| /* |
| * Copyright (c) 2016 Open-RnD Sp. z o.o. |
| * Copyright (c) 2016 Linaro Limited. |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| #define DT_DRV_COMPAT st_stm32_uart |
| |
| /** |
| * @brief Driver for UART port on STM32 family processor. |
| * @note LPUART and U(S)ART have the same base and |
| * majority of operations are performed the same way. |
| * Please validate for newly added series. |
| */ |
| |
| #include <zephyr/kernel.h> |
| #include <zephyr/arch/cpu.h> |
| #include <zephyr/sys/__assert.h> |
| #include <soc.h> |
| #include <zephyr/init.h> |
| #include <zephyr/drivers/interrupt_controller/exti_stm32.h> |
| #include <zephyr/drivers/uart.h> |
| #include <zephyr/drivers/clock_control.h> |
| #include <zephyr/drivers/reset.h> |
| #include <zephyr/pm/policy.h> |
| #include <zephyr/pm/device.h> |
| |
| #ifdef CONFIG_UART_ASYNC_API |
| #include <zephyr/drivers/dma/dma_stm32.h> |
| #include <zephyr/drivers/dma.h> |
| #endif |
| |
| #include <zephyr/linker/sections.h> |
| #include <zephyr/drivers/clock_control/stm32_clock_control.h> |
| #include "uart_stm32.h" |
| |
| #include <stm32_ll_usart.h> |
| #include <stm32_ll_lpuart.h> |
| #if defined(CONFIG_PM) && defined(IS_UART_WAKEUP_FROMSTOP_INSTANCE) |
| #include <stm32_ll_exti.h> |
| #endif /* CONFIG_PM */ |
| |
| #include <zephyr/logging/log.h> |
| #include <zephyr/irq.h> |
| LOG_MODULE_REGISTER(uart_stm32, CONFIG_UART_LOG_LEVEL); |
| |
| /* This symbol takes the value 1 if one of the device instances */ |
| /* is configured in dts with a domain clock */ |
| #if STM32_DT_INST_DEV_DOMAIN_CLOCK_SUPPORT |
| #define STM32_UART_DOMAIN_CLOCK_SUPPORT 1 |
| #else |
| #define STM32_UART_DOMAIN_CLOCK_SUPPORT 0 |
| #endif |
| |
| #define HAS_LPUART_1 (DT_NODE_HAS_COMPAT_STATUS(DT_NODELABEL(lpuart1), \ |
| st_stm32_lpuart, okay)) |
| |
| #if HAS_LPUART_1 |
| #ifdef USART_PRESC_PRESCALER |
| uint32_t lpuartdiv_calc(const uint64_t clock_rate, const uint16_t presc_idx, |
| const uint32_t baud_rate) |
| { |
| uint64_t lpuartdiv; |
| |
| lpuartdiv = clock_rate / LPUART_PRESCALER_TAB[presc_idx]; |
| lpuartdiv *= LPUART_LPUARTDIV_FREQ_MUL; |
| lpuartdiv += baud_rate / 2; |
| lpuartdiv /= baud_rate; |
| |
| return (uint32_t)lpuartdiv; |
| } |
| #else |
| uint32_t lpuartdiv_calc(const uint64_t clock_rate, const uint32_t baud_rate) |
| { |
| uint64_t lpuartdiv; |
| |
| lpuartdiv = clock_rate * LPUART_LPUARTDIV_FREQ_MUL; |
| lpuartdiv += baud_rate / 2; |
| lpuartdiv /= baud_rate; |
| |
| return (uint32_t)lpuartdiv; |
| } |
| #endif /* USART_PRESC_PRESCALER */ |
| #endif /* HAS_LPUART_1 */ |
| |
| #ifdef CONFIG_PM |
| static void uart_stm32_pm_policy_state_lock_get(const struct device *dev) |
| { |
| struct uart_stm32_data *data = dev->data; |
| |
| if (!data->pm_policy_state_on) { |
| data->pm_policy_state_on = true; |
| pm_policy_state_lock_get(PM_STATE_SUSPEND_TO_IDLE, PM_ALL_SUBSTATES); |
| } |
| } |
| |
| static void uart_stm32_pm_policy_state_lock_put(const struct device *dev) |
| { |
