV_CONNECTABLE:
case BT_CONN_ADV_DIR_CONNECTABLE:
case BT_CONN_INITIATING:
return BT_CONN_STATE_CONNECTING;
case BT_CONN_CONNECTED:
return BT_CONN_STATE_CONNECTED;
case BT_CONN_DISCONNECTING:
return BT_CONN_STATE_DISCONNECTING;
default:
__ASSERT(false, "Invalid conn state %u", state);
return 0;
}
}
int bt_conn_get_info(const struct bt_conn *conn, struct bt_conn_info *info)
{
info->type = conn->type;
info->role = conn->role;
info->id = conn->id;
info->state = conn_internal_to_public_state(conn->state);
info->security.flags = 0;
info->security.level = bt_conn_get_security(conn);
#if defined(CONFIG_BT_SMP) || defined(CONFIG_BT_CLASSIC)
info->security.enc_key_size = bt_conn_enc_key_size(conn);
#else
info->security.enc_key_size = 0;
#endif /* CONFIG_BT_SMP || CONFIG_BT_CLASSIC */
switch (conn->type) {
case BT_CONN_TYPE_LE:
info->le.dst = &conn->le.dst;
info->le.src = &bt_dev.id_addr[conn->id];
if (conn->role == BT_HCI_ROLE_CENTRAL) {
info->le.local = &conn->le.init_addr;
info->le.remote = &conn->le.resp_addr;
} else {
info->le.local = &conn->le.resp_addr;
info->le.remote = &conn->le.init_addr;
}
info->le.interval = conn->le.interval;
info->le.latency = conn->le.latency;
info->le.timeout = conn->le.timeout;
#if defined(CONFIG_BT_USER_PHY_UPDATE)
info->le.phy = &conn->le.phy;
#endif
#if defined(CONFIG_BT_USER_DATA_LEN_UPDATE)
info->le.data_len = &conn->le.data_len;
#endif
#if defined(CONFIG_BT_SUBRATING)
info->le.subrate = &conn->le.subrate;
#endif
if (conn->le.keys && (conn->le.keys->flags & BT_KEYS_SC)) {
info->security.flags |= BT_SECURITY_FLAG_SC;
}
if (conn->le.keys && (conn->le.keys->flags & BT_KEYS_OOB)) {
info->security.flags |= BT_SECURITY_FLAG_OOB;
}
return 0;
#if defined(CONFIG_BT_CLASSIC)
case BT_CONN_TYPE_BR:
info->br.dst = &conn->br.dst;
return 0;
#endif
#if defined(CONFIG_BT_ISO)
case BT_CONN_TYPE_ISO:
if (IS_ENABLED(CONFIG_BT_ISO_UNICAST) &&
conn->iso.info.type == BT_ISO_CHAN_TYPE_CONNECTED && conn->iso.acl != NULL) {
info->le.dst = &conn->iso.acl->le.dst;
info->le.src = &bt_dev.id_addr[conn->iso.acl->id];
} else {
info->le.src = BT_ADDR_LE_NONE;
info->le.dst = BT_ADDR_LE_NONE;
}
return 0;
#endif
default:
break;
}
return -EINVAL;
}
int bt_conn_get_remote_info(struct bt_conn *conn,
struct bt_conn_remote_info *remote_info)
{
if (!atomic_test_bit(conn->flags, BT_CONN_LE_FEATURES_EXCHANGED) ||
(IS_ENABLED(CONFIG_BT_REMOTE_VERSION) &&
!atomic_test_bit(conn->flags, BT_CONN_AUTO_VERSION_INFO))) {
return -EBUSY;
}
remote_info->type = conn->type;
#if defined(CONFIG_BT_REMOTE_VERSION)
/* The conn->rv values will be just zeroes if the operation failed */
remote_info->version = conn->rv.version;
remote_info->manufacturer = conn->rv.manufacturer;
remote_info->subversion = conn->rv.subversion;
#else
remote_info->version = 0;
remote_info->manufacturer = 0;
remote_info->subversion = 0;
#endif
switch (conn->type) {
case BT_CONN_TYPE_LE:
remote_info->le.features = conn->le.features;
return 0;
#if defined(CONFIG_BT_CLASSIC)
case BT_CONN_TYPE_BR:
/* TODO: Make sure the HCI commands to read br features and
* extended features has finished. */
return -ENOTSUP;
#endif
default:
return -EINVAL;
}
}
/* Read Transmit Power Level HCI command */
static int bt_conn_get_tx_power_level(struct bt_conn *conn, uint8_t type,
int8_t *tx_power_level)
{
int err;
struct bt_hci_rp_read_tx_power_level *rp;
struct net_buf *rsp;
struct bt_hci_cp_read_tx_power_level *cp;
struct net_buf *buf;
buf = bt_hci_cmd_create(BT_HCI_OP_READ_TX_POWER_LEVEL, sizeof(*cp));
if (!buf) {
return -ENOBUFS;
}
cp = net_buf_add(buf, sizeof(*cp));
cp->type = type;
cp->handle = sys_cpu_to_le16(conn->handle);
err = bt_hci_cmd_send_sync(BT_HCI_OP_READ_TX_POWER_LEVEL, buf, &rsp);
if (err) {
return err;
}
rp = (void *) rsp->data;
*tx_power_level = rp->tx_power_level;
net_buf_unref(rsp);
return 0;
}
#if defined(CONFIG_BT_TRANSMIT_POWER_CONTROL)
void notify_tx_power_report(struct bt_conn *conn,
struct bt_conn_le_tx_power_report report)
{
struct bt_conn_cb *callback;
SYS_SLIST_FOR_EACH_CONTAINER(&conn_cbs, callback, _node) {
if (callback->tx_power_report) {
callback->tx_power_report(conn, &report);
}
}
STRUCT_SECTION_FOREACH(bt_conn_cb, cb)
{
if (cb->tx_power_report) {
