blob: 402cf565af2161123ad6ef1401f8340331ae5212 [file] [log] [blame]
/*
* Copyright (c) 2024 Nordic Semiconductor ASA
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @brief File containing SPI device interface specific definitions for the
* Zephyr OS layer of the Wi-Fi driver.
*/
#include <string.h>
#include <zephyr/drivers/spi.h>
#include <zephyr/logging/log.h>
#include <zephyr/drivers/wifi/nrf_wifi/bus/qspi_if.h>
#include "spi_if.h"
LOG_MODULE_DECLARE(wifi_nrf_bus, CONFIG_WIFI_NRF70_BUSLIB_LOG_LEVEL);
#define NRF7002_NODE DT_NODELABEL(nrf70)
static struct qspi_config *spim_config;
static const struct spi_dt_spec spi_spec =
SPI_DT_SPEC_GET(NRF7002_NODE, SPI_WORD_SET(8) | SPI_TRANSFER_MSB);
static struct spi_dt_spec spi_spec_8mhz =
SPI_DT_SPEC_GET(NRF7002_NODE, SPI_WORD_SET(8) | SPI_TRANSFER_MSB);
static int spim_xfer_tx(unsigned int addr, void *data, unsigned int len)
{
int err;
uint8_t hdr[4] = {
0x02, /* PP opcode */
(((addr >> 16) & 0xFF) | 0x80),
(addr >> 8) & 0xFF,
(addr & 0xFF)
};
const struct spi_buf tx_buf[] = {
{.buf = hdr, .len = sizeof(hdr) },
{.buf = data, .len = len },
};
const struct spi_buf_set tx = { .buffers = tx_buf, .count = 2 };
err = spi_transceive_dt(&spi_spec, &tx, NULL);
return err;
}
static int spim_xfer_rx(unsigned int addr, void *data, unsigned int len, unsigned int discard_bytes)
{
uint8_t hdr[] = {
0x0b, /* FASTREAD opcode */
(addr >> 16) & 0xFF,
(addr >> 8) & 0xFF,
addr & 0xFF,
0 /* dummy byte */
};
uint8_t discard[sizeof(hdr) + 2 * 4];
const struct spi_buf tx_buf[] = {
{.buf = hdr, .len = sizeof(hdr) },
{.buf = NULL, .len = len },
};
const struct spi_buf_set tx = { .buffers = tx_buf, .count = 2 };
const struct spi_buf rx_buf[] = {
{.buf = discard, .len = sizeof(hdr) + discard_bytes},
{.buf = data, .len = len },
};
const struct spi_buf_set rx = { .buffers = rx_buf, .count = 2 };
if (rx_buf[0].len > sizeof(discard)) {
LOG_ERR("Discard bytes too large, please adjust buf size");
return -EINVAL;
}
return spi_transceive_dt(&spi_spec, &tx, &rx);
}
int spim_read_reg(uint32_t reg_addr, uint8_t *reg_value)
{
int err;
uint8_t tx_buffer[6] = { reg_addr };
const struct spi_buf tx_buf = {
.buf = tx_buffer,
.len = sizeof(tx_buffer)
};
const struct spi_buf_set tx = {
.buffers = &tx_buf,
.count = 1
};
uint8_t sr[6];
struct spi_buf rx_buf = {
.buf = &sr,
.len = sizeof(sr),
};
const struct spi_buf_set rx = { .buffers = &rx_buf, .count = 1 };
err = spi_transceive_dt(&spi_spec, &tx, &rx);
LOG_DBG("err: %d -> %x %x %x %x %x %x", err, sr[0], sr[1], sr[2], sr[3], sr[4], sr[5]);
if (err == 0) {
*reg_value = sr[1];
}
return err;
}
int spim_write_reg(const struct spi_dt_spec *spi_spec, uint32_t reg_addr, const uint8_t reg_value)
{
int err;
uint8_t tx_buffer[] = { reg_addr, reg_value };
const struct spi_buf tx_buf = { .buf = tx_buffer, .len = sizeof(tx_buffer) };
const struct spi_buf_set tx = { .buffers = &tx_buf, .count = 1 };
err = spi_transceive_dt(spi_spec, &tx, NULL);
if (err) {
LOG_ERR("SPI error: %d", err);
}
return err;
}
int spim_RDSR1(const struct device *dev, uint8_t *rdsr1)
{
uint8_t val = 0;
return spim_read_reg(0x1F, &val);
}
int spim_RDSR2(const struct device *dev, uint8_t *rdsr1)
{
uint8_t val = 0;
return spim_read_reg(0x2F, &val);
}
int spim_WRSR2(const struct device *dev, const uint8_t wrsr2)
{
return spim_write_reg(&spi_spec, 0x3F, wrsr2);
}
/**
* @brief Read a register via SPI (wrapper for compatibility)
*
* @param dev SPI device (unused, kept for compatibility)
* @param reg_addr Register address (opcode)
* @param reg_value Pointer to store the read value
* @return int 0 on success, negative error code on failure
*/
int spim_read_reg_wrapper(const struct device *dev, uint8_t reg_addr, uint8_t *reg_value)
{
ARG_UNUSED(dev);
return spim_read_reg(reg_addr, reg_value);
}
/**
* @brief Write a register via SPI (wrapper for compatibility)
*
* @param dev SPI device (unused, kept for compatibility)
* @param reg_addr Register address (opcode)