| struct uart_stm32_data *data = dev->data; |
| |
| if (data->pm_policy_state_on) { |
| data->pm_policy_state_on = false; |
| pm_policy_state_lock_put(PM_STATE_SUSPEND_TO_IDLE, PM_ALL_SUBSTATES); |
| } |
| } |
| #endif /* CONFIG_PM */ |
| |
| static inline void uart_stm32_set_baudrate(const struct device *dev, uint32_t baud_rate) |
| { |
| const struct uart_stm32_config *config = dev->config; |
| struct uart_stm32_data *data = dev->data; |
| |
| uint32_t clock_rate; |
| |
| /* Get clock rate */ |
| if (IS_ENABLED(STM32_UART_DOMAIN_CLOCK_SUPPORT) && (config->pclk_len > 1)) { |
| if (clock_control_get_rate(data->clock, |
| (clock_control_subsys_t)&config->pclken[1], |
| &clock_rate) < 0) { |
| LOG_ERR("Failed call clock_control_get_rate(pclken[1])"); |
| return; |
| } |
| } else { |
| if (clock_control_get_rate(data->clock, |
| (clock_control_subsys_t)&config->pclken[0], |
| &clock_rate) < 0) { |
| LOG_ERR("Failed call clock_control_get_rate(pclken[0])"); |
| return; |
| } |
| } |
| |
| #if HAS_LPUART_1 |
| if (IS_LPUART_INSTANCE(config->usart)) { |
| uint32_t lpuartdiv; |
| #ifdef USART_PRESC_PRESCALER |
| uint8_t presc_idx; |
| uint32_t presc_val; |
| |
| for (presc_idx = 0; presc_idx < ARRAY_SIZE(LPUART_PRESCALER_TAB); presc_idx++) { |
| lpuartdiv = lpuartdiv_calc(clock_rate, presc_idx, baud_rate); |
| if (lpuartdiv >= LPUART_BRR_MIN_VALUE && lpuartdiv <= LPUART_BRR_MASK) { |
| break; |
| } |
| } |
| |
| if (presc_idx == ARRAY_SIZE(LPUART_PRESCALER_TAB)) { |
| LOG_ERR("Unable to set %s to %d", dev->name, baud_rate); |
| return; |
| } |
| |
| presc_val = presc_idx << USART_PRESC_PRESCALER_Pos; |
| |
| LL_LPUART_SetPrescaler(config->usart, presc_val); |
| #else |
| lpuartdiv = lpuartdiv_calc(clock_rate, baud_rate); |
| if (lpuartdiv < LPUART_BRR_MIN_VALUE || lpuartdiv > LPUART_BRR_MASK) { |
| LOG_ERR("Unable to set %s to %d", dev->name, baud_rate); |
| return; |
| } |
| #endif /* USART_PRESC_PRESCALER */ |
| LL_LPUART_SetBaudRate(config->usart, |
| clock_rate, |
| #ifdef USART_PRESC_PRESCALER |
| presc_val, |
| #endif |
| baud_rate); |
| /* Check BRR is greater than or equal to 0x300 */ |
| __ASSERT(LL_LPUART_ReadReg(config->usart, BRR) >= 0x300U, |
| "BaudRateReg >= 0x300"); |
| |
| /* Check BRR is lower than or equal to 0xFFFFF */ |
| __ASSERT(LL_LPUART_ReadReg(config->usart, BRR) < 0x000FFFFFU, |
| "BaudRateReg < 0xFFFF"); |
| } else { |
| #endif /* HAS_LPUART_1 */ |
| #ifdef USART_CR1_OVER8 |
| LL_USART_SetOverSampling(config->usart, |
| LL_USART_OVERSAMPLING_16); |
| #endif |
| LL_USART_SetBaudRate(config->usart, |
| clock_rate, |
| #ifdef USART_PRESC_PRESCALER |
| LL_USART_PRESCALER_DIV1, |
| #endif |
| #ifdef USART_CR1_OVER8 |
| LL_USART_OVERSAMPLING_16, |
| #endif |
| baud_rate); |
| /* Check BRR is greater than or equal to 16d */ |
| __ASSERT(LL_USART_ReadReg(config->usart, BRR) > 16, |
| "BaudRateReg >= 16"); |
| |
| #if HAS_LPUART_1 |
| } |
| #endif /* HAS_LPUART_1 */ |
| } |
| |
| static inline void uart_stm32_set_parity(const struct device *dev, |