cb->tx_power_report(conn, &report);
}
}
}
int bt_conn_le_enhanced_get_tx_power_level(struct bt_conn *conn,
struct bt_conn_le_tx_power *tx_power)
{
int err;
struct bt_hci_rp_le_read_tx_power_level *rp;
struct net_buf *rsp;
struct bt_hci_cp_le_read_tx_power_level *cp;
struct net_buf *buf;
if (!tx_power->phy) {
return -EINVAL;
}
buf = bt_hci_cmd_create(BT_HCI_OP_LE_ENH_READ_TX_POWER_LEVEL, sizeof(*cp));
if (!buf) {
return -ENOBUFS;
}
cp = net_buf_add(buf, sizeof(*cp));
cp->handle = sys_cpu_to_le16(conn->handle);
cp->phy = tx_power->phy;
err = bt_hci_cmd_send_sync(BT_HCI_OP_LE_ENH_READ_TX_POWER_LEVEL, buf, &rsp);
if (err) {
return err;
}
rp = (void *) rsp->data;
tx_power->phy = rp->phy;
tx_power->current_level = rp->current_tx_power_level;
tx_power->max_level = rp->max_tx_power_level;
net_buf_unref(rsp);
return 0;
}
int bt_conn_le_get_remote_tx_power_level(struct bt_conn *conn,
enum bt_conn_le_tx_power_phy phy)
{
struct bt_hci_cp_le_read_tx_power_level *cp;
struct net_buf *buf;
if (!phy) {
return -EINVAL;
}
buf = bt_hci_cmd_create(BT_HCI_OP_LE_READ_REMOTE_TX_POWER_LEVEL, sizeof(*cp));
if (!buf) {
return -ENOBUFS;
}
cp = net_buf_add(buf, sizeof(*cp));
cp->handle = sys_cpu_to_le16(conn->handle);
cp->phy = phy;
return bt_hci_cmd_send_sync(BT_HCI_OP_LE_READ_REMOTE_TX_POWER_LEVEL, buf, NULL);
}
int bt_conn_le_set_tx_power_report_enable(struct bt_conn *conn,
bool local_enable,
bool remote_enable)
{
struct bt_hci_cp_le_set_tx_power_report_enable *cp;
struct net_buf *buf;
buf = bt_hci_cmd_create(BT_HCI_OP_LE_SET_TX_POWER_REPORT_ENABLE, sizeof(*cp));
if (!buf) {
return -ENOBUFS;
}
cp = net_buf_add(buf, sizeof(*cp));
cp->handle = sys_cpu_to_le16(conn->handle);
cp->local_enable = local_enable ? BT_HCI_LE_TX_POWER_REPORT_ENABLE :
BT_HCI_LE_TX_POWER_REPORT_DISABLE;
cp->remote_enable = remote_enable ? BT_HCI_LE_TX_POWER_REPORT_ENABLE :
BT_HCI_LE_TX_POWER_REPORT_DISABLE;
return bt_hci_cmd_send_sync(BT_HCI_OP_LE_SET_TX_POWER_REPORT_ENABLE, buf, NULL);
}
#endif /* CONFIG_BT_TRANSMIT_POWER_CONTROL */
int bt_conn_le_get_tx_power_level(struct bt_conn *conn,
struct bt_conn_le_tx_power *tx_power_level)
{
int err;
if (tx_power_level->phy != 0) {
if (IS_ENABLED(CONFIG_BT_TRANSMIT_POWER_CONTROL)) {
return bt_conn_le_enhanced_get_tx_power_level(conn, tx_power_level);
} else {
return -ENOTSUP;
}
}
err = bt_conn_get_tx_power_level(conn, BT_TX_POWER_LEVEL_CURRENT,
&tx_power_level->current_level);
if (err) {
return err;
}
err = bt_conn_get_tx_power_level(conn, BT_TX_POWER_LEVEL_MAX,
&tx_power_level->max_level);
return err;
}
#if defined(CONFIG_BT_PATH_LOSS_MONITORING)
void notify_path_loss_threshold_report(struct bt_conn *conn,
struct bt_conn_le_path_loss_threshold_report report)
{
struct bt_conn_cb *callback;
SYS_SLIST_FOR_EACH_CONTAINER(&conn_cbs, callback, _node) {
if (callback->path_loss_threshold_report) {
callback->path_loss_threshold_report(conn, &report);
}
}
STRUCT_SECTION_FOREACH(bt_conn_cb, cb)
{
if (cb->path_loss_threshold_report) {
cb->path_loss_threshold_report(conn, &report);
}
}
}
int bt_conn_le_set_path_loss_mon_param(struct bt_conn *conn,
const struct bt_conn_le_path_loss_reporting_param *params)
{
struct bt_hci_cp_le_set_path_loss_reporting_parameters *cp;
struct net_buf *buf;
buf = bt_hci_cmd_create(BT_HCI_OP_LE_SET_PATH_LOSS_REPORTING_PARAMETERS, sizeof(*cp));
if (!buf) {
return -ENOBUFS;
}
cp = net_buf_add(buf, sizeof(*cp));
cp->handle = sys_cpu_to_le16(conn->handle);
cp->high_threshold = params->high_threshold;
cp->high_hysteresis = params->high_hysteresis;
cp->low_threshold = params->low_threshold;
cp->low_hysteresis = params->low_hysteresis;
cp->min_time_spent = sys_cpu_to_le16(params->min_time_spent);
return bt_hci_cmd_send_sync(BT_HCI_OP_LE_SET_PATH_LOSS_REPORTING_PARAMETERS, buf, NULL);
}
int bt_conn_le_set_path_loss_mon_enable(struct bt_conn *conn, bool reporting_enable)
{
struct bt_hci_cp_le_set_path_loss_reporting_enable *cp;
struct net_buf *buf;
buf = bt_hci_cmd_create(BT_HCI_OP_LE_SET_PATH_LOSS_REPORTING_ENABLE, sizeof(*cp));
if (!buf) {
return -ENOBUFS;
}
cp = net_buf_add(buf, sizeof(*cp));
cp->handle = sys_cpu_to_le16(conn->handle);
cp->enable = reporting_enable ? BT_HCI_LE_PATH_LOSS_REPORTING_ENABLE :
BT_HCI_LE_PATH_LOSS_REPORTING_DISABLE;