* @param reg_value Value to write
* @return int 0 on success, negative error code on failure
*/
int spim_write_reg_wrapper(const struct device *dev, uint8_t reg_addr, uint8_t reg_value)
{
ARG_UNUSED(dev);
return spim_write_reg(&spi_spec, reg_addr, reg_value);
}
int _spim_wait_while_rpu_awake(void)
{
int ret;
uint8_t val = 0;
for (int ii = 0; ii < 10; ii++) {
ret = spim_read_reg(0x1F, &val);
LOG_DBG("RDSR1 = 0x%x", val);
if (!ret && (val & RPU_AWAKE_BIT)) {
break;
}
k_msleep(1);
}
if (ret || !(val & RPU_AWAKE_BIT)) {
LOG_ERR("RPU is not awake even after 10ms");
return -1;
}
return val;
}
/* Wait until RDSR2 confirms RPU_WAKEUP_NOW write is successful */
int spim_wait_while_rpu_wake_write(void)
{
int ret;
uint8_t val = 0;
for (int ii = 0; ii < 10; ii++) {
ret = spim_read_reg(0x2F, &val);
LOG_DBG("RDSR2 = 0x%x", val);
if (!ret && (val & RPU_WAKEUP_NOW)) {
break;
}
k_msleep(1);
}
if (ret || !(val & RPU_WAKEUP_NOW)) {
LOG_ERR("RPU wakeup write ACK failed even after 10ms");
return -1;
}
return ret;
}
int spim_cmd_rpu_wakeup(uint32_t data)
{
struct spi_dt_spec *spi_spec_tmp = (struct spi_dt_spec *)&spi_spec;
if (spi_spec.config.frequency > MHZ(8)) {
spi_spec_tmp = &spi_spec_8mhz;
}
/* Waking RPU works reliably only with lowest frequency (8MHz) */
return spim_write_reg(spi_spec_tmp, 0x3F, data);
}
unsigned int spim_cmd_sleep_rpu(void)
{
int err;
uint8_t tx_buffer[] = { 0x3f, 0x0 };
const struct spi_buf tx_buf = { .buf = tx_buffer, .len = sizeof(tx_buffer) };
const struct spi_buf_set tx = { .buffers = &tx_buf, .count = 1 };
err = spi_transceive_dt(&spi_spec, &tx, NULL);
if (err) {
LOG_ERR("SPI error: %d", err);
}
return 0;
}
int spim_init(struct qspi_config *config)
{
if (!spi_is_ready_dt(&spi_spec)) {
LOG_ERR("Device %s is not ready", spi_spec.bus->name);
return -ENODEV;
}
spim_config = config;
k_sem_init(&spim_config->lock, 1, 1);
if (spi_spec.config.frequency >= MHZ(16)) {
spim_config->qspi_slave_latency = 1;
}
spi_spec_8mhz.config.frequency = MHZ(8);
LOG_INF("SPIM %s: freq = %d MHz", spi_spec.bus->name,
spi_spec.config.frequency / MHZ(1));
LOG_INF("SPIM %s: latency = %d", spi_spec.bus->name, spim_config->qspi_slave_latency);
return 0;
}
int spim_deinit(void)
{
return spi_release_dt(&spi_spec);
}
static void spim_addr_check(unsigned int addr, const void *data, unsigned int len)
{
if ((addr % 4 != 0) || (((unsigned int)data) % 4 != 0) || (len % 4 != 0)) {
LOG_ERR("%s : Unaligned address %x %x %d %x %x", __func__, addr,
(unsigned int)data, (addr % 4 != 0), (((unsigned int)data) % 4 != 0),
(len % 4 != 0));
}
}
int spim_write(unsigned int addr, const void *data, int len)
{
int status;
spim_addr_check(addr, data, len);
addr |= spim_config->addrmask;
k_sem_take(&spim_config->lock, K_FOREVER);
status = spim_xfer_tx(addr, (void *)data, len);
k_sem_give(&spim_config->lock);
return status;
}
int spim_read(unsigned int addr, void *data, int len)
{
int status;
spim_addr_check(addr, data, len);
addr |= spim_config->addrmask;
k_sem_take(&spim_config->lock, K_FOREVER);
status = spim_xfer_rx(addr, data, len, 0);
k_sem_give(&spim_config->lock);
return status;
}
static int spim_hl_readw(unsigned int addr, void *data)
{
int status = -1;
k_sem_take(&spim_config->lock, K_FOREVER);
status = spim_xfer_rx(addr, data, 4, 4 * spim_config->qspi_slave_latency);
k_sem_give(&spim_config->lock);
return status;
}
int spim_hl_read(unsigned int addr, void *data, int len)
{
int count = 0;
spim_addr_check(addr, data, len);
while (count < (len / 4)) {
spim_hl_readw(addr + (4 * count), (char *)data + (4 * count));
count++;
}
return 0;
}
/* ------------------------------added for wifi utils -------------------------------- */
int spim_cmd_rpu_wakeup_fn(uint32_t data)
{
return spim_cmd_rpu_wakeup(data);
}
int spim_cmd_sleep_rpu_fn(void)
{
return spim_cmd_sleep_rpu();
}
int spim_wait_while_rpu_awake(void)
{
return _spim_wait_while_rpu_awake();
}
int spi_validate_rpu_wake_writecmd(void)
{
return spim_wait_while_rpu_wake_write();
}