| uint32_t parity) |
| { |
| const struct uart_stm32_config *config = dev->config; |
| |
| LL_USART_SetParity(config->usart, parity); |
| } |
| |
| static inline uint32_t uart_stm32_get_parity(const struct device *dev) |
| { |
| const struct uart_stm32_config *config = dev->config; |
| |
| return LL_USART_GetParity(config->usart); |
| } |
| |
| static inline void uart_stm32_set_stopbits(const struct device *dev, |
| uint32_t stopbits) |
| { |
| const struct uart_stm32_config *config = dev->config; |
| |
| LL_USART_SetStopBitsLength(config->usart, stopbits); |
| } |
| |
| static inline uint32_t uart_stm32_get_stopbits(const struct device *dev) |
| { |
| const struct uart_stm32_config *config = dev->config; |
| |
| return LL_USART_GetStopBitsLength(config->usart); |
| } |
| |
| static inline void uart_stm32_set_databits(const struct device *dev, |
| uint32_t databits) |
| { |
| const struct uart_stm32_config *config = dev->config; |
| |
| LL_USART_SetDataWidth(config->usart, databits); |
| } |
| |
| static inline uint32_t uart_stm32_get_databits(const struct device *dev) |
| { |
| const struct uart_stm32_config *config = dev->config; |
| |
| return LL_USART_GetDataWidth(config->usart); |
| } |
| |
| static inline void uart_stm32_set_hwctrl(const struct device *dev, |
| uint32_t hwctrl) |
| { |
| const struct uart_stm32_config *config = dev->config; |
| |
| LL_USART_SetHWFlowCtrl(config->usart, hwctrl); |
| } |
| |
| static inline uint32_t uart_stm32_get_hwctrl(const struct device *dev) |
| { |
| const struct uart_stm32_config *config = dev->config; |
| |
| return LL_USART_GetHWFlowCtrl(config->usart); |
| } |
| |
| static inline uint32_t uart_stm32_cfg2ll_parity(enum uart_config_parity parity) |
| { |
| switch (parity) { |
| case UART_CFG_PARITY_ODD: |
| return LL_USART_PARITY_ODD; |
| case UART_CFG_PARITY_EVEN: |
| return LL_USART_PARITY_EVEN; |
| case UART_CFG_PARITY_NONE: |
| default: |
| return LL_USART_PARITY_NONE; |
| } |
| } |
| |
| static inline enum uart_config_parity uart_stm32_ll2cfg_parity(uint32_t parity) |
| { |
| switch (parity) { |
| case LL_USART_PARITY_ODD: |
| return UART_CFG_PARITY_ODD; |
| case LL_USART_PARITY_EVEN: |
| return UART_CFG_PARITY_EVEN; |
| case LL_USART_PARITY_NONE: |
| default: |
| return UART_CFG_PARITY_NONE; |
| } |
| } |
| |
| static inline uint32_t uart_stm32_cfg2ll_stopbits(enum uart_config_stop_bits sb) |
| { |
| switch (sb) { |
| /* Some MCU's don't support 0.5 stop bits */ |
| #ifdef LL_USART_STOPBITS_0_5 |
| case UART_CFG_STOP_BITS_0_5: |
| return LL_USART_STOPBITS_0_5; |
| #endif /* LL_USART_STOPBITS_0_5 */ |
| case UART_CFG_STOP_BITS_1: |
| return LL_USART_STOPBITS_1; |
| /* Some MCU's don't support 1.5 stop bits */ |
| #ifdef LL_USART_STOPBITS_1_5 |
| case UART_CFG_STOP_BITS_1_5: |
| return LL_USART_STOPBITS_1_5; |
| #endif /* LL_USART_STOPBITS_1_5 */ |
| case UART_CFG_STOP_BITS_2: |
| default: |
| return LL_USART_STOPBITS_2; |
| } |
| } |
| |