return bt_hci_cmd_send_sync(BT_HCI_OP_LE_SET_PATH_LOSS_REPORTING_ENABLE, buf, NULL);
}
#endif /* CONFIG_BT_PATH_LOSS_MONITORING */
#if defined(CONFIG_BT_SUBRATING)
void notify_subrate_change(struct bt_conn *conn,
const struct bt_conn_le_subrate_changed params)
{
struct bt_conn_cb *callback;
SYS_SLIST_FOR_EACH_CONTAINER(&conn_cbs, callback, _node) {
if (callback->subrate_changed) {
callback->subrate_changed(conn, &params);
}
}
STRUCT_SECTION_FOREACH(bt_conn_cb, cb)
{
if (cb->subrate_changed) {
cb->subrate_changed(conn, &params);
}
}
}
static bool le_subrate_common_params_valid(const struct bt_conn_le_subrate_param *param)
{
/* All limits according to BT Core spec 5.4 [Vol 4, Part E, 7.8.123] */
if (param->subrate_min < 0x0001 || param->subrate_min > 0x01F4 ||
param->subrate_max < 0x0001 || param->subrate_max > 0x01F4 ||
param->subrate_min > param->subrate_max) {
return false;
}
if (param->max_latency > 0x01F3 ||
param->subrate_max * (param->max_latency + 1) > 500) {
return false;
}
if (param->continuation_number > 0x01F3 ||
param->continuation_number >= param->subrate_max) {
return false;
}
if (param->supervision_timeout < 0x000A ||
param->supervision_timeout > 0xC80) {
return false;
}
return true;
}
int bt_conn_le_subrate_set_defaults(const struct bt_conn_le_subrate_param *params)
{
struct bt_hci_cp_le_set_default_subrate *cp;
struct net_buf *buf;
if (!IS_ENABLED(CONFIG_BT_CENTRAL)) {
return -ENOTSUP;
}
if (!le_subrate_common_params_valid(params)) {
return -EINVAL;
}
buf = bt_hci_cmd_create(BT_HCI_OP_LE_SET_DEFAULT_SUBRATE, sizeof(*cp));
if (!buf) {
return -ENOBUFS;
}
cp = net_buf_add(buf, sizeof(*cp));
cp->subrate_min = sys_cpu_to_le16(params->subrate_min);
cp->subrate_max = sys_cpu_to_le16(params->subrate_max);
cp->max_latency = sys_cpu_to_le16(params->max_latency);
cp->continuation_number = sys_cpu_to_le16(params->continuation_number);
cp->supervision_timeout = sys_cpu_to_le16(params->supervision_timeout);
return bt_hci_cmd_send_sync(BT_HCI_OP_LE_SET_DEFAULT_SUBRATE, buf, NULL);
}
int bt_conn_le_subrate_request(struct bt_conn *conn,
const struct bt_conn_le_subrate_param *params)
{
struct bt_hci_cp_le_subrate_request *cp;
struct net_buf *buf;
if (!le_subrate_common_params_valid(params)) {
return -EINVAL;
}
buf = bt_hci_cmd_create(BT_HCI_OP_LE_SUBRATE_REQUEST, sizeof(*cp));
if (!buf) {
return -ENOBUFS;
}
cp = net_buf_add(buf, sizeof(*cp));
cp->handle = sys_cpu_to_le16(conn->handle);
cp->subrate_min = sys_cpu_to_le16(params->subrate_min);
cp->subrate_max = sys_cpu_to_le16(params->subrate_max);
cp->max_latency = sys_cpu_to_le16(params->max_latency);
cp->continuation_number = sys_cpu_to_le16(params->continuation_number);
cp->supervision_timeout = sys_cpu_to_le16(params->supervision_timeout);
return bt_hci_cmd_send_sync(BT_HCI_OP_LE_SUBRATE_REQUEST, buf, NULL);
}
#endif /* CONFIG_BT_SUBRATING */
#if defined(CONFIG_BT_CHANNEL_SOUNDING)
void notify_remote_cs_capabilities(struct bt_conn *conn, struct bt_conn_le_cs_capabilities params)
{
struct bt_conn_cb *callback;
SYS_SLIST_FOR_EACH_CONTAINER(&conn_cbs, callback, _node) {
if (callback->le_cs_remote_capabilities_available) {
callback->le_cs_remote_capabilities_available(conn, &params);
}
}
STRUCT_SECTION_FOREACH(bt_conn_cb, cb) {
if (cb->le_cs_remote_capabilities_available) {
cb->le_cs_remote_capabilities_available(conn, &params);
}
}
}
void notify_remote_cs_fae_table(struct bt_conn *conn, struct bt_conn_le_cs_fae_table params)
{
struct bt_conn_cb *callback;
SYS_SLIST_FOR_EACH_CONTAINER(&conn_cbs, callback, _node) {
if (callback->le_cs_remote_fae_table_available) {
callback->le_cs_remote_fae_table_available(conn, &params);
}
}
STRUCT_SECTION_FOREACH(bt_conn_cb, cb) {
if (cb->le_cs_remote_fae_table_available) {
cb->le_cs_remote_fae_table_available(conn, &params);
}
}
}
void notify_cs_config_created(struct bt_conn *conn, struct bt_conn_le_cs_config *params)
{
struct bt_conn_cb *callback;
SYS_SLIST_FOR_EACH_CONTAINER(&conn_cbs, callback, _node) {
if (callback->le_cs_config_created) {
callback->le_cs_config_created(conn, params);
}
}
STRUCT_SECTION_FOREACH(bt_conn_cb, cb) {
if (cb->le_cs_config_created) {
cb->le_cs_config_created(conn, params);
}
}
}
void notify_cs_config_removed(struct bt_conn *conn, uint8_t config_id)
{
struct bt_conn_cb *callback;
SYS_SLIST_FOR_EACH_CONTAINER(&conn_cbs, callback, _node) {
if (callback->le_cs_config_removed) {
callback->le_cs_config_removed(conn, config_id);
}
}
STRUCT_SECTION_FOREACH(bt_conn_cb, cb) {
if (cb->le_cs_config_removed) {
cb->le_cs_config_removed(conn, config_id);
}
}
}
void notify_cs_security_enable_available(struct bt_conn *conn)
{
struct bt_conn_cb *callback;
SYS_SLIST_FOR_EACH_CONTAINER(&conn_cbs, callback, _node) {
if (callback->le_cs_security_enabled) {
callback->le_cs_security_enabled(conn);
}
}
STRUCT_SECTION_FOREACH(bt_conn_cb, cb) {
if (cb->le_cs_security_enabled) {
cb->le_cs_security_enabled(conn);
}
}
}
void notify_cs_procedure_enable_available(struct bt_conn *conn,
struct bt_conn_le_cs_procedure_enable_complete *params)
{
struct bt_conn_cb *callback;
SYS_SLIST_FOR_EACH_CONTAINER(&conn_cbs, callback, _node) {
if (callback->le_cs_procedure_enabled) {
callback->le_cs_procedure_enabled(conn, params);
}
}
STRUCT_SECTION_FOREACH(bt_conn_cb, cb) {
if (cb->le_cs_procedure_enabled) {
cb->le_cs_procedure_enabled(conn, params);
}
}
}
void notify_cs_subevent_result(struct bt_conn *conn, struct bt_conn_le_cs_subevent_result *result)
{
struct bt_conn_cb *callback;
SYS_SLIST_FOR_EACH_CONTAINER(&conn_cbs, callback, _node) {
if (callback->le_cs_subevent_data_available) {
callback->le_cs_subevent_data_available(conn, result);
}
}
STRUCT_SECTION_FOREACH(bt_conn_cb, cb) {
if (cb->le_cs_subevent_data_available) {
cb->le_cs_subevent_data_available(conn, result);
}
}
}
#endif /* CONFIG_BT_CHANNEL_SOUNDING */
int bt_conn_le_param_update(struct bt_conn *conn,
const struct bt_le_conn_param *param)
{
LOG_DBG("conn %p features 0x%02x params (%d-%d %d %d)", conn, conn->le.features[0],
param->interval_min, param->interval_max, param->latency, param->timeout);
if (IS_ENABLED(CONFIG_BT_CENTRAL) &&
conn->role == BT_CONN_ROLE_CENTRAL) {
return send_conn_le_param_update(conn, param);
}
if (IS_ENABLED(CONFIG_BT_PERIPHERAL)) {
/* if peripheral conn param update timer expired just send request */
if (atomic_test_bit(conn->flags, BT_CONN_PERIPHERAL_PARAM_UPDATE)) {
return send_conn_le_param_update(conn, param);
}
/* store new conn params to be used by update timer */
conn->le.interval_min = param->interval_min;
conn->le.interval_max = param->interval_max;
conn->le.pending_latency = param->latency;
conn->le.pending_timeout = param->timeout;
atomic_set_bit(conn->flags, BT_CONN_PERIPHERAL_PARAM_SET);
}
return 0;
}
#if defined(CONFIG_BT_USER_DATA_LEN_UPDATE)
int bt_conn_le_data_len_update(struct bt_conn *conn,
const struct bt_conn_le_data_len_param *param)
{
if (conn->le.data_len.tx_max_len == param->tx_max_len &&
conn->le.data_len.tx_max_time == param->tx_max_time) {
return -EALREADY;
}
return bt_le_set_data_len(conn, param->tx_max_len, param->tx_max_time);
}
#endif /* CONFIG_BT_USER_DATA_LEN_UPDATE */
#if defined(CONFIG_BT_USER_PHY_UPDATE)
int bt_conn_le_phy_update(struct bt_conn *conn,
const struct bt_conn_le_phy_param *param)
{
uint8_t phy_opts, all_phys;
if ((param->options & BT_CONN_LE_PHY_OPT_CODED_S2) &&
(param->options & BT_CONN_LE_PHY_OPT_CODED_S8)) {
phy_opts = BT_HCI_LE_PHY_CODED_ANY;
} else if (param->options & BT_CONN_LE_PHY_OPT_CODED_S2) {
phy_opts = BT_HCI_LE_PHY_CODED_S2;
} else if (param->options & BT_CONN_LE_PHY_OPT_CODED_S8) {
phy_opts = BT_HCI_LE_PHY_CODED_S8;
} else {
phy_opts = BT_HCI_LE_PHY_CODED_ANY;
}
all_phys = 0U;
if (param->pref_tx_phy == BT_GAP_LE_PHY_NONE) {
all_phys |= BT_HCI_LE_PHY_TX_ANY;
}
if (param->pref_rx_phy == BT_GAP_LE_PHY_NONE) {
all_phys |= BT_HCI_LE_PHY_RX_ANY;
}
return bt_le_set_phy(conn, all_phys, param->pref_tx_phy,
param->pref_rx_phy, phy_opts);
}
#endif
#if defined(CONFIG_BT_CENTRAL)
static void bt_conn_set_param_le(struct bt_conn *conn,
const struct bt_le_conn_param *param)
{
conn->le.interval_min = param->interval_min;
conn->le.interval_max = param->interval_max;
conn->le.latency = param->latency;
conn->le.timeout = param->timeout;
}
static void create_param_setup(const struct bt_conn_le_create_param *param)
{
bt_dev.create_param = *param;
bt_dev.create_param.timeout =
(bt_dev.create_param.timeout != 0) ?