| static inline enum uart_config_stop_bits uart_stm32_ll2cfg_stopbits(uint32_t sb) |
| { |
| switch (sb) { |
| /* Some MCU's don't support 0.5 stop bits */ |
| #ifdef LL_USART_STOPBITS_0_5 |
| case LL_USART_STOPBITS_0_5: |
| return UART_CFG_STOP_BITS_0_5; |
| #endif /* LL_USART_STOPBITS_0_5 */ |
| case LL_USART_STOPBITS_1: |
| return UART_CFG_STOP_BITS_1; |
| /* Some MCU's don't support 1.5 stop bits */ |
| #ifdef LL_USART_STOPBITS_1_5 |
| case LL_USART_STOPBITS_1_5: |
| return UART_CFG_STOP_BITS_1_5; |
| #endif /* LL_USART_STOPBITS_1_5 */ |
| case LL_USART_STOPBITS_2: |
| default: |
| return UART_CFG_STOP_BITS_2; |
| } |
| } |
| |
| static inline uint32_t uart_stm32_cfg2ll_databits(enum uart_config_data_bits db, |
| enum uart_config_parity p) |
| { |
| switch (db) { |
| /* Some MCU's don't support 7B or 9B datawidth */ |
| #ifdef LL_USART_DATAWIDTH_7B |
| case UART_CFG_DATA_BITS_7: |
| if (p == UART_CFG_PARITY_NONE) { |
| return LL_USART_DATAWIDTH_7B; |
| } else { |
| return LL_USART_DATAWIDTH_8B; |
| } |
| #endif /* LL_USART_DATAWIDTH_7B */ |
| #ifdef LL_USART_DATAWIDTH_9B |
| case UART_CFG_DATA_BITS_9: |
| return LL_USART_DATAWIDTH_9B; |
| #endif /* LL_USART_DATAWIDTH_9B */ |
| case UART_CFG_DATA_BITS_8: |
| default: |
| if (p == UART_CFG_PARITY_NONE) { |
| return LL_USART_DATAWIDTH_8B; |
| #ifdef LL_USART_DATAWIDTH_9B |
| } else { |
| return LL_USART_DATAWIDTH_9B; |
| #endif |
| } |
| return LL_USART_DATAWIDTH_8B; |
| } |
| } |
| |
| static inline enum uart_config_data_bits uart_stm32_ll2cfg_databits(uint32_t db, |
| uint32_t p) |
| { |
| switch (db) { |
| /* Some MCU's don't support 7B or 9B datawidth */ |
| #ifdef LL_USART_DATAWIDTH_7B |
| case LL_USART_DATAWIDTH_7B: |
| if (p == LL_USART_PARITY_NONE) { |
| return UART_CFG_DATA_BITS_7; |
| } else { |
| return UART_CFG_DATA_BITS_6; |
| } |
| #endif /* LL_USART_DATAWIDTH_7B */ |
| #ifdef LL_USART_DATAWIDTH_9B |
| case LL_USART_DATAWIDTH_9B: |
| if (p == LL_USART_PARITY_NONE) { |
| return UART_CFG_DATA_BITS_9; |
| } else { |
| return UART_CFG_DATA_BITS_8; |
| } |
| #endif /* LL_USART_DATAWIDTH_9B */ |
| case LL_USART_DATAWIDTH_8B: |
| default: |
| if (p == LL_USART_PARITY_NONE) { |
| return UART_CFG_DATA_BITS_8; |
| } else { |
| return UART_CFG_DATA_BITS_7; |
| } |
| } |
| } |
| |
| /** |
| * @brief Get LL hardware flow control define from |
| * Zephyr hardware flow control option. |
| * @note Supports only UART_CFG_FLOW_CTRL_RTS_CTS. |
| * @param fc: Zephyr hardware flow control option. |
| * @retval LL_USART_HWCONTROL_RTS_CTS, or LL_USART_HWCONTROL_NONE. |
| */ |
| static inline uint32_t uart_stm32_cfg2ll_hwctrl(enum uart_config_flow_control fc) |
| { |
| if (fc == UART_CFG_FLOW_CTRL_RTS_CTS) { |
| return LL_USART_HWCONTROL_RTS_CTS; |
| } |
| |
| return LL_USART_HWCONTROL_NONE; |
| } |
| |
| /** |
| * @brief Get Zephyr hardware flow control option from |
| * LL hardware flow control define. |
| * @note Supports only LL_USART_HWCONTROL_RTS_CTS. |
| * @param fc: LL hardware flow control definition. |