bt_dev.create_param.timeout :
(MSEC_PER_SEC / 10) * CONFIG_BT_CREATE_CONN_TIMEOUT;
bt_dev.create_param.interval_coded =
(bt_dev.create_param.interval_coded != 0) ?
bt_dev.create_param.interval_coded :
bt_dev.create_param.interval;
bt_dev.create_param.window_coded =
(bt_dev.create_param.window_coded != 0) ?
bt_dev.create_param.window_coded :
bt_dev.create_param.window;
}
#if defined(CONFIG_BT_FILTER_ACCEPT_LIST)
int bt_conn_le_create_auto(const struct bt_conn_le_create_param *create_param,
const struct bt_le_conn_param *param)
{
struct bt_conn *conn;
int err;
if (!atomic_test_bit(bt_dev.flags, BT_DEV_READY)) {
return -EAGAIN;
}
if (!bt_le_conn_params_valid(param)) {
return -EINVAL;
}
conn = bt_conn_lookup_state_le(BT_ID_DEFAULT, BT_ADDR_LE_NONE,
BT_CONN_INITIATING_FILTER_LIST);
if (conn) {
bt_conn_unref(conn);
return -EALREADY;
}
/* Scanning either to connect or explicit scan, either case scanner was
* started by application and should not be stopped.
*/
if (!BT_LE_STATES_SCAN_INIT(bt_dev.le.states) &&
atomic_test_bit(bt_dev.flags, BT_DEV_SCANNING)) {
return -EINVAL;
}
if (atomic_test_bit(bt_dev.flags, BT_DEV_INITIATING)) {
return -EINVAL;
}
if (!bt_id_scan_random_addr_check()) {
return -EINVAL;
}
conn = bt_conn_add_le(BT_ID_DEFAULT, BT_ADDR_LE_NONE);
if (!conn) {
return -ENOMEM;
}
bt_conn_set_param_le(conn, param);
create_param_setup(create_param);
atomic_set_bit(conn->flags, BT_CONN_AUTO_CONNECT);
bt_conn_set_state(conn, BT_CONN_INITIATING_FILTER_LIST);
err = bt_le_create_conn(conn);
if (err) {
LOG_ERR("Failed to start filtered scan");
conn->err = 0;
bt_conn_set_state(conn, BT_CONN_DISCONNECTED);
bt_conn_unref(conn);
return err;
}
/* Since we don't give the application a reference to manage in
* this case, we need to release this reference here.
*/
bt_conn_unref(conn);
return 0;
}
int bt_conn_create_auto_stop(void)
{
struct bt_conn *conn;
int err;
if (!atomic_test_bit(bt_dev.flags, BT_DEV_READY)) {
return -EINVAL;
}
conn = bt_conn_lookup_state_le(BT_ID_DEFAULT, BT_ADDR_LE_NONE,
BT_CONN_INITIATING_FILTER_LIST);
if (!conn) {
return -EINVAL;
}
if (!atomic_test_bit(bt_dev.flags, BT_DEV_INITIATING)) {
return -EINVAL;
}
bt_conn_set_state(conn, BT_CONN_DISCONNECTED);
bt_conn_unref(conn);
err = bt_le_create_conn_cancel();
if (err) {
LOG_ERR("Failed to stop initiator");
return err;
}
return 0;
}
#endif /* defined(CONFIG_BT_FILTER_ACCEPT_LIST) */
static int conn_le_create_common_checks(const bt_addr_le_t *peer,
const struct bt_le_conn_param *conn_param)
{
if (!atomic_test_bit(bt_dev.flags, BT_DEV_READY)) {
LOG_DBG("Conn check failed: BT dev not ready.");
return -EAGAIN;
}
if (!bt_le_conn_params_valid(conn_param)) {
LOG_DBG("Conn check failed: invalid parameters.");
return -EINVAL;
}
if (!BT_LE_STATES_SCAN_INIT(bt_dev.le.states) && bt_le_explicit_scanner_running()) {
LOG_DBG("Conn check failed: scanner was explicitly requested.");
return -EAGAIN;
}
if (atomic_test_bit(bt_dev.flags, BT_DEV_INITIATING)) {
LOG_DBG("Conn check failed: device is already initiating.");
return -EALREADY;
}
if (!bt_id_scan_random_addr_check()) {
LOG_DBG("Conn check failed: invalid random address.");
return -EINVAL;
}
if (bt_conn_exists_le(BT_ID_DEFAULT, peer)) {
LOG_DBG("Conn check failed: ACL connection already exists.");
return -EINVAL;
}
return 0;
}
static struct bt_conn *conn_le_create_helper(const bt_addr_le_t *peer,
const struct bt_le_conn_param *conn_param)
{
bt_addr_le_t dst;
struct bt_conn *conn;
if (bt_addr_le_is_resolved(peer)) {
bt_addr_le_copy_resolved(&dst, peer);
} else {
bt_addr_le_copy(&dst, bt_lookup_id_addr(BT_ID_DEFAULT, peer));
}
/* Only default identity supported for now */
conn = bt_conn_add_le(BT_ID_DEFAULT, &dst);
if (!conn) {
return NULL;
}
bt_conn_set_param_le(conn, conn_param);
return conn;
}
int bt_conn_le_create(const bt_addr_le_t *peer, const struct bt_conn_le_create_param *create_param,
const struct bt_le_conn_param *conn_param, struct bt_conn **ret_conn)
{
struct bt_conn *conn;
int err;
CHECKIF(ret_conn == NULL) {
return -EINVAL;
}
CHECKIF(*ret_conn != NULL) {
/* This rule helps application developers prevent leaks of connection references. If
* a bt_conn variable is not null, it presumably holds a reference and must not be
* overwritten. To avoid this warning, initialize the variables to null, and set
* them to null when moving the reference.
*/
LOG_WRN("*conn should be unreferenced and initialized to NULL");
if (IS_ENABLED(CONFIG_BT_CONN_CHECK_NULL_BEFORE_CREATE)) {
return -EINVAL;
}
}
err = conn_le_create_common_checks(peer, conn_param);
if (err) {
return err;
}
conn = conn_le_create_helper(peer, conn_param);
if (!conn) {
return -ENOMEM;
}
create_param_setup(create_param);
#if defined(CONFIG_BT_SMP)
if (bt_dev.le.rl_entries > bt_dev.le.rl_size) {
/* Use host-based identity resolving. */
bt_conn_set_state(conn, BT_CONN_SCAN_BEFORE_INITIATING);
err = bt_le_scan_user_add(BT_LE_SCAN_USER_CONN);
if (err) {
bt_le_scan_user_remove(BT_LE_SCAN_USER_CONN);
bt_conn_set_state(conn, BT_CONN_DISCONNECTED);
bt_conn_unref(conn);
return err;
}
*ret_conn = conn;
return 0;
}
#endif
bt_conn_set_state(conn, BT_CONN_INITIATING);
err = bt_le_create_conn(conn);
if (err) {
conn->err = 0;
bt_conn_set_state(conn, BT_CONN_DISCONNECTED);
bt_conn_unref(conn);
/* Best-effort attempt to inform the scanner that the initiator stopped. */
int scan_check_err = bt_le_scan_user_add(BT_LE_SCAN_USER_NONE);
if (scan_check_err) {
LOG_WRN("Error while updating the scanner (%d)", scan_check_err);
}
return err;
}
*ret_conn = conn;
return 0;
}
int bt_conn_le_create_synced(const struct bt_le_ext_adv *adv,
const struct bt_conn_le_create_synced_param *synced_param,
const struct bt_le_conn_param *conn_param, struct bt_conn **ret_conn)
{
struct bt_conn *conn;
int err;
CHECKIF(ret_conn == NULL) {
return -EINVAL;
}
CHECKIF(*ret_conn != NULL) {
/* This rule helps application developers prevent leaks of connection references. If
* a bt_conn variable is not null, it presumably holds a reference and must not be
* overwritten. To avoid this warning, initialize the variables to null, and set
* them to null when moving the reference.
*/
LOG_WRN("*conn should be unreferenced and initialized to NULL");
if (IS_ENABLED(CONFIG_BT_CONN_CHECK_NULL_BEFORE_CREATE)) {
return -EINVAL;
}
}
err = conn_le_create_common_checks(synced_param->peer, conn_param);
if (err) {
return err;
}
if (!atomic_test_bit(adv->flags, BT_PER_ADV_ENABLED)) {
return -EINVAL;
}
if (!BT_FEAT_LE_PAWR_ADVERTISER(bt_dev.le.features)) {
return -ENOTSUP;
}
if (synced_param->subevent >= BT_HCI_PAWR_SUBEVENT_MAX) {
return -EINVAL;
}
conn = conn_le_create_helper(synced_param->peer, conn_param);
if (!conn) {
return -ENOMEM;
}
/* The connection creation timeout is not really useful for PAwR.
* The controller will give a result for the connection attempt
* within a periodic interval. We do not know the periodic interval
* used, so disable the timeout.
*/
bt_dev.create_param.timeout = 0;
bt_conn_set_state(conn, BT_CONN_INITIATING);
err = bt_le_create_conn_synced(conn, adv, synced_param->subevent);
if (err) {
conn->err = 0;
bt_conn_set_state(conn, BT_CONN_DISCONNECTED);
bt_conn_unref(conn);
return err;
}
*ret_conn = conn;
return 0;
}
#if !defined(CONFIG_BT_FILTER_ACCEPT_LIST)
int bt_le_set_auto_conn(const bt_addr_le_t *addr,
const struct bt_le_conn_param *param)
{
struct bt_conn *conn;
if (!atomic_test_bit(bt_dev.flags, BT_DEV_READY)) {
return -EAGAIN;
}
if (param && !bt_le_conn_params_valid(param)) {
return -EINVAL;
}
if (!bt_id_scan_random_addr_check()) {
return -EINVAL;
}
/* Only default identity is supported */
conn = bt_conn_lookup_addr_le(BT_ID_DEFAULT, addr);
if (!conn) {
conn = bt_conn_add_le(BT_ID_DEFAULT, addr);
if (!conn) {
return -ENOMEM;
}
}
if (param) {
bt_conn_set_param_le(conn, param);
if (!atomic_test_and_set_bit(conn->flags,
BT_CONN_AUTO_CONNECT)) {
bt_conn_ref(conn);
}
} else {
if (atomic_test_and_clear_bit(conn->flags,
BT_CONN_AUTO_CONNECT)) {
bt_conn_unref(conn);
if (conn->state == BT_CONN_SCAN_BEFORE_INITIATING) {
bt_conn_set_state(conn, BT_CONN_DISCONNECTED);
}
}
}
int err = 0;
if (conn->state == BT_CONN_DISCONNECTED &&
atomic_test_bit(bt_dev.flags, BT_DEV_READY)) {
if (param) {
bt_conn_set_state(conn, BT_CONN_SCAN_BEFORE_INITIATING);
err = bt_le_scan_user_add(BT_LE_SCAN_USER_CONN);
}
}
bt_conn_unref(conn);
return err;
}
#endif /* !defined(CONFIG_BT_FILTER_ACCEPT_LIST) */
#endif /* CONFIG_BT_CENTRAL */
int bt_conn_le_conn_update(struct bt_conn *conn,
const struct bt_le_conn_param *param)
{
struct hci_cp_le_conn_update *conn_update;
struct net_buf *buf;
buf = bt_hci_cmd_create(BT_HCI_OP_LE_CONN_UPDATE,
sizeof(*conn_update));
if (!buf) {
return -ENOBUFS;
}
conn_update = net_buf_add(buf, sizeof(*conn_update));
(void)memset(conn_update, 0, sizeof(*conn_update));
conn_update->handle = sys_cpu_to_le16(conn->handle);
conn_update->conn_interval_min = sys_cpu_to_le16(param->interval_min);
conn_update->conn_interval_max = sys_cpu_to_le16(param->interval_max);
conn_update->conn_latency = sys_cpu_to_le16(param->latency);
conn_update->supervision_timeout = sys_cpu_to_le16(param->timeout);
return bt_hci_cmd_send_sync(BT_HCI_OP_LE_CONN_UPDATE, buf, NULL);
}
#if defined(CONFIG_BT_SMP) || defined(CONFIG_BT_CLASSIC)
int bt_conn_auth_cb_register(const struct bt_conn_auth_cb *cb)
{
if (!cb) {
bt_auth = NULL;
return 0;
}
if (bt_auth) {
return -EALREADY;
}
/* The cancel callback must always be provided if the app provides
* interactive callbacks.