| * @retval UART_CFG_FLOW_CTRL_RTS_CTS, or UART_CFG_FLOW_CTRL_NONE. |
| */ |
| static inline enum uart_config_flow_control uart_stm32_ll2cfg_hwctrl(uint32_t fc) |
| { |
| if (fc == LL_USART_HWCONTROL_RTS_CTS) { |
| return UART_CFG_FLOW_CTRL_RTS_CTS; |
| } |
| |
| return UART_CFG_FLOW_CTRL_NONE; |
| } |
| |
| #ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE |
| static int uart_stm32_configure(const struct device *dev, |
| const struct uart_config *cfg) |
| { |
| const struct uart_stm32_config *config = dev->config; |
| struct uart_stm32_data *data = dev->data; |
| const uint32_t parity = uart_stm32_cfg2ll_parity(cfg->parity); |
| const uint32_t stopbits = uart_stm32_cfg2ll_stopbits(cfg->stop_bits); |
| const uint32_t databits = uart_stm32_cfg2ll_databits(cfg->data_bits, |
| cfg->parity); |
| const uint32_t flowctrl = uart_stm32_cfg2ll_hwctrl(cfg->flow_ctrl); |
| |
| /* Hardware doesn't support mark or space parity */ |
| if ((cfg->parity == UART_CFG_PARITY_MARK) || |
| (cfg->parity == UART_CFG_PARITY_SPACE)) { |
| return -ENOTSUP; |
| } |
| |
| /* Driver does not supports parity + 9 databits */ |
| if ((cfg->parity != UART_CFG_PARITY_NONE) && |
| (cfg->data_bits == UART_CFG_DATA_BITS_9)) { |
| return -ENOTSUP; |
| } |
| |
| #if defined(LL_USART_STOPBITS_0_5) && HAS_LPUART_1 |
| if (IS_LPUART_INSTANCE(config->usart) && |
| (cfg->stop_bits == UART_CFG_STOP_BITS_0_5)) { |
| return -ENOTSUP; |
| } |
| #else |
| if (cfg->stop_bits == UART_CFG_STOP_BITS_0_5) { |
| return -ENOTSUP; |
| } |
| #endif |
| |
| #if defined(LL_USART_STOPBITS_1_5) && HAS_LPUART_1 |
| if (IS_LPUART_INSTANCE(config->usart) && |
| (cfg->stop_bits == UART_CFG_STOP_BITS_1_5)) { |
| return -ENOTSUP; |
| } |
| #else |
| if (cfg->stop_bits == UART_CFG_STOP_BITS_1_5) { |
| return -ENOTSUP; |
| } |
| #endif |
| |
| /* Driver doesn't support 5 or 6 databits and potentially 7 or 9 */ |
| if ((cfg->data_bits == UART_CFG_DATA_BITS_5) || |
| (cfg->data_bits == UART_CFG_DATA_BITS_6) |
| #ifndef LL_USART_DATAWIDTH_7B |
| || (cfg->data_bits == UART_CFG_DATA_BITS_7) |
| #endif /* LL_USART_DATAWIDTH_7B */ |
| || (cfg->data_bits == UART_CFG_DATA_BITS_9)) { |
| return -ENOTSUP; |
| } |
| |
| /* Driver supports only RTS CTS flow control */ |
| if (cfg->flow_ctrl != UART_CFG_FLOW_CTRL_NONE) { |
| if (!IS_UART_HWFLOW_INSTANCE(config->usart) || |
| UART_CFG_FLOW_CTRL_RTS_CTS != cfg->flow_ctrl) { |
| return -ENOTSUP; |
| } |
| } |
| |
| LL_USART_Disable(config->usart); |
| |
| if (parity != uart_stm32_get_parity(dev)) { |
| uart_stm32_set_parity(dev, parity); |
| } |
| |
| if (stopbits != uart_stm32_get_stopbits(dev)) { |
| uart_stm32_set_stopbits(dev, stopbits); |
| } |
| |
| if (databits != uart_stm32_get_databits(dev)) { |
| uart_stm32_set_databits(dev, databits); |
| } |
| |
| if (flowctrl != uart_stm32_get_hwctrl(dev)) { |
| uart_stm32_set_hwctrl(dev, flowctrl); |
| } |
| |
| if (cfg->baudrate != data->baud_rate) { |
| uart_stm32_set_baudrate(dev, cfg->baudrate); |
| data->baud_rate = cfg->baudrate; |