*/
if (!cb->cancel &&
(cb->passkey_display || cb->passkey_entry || cb->passkey_confirm ||
#if defined(CONFIG_BT_CLASSIC)
cb->pincode_entry ||
#endif
cb->pairing_confirm)) {
return -EINVAL;
}
bt_auth = cb;
return 0;
}
#if defined(CONFIG_BT_SMP)
int bt_conn_auth_cb_overlay(struct bt_conn *conn, const struct bt_conn_auth_cb *cb)
{
CHECKIF(conn == NULL) {
return -EINVAL;
}
/* The cancel callback must always be provided if the app provides
* interactive callbacks.
*/
if (cb && !cb->cancel &&
(cb->passkey_display || cb->passkey_entry || cb->passkey_confirm ||
cb->pairing_confirm)) {
return -EINVAL;
}
if (conn->type == BT_CONN_TYPE_LE) {
return bt_smp_auth_cb_overlay(conn, cb);
}
return -ENOTSUP;
}
#endif
int bt_conn_auth_info_cb_register(struct bt_conn_auth_info_cb *cb)
{
CHECKIF(cb == NULL) {
return -EINVAL;
}
if (sys_slist_find(&bt_auth_info_cbs, &cb->node, NULL)) {
return -EALREADY;
}
sys_slist_append(&bt_auth_info_cbs, &cb->node);
return 0;
}
int bt_conn_auth_info_cb_unregister(struct bt_conn_auth_info_cb *cb)
{
CHECKIF(cb == NULL) {
return -EINVAL;
}
if (!sys_slist_find_and_remove(&bt_auth_info_cbs, &cb->node)) {
return -EALREADY;
}
return 0;
}
int bt_conn_auth_passkey_entry(struct bt_conn *conn, unsigned int passkey)
{
if (IS_ENABLED(CONFIG_BT_SMP) && conn->type == BT_CONN_TYPE_LE) {
return bt_smp_auth_passkey_entry(conn, passkey);
}
if (IS_ENABLED(CONFIG_BT_CLASSIC) && conn->type == BT_CONN_TYPE_BR) {
if (!bt_auth) {
return -EINVAL;
}
return bt_ssp_auth_passkey_entry(conn, passkey);
}
return -EINVAL;
}
#if defined(CONFIG_BT_PASSKEY_KEYPRESS)
int bt_conn_auth_keypress_notify(struct bt_conn *conn,
enum bt_conn_auth_keypress type)
{
if (IS_ENABLED(CONFIG_BT_SMP) && conn->type == BT_CONN_TYPE_LE) {
return bt_smp_auth_keypress_notify(conn, type);
}
LOG_ERR("Not implemented for conn type %d", conn->type);
return -EINVAL;
}
#endif
int bt_conn_auth_passkey_confirm(struct bt_conn *conn)
{
if (IS_ENABLED(CONFIG_BT_SMP) && conn->type == BT_CONN_TYPE_LE) {
return bt_smp_auth_passkey_confirm(conn);
}
if (IS_ENABLED(CONFIG_BT_CLASSIC) && conn->type == BT_CONN_TYPE_BR) {
if (!bt_auth) {
return -EINVAL;
}
return bt_ssp_auth_passkey_confirm(conn);
}
return -EINVAL;
}
int bt_conn_auth_cancel(struct bt_conn *conn)
{
if (IS_ENABLED(CONFIG_BT_SMP) && conn->type == BT_CONN_TYPE_LE) {
return bt_smp_auth_cancel(conn);
}
if (IS_ENABLED(CONFIG_BT_CLASSIC) && conn->type == BT_CONN_TYPE_BR) {
if (!bt_auth) {
return -EINVAL;
}
return bt_ssp_auth_cancel(conn);
}
return -EINVAL;
}
int bt_conn_auth_pairing_confirm(struct bt_conn *conn)
{
if (IS_ENABLED(CONFIG_BT_SMP) && conn->type == BT_CONN_TYPE_LE) {
return bt_smp_auth_pairing_confirm(conn);
}
if (IS_ENABLED(CONFIG_BT_CLASSIC) && conn->type == BT_CONN_TYPE_BR) {
if (!bt_auth) {
return -EINVAL;
}
return bt_ssp_auth_pairing_confirm(conn);
}
return -EINVAL;
}
#endif /* CONFIG_BT_SMP || CONFIG_BT_CLASSIC */
struct bt_conn *bt_conn_lookup_index(uint8_t index)
{
if (index >= ARRAY_SIZE(acl_conns)) {
return NULL;
}
return bt_conn_ref(&acl_conns[index]);
}
int bt_conn_init(void)
{
int err, i;
k_fifo_init(&free_tx);
for (i = 0; i < ARRAY_SIZE(conn_tx); i++) {
k_fifo_put(&free_tx, &conn_tx[i]);
}
bt_att_init();
err = bt_smp_init();
if (err) {
return err;
}
bt_l2cap_init();
/* Initialize background scan */
if (IS_ENABLED(CONFIG_BT_CENTRAL)) {
for (i = 0; i < ARRAY_SIZE(acl_conns); i++) {
struct bt_conn *conn = bt_conn_ref(&acl_conns[i]);
if (!conn) {
continue;
}
#if !defined(CONFIG_BT_FILTER_ACCEPT_LIST)
if (atomic_test_bit(conn->flags,
BT_CONN_AUTO_CONNECT)) {
/* Only the default identity is supported */
conn->id = BT_ID_DEFAULT;
bt_conn_set_state(conn,
BT_CONN_SCAN_BEFORE_INITIATING);
}
#endif /* !defined(CONFIG_BT_FILTER_ACCEPT_LIST) */
bt_conn_unref(conn);
}
}
return 0;
}
#if defined(CONFIG_BT_DF_CONNECTION_CTE_RX)
void bt_hci_le_df_connection_iq_report_common(uint8_t event, struct net_buf *buf)
{
struct bt_df_conn_iq_samples_report iq_report;
struct bt_conn *conn;
int err;
if (event == BT_HCI_EVT_LE_CONNECTION_IQ_REPORT) {
err = hci_df_prepare_connection_iq_report(buf, &iq_report, &conn);
if (err) {
LOG_ERR("Prepare CTE conn IQ report failed %d", err);
return;
}
} else if (IS_ENABLED(CONFIG_BT_DF_VS_CONN_IQ_REPORT_16_BITS_IQ_SAMPLES) &&
event == BT_HCI_EVT_VS_LE_CONNECTION_IQ_REPORT) {
err = hci_df_vs_prepare_connection_iq_report(buf, &iq_report, &conn);
if (err) {
LOG_ERR("Prepare CTE conn IQ report failed %d", err);
return;
}
} else {
LOG_ERR("Unhandled VS connection IQ report");
return;
}
struct bt_conn_cb *callback;
SYS_SLIST_FOR_EACH_CONTAINER(&conn_cbs, callback, _node) {
if (callback->cte_report_cb) {
callback->cte_report_cb(conn, &iq_report);
}
}
STRUCT_SECTION_FOREACH(bt_conn_cb, cb)
{
if (cb->cte_report_cb) {
cb->cte_report_cb(conn, &iq_report);
}
}
bt_conn_unref(conn);
}
void bt_hci_le_df_connection_iq_report(struct net_buf *buf)
{
bt_hci_le_df_connection_iq_report_common(BT_HCI_EVT_LE_CONNECTION_IQ_REPORT, buf);
}
#if defined(CONFIG_BT_DF_VS_CONN_IQ_REPORT_16_BITS_IQ_SAMPLES)
void bt_hci_le_vs_df_connection_iq_report(struct net_buf *buf)
{
bt_hci_le_df_connection_iq_report_common(BT_HCI_EVT_VS_LE_CONNECTION_IQ_REPORT, buf);
}
#endif /* CONFIG_BT_DF_VS_CONN_IQ_REPORT_16_BITS_IQ_SAMPLES */
#endif /* CONFIG_BT_DF_CONNECTION_CTE_RX */
#if defined(CONFIG_BT_DF_CONNECTION_CTE_REQ)
void bt_hci_le_df_cte_req_failed(struct net_buf *buf)
{
struct bt_df_conn_iq_samples_report iq_report;
struct bt_conn *conn;
int err;
err = hci_df_prepare_conn_cte_req_failed(buf, &iq_report, &conn);
if (err) {
LOG_ERR("Prepare CTE REQ failed IQ report failed %d", err);
return;
}
struct bt_conn_cb *callback;
SYS_SLIST_FOR_EACH_CONTAINER(&conn_cbs, callback, _node) {
if (callback->cte_report_cb) {
callback->cte_report_cb(conn, &iq_report);
}
}
STRUCT_SECTION_FOREACH(bt_conn_cb, cb)
{
if (cb->cte_report_cb) {
cb->cte_report_cb(conn, &iq_report);
}
}
bt_conn_unref(conn);
}
#endif /* CONFIG_BT_DF_CONNECTION_CTE_REQ */
#endif /* CONFIG_BT_CONN */
#if defined(CONFIG_BT_CONN_TX_NOTIFY_WQ)
static int bt_conn_tx_workq_init(void)
{
const struct k_work_queue_config cfg = {
.name = "BT CONN TX WQ",
.no_yield = false,
.essential = false,
};
k_work_queue_init(&conn_tx_workq);
k_work_queue_start(&conn_tx_workq, conn_tx_workq_thread_stack,
K_THREAD_STACK_SIZEOF(conn_tx_workq_thread_stack),
K_PRIO_COOP(CONFIG_BT_CONN_TX_NOTIFY_WQ_PRIO), &cfg);
return 0;
}
SYS_INIT(bt_conn_tx_workq_init, POST_KERNEL, CONFIG_BT_CONN_TX_NOTIFY_WQ_INIT_PRIORITY);
#endif /* CONFIG_BT_CONN_TX_NOTIFY_WQ */