| } |
| |
| LL_USART_Enable(config->usart); |
| return 0; |
| }; |
| |
| static int uart_stm32_config_get(const struct device *dev, |
| struct uart_config *cfg) |
| { |
| struct uart_stm32_data *data = dev->data; |
| |
| cfg->baudrate = data->baud_rate; |
| cfg->parity = uart_stm32_ll2cfg_parity(uart_stm32_get_parity(dev)); |
| cfg->stop_bits = uart_stm32_ll2cfg_stopbits( |
| uart_stm32_get_stopbits(dev)); |
| cfg->data_bits = uart_stm32_ll2cfg_databits( |
| uart_stm32_get_databits(dev), uart_stm32_get_parity(dev)); |
| cfg->flow_ctrl = uart_stm32_ll2cfg_hwctrl( |
| uart_stm32_get_hwctrl(dev)); |
| return 0; |
| } |
| #endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */ |
| |
| static int uart_stm32_poll_in(const struct device *dev, unsigned char *c) |
| { |
| const struct uart_stm32_config *config = dev->config; |
| |
| /* Clear overrun error flag */ |
| if (LL_USART_IsActiveFlag_ORE(config->usart)) { |
| LL_USART_ClearFlag_ORE(config->usart); |
| } |
| |
| /* |
| * On stm32 F4X, F1X, and F2X, the RXNE flag is affected (cleared) by |
| * the uart_err_check function call (on errors flags clearing) |
| */ |
| if (!LL_USART_IsActiveFlag_RXNE(config->usart)) { |
| return -1; |
| } |
| |
| *c = (unsigned char)LL_USART_ReceiveData8(config->usart); |
| |
| return 0; |
| } |
| |
| static void uart_stm32_poll_out(const struct device *dev, |
| unsigned char c) |
| { |
| const struct uart_stm32_config *config = dev->config; |
| #ifdef CONFIG_PM |
| struct uart_stm32_data *data = dev->data; |
| #endif |
| unsigned int key; |
| |
| /* Wait for TXE flag to be raised |
| * When TXE flag is raised, we lock interrupts to prevent interrupts (notably that of usart) |
| * or thread switch. Then, we can safely send our character. The character sent will be |
| * interlaced with the characters potentially send with interrupt transmission API |
| */ |
| while (1) { |
| if (LL_USART_IsActiveFlag_TXE(config->usart)) { |
| key = irq_lock(); |
| if (LL_USART_IsActiveFlag_TXE(config->usart)) { |
| break; |
| } |
| irq_unlock(key); |
| } |
| } |
| |
| #ifdef CONFIG_PM |
| |
| /* If an interrupt transmission is in progress, the pm constraint is already managed by the |
| * call of uart_stm32_irq_tx_[en|dis]able |
| */ |
| if (!data->tx_poll_stream_on && !data->tx_int_stream_on) { |
| data->tx_poll_stream_on = true; |
| |
| /* Don't allow system to suspend until stream |
| * transmission has completed |
| */ |
| uart_stm32_pm_policy_state_lock_get(dev); |
| |
| /* Enable TC interrupt so we can release suspend |
| * constraint when done |
| */ |
| LL_USART_EnableIT_TC(config->usart); |
| } |
| #endif /* CONFIG_PM */ |
| |
| LL_USART_TransmitData8(config->usart, (uint8_t)c); |
| irq_unlock(key); |
| } |
| |
| static int uart_stm32_err_check(const struct device *dev) |
| { |
| const struct uart_stm32_config *config = dev->config; |
| uint32_t err = 0U; |
| |
| /* Check for errors, then clear them. |
| * Some SoC clear all error flags when at least |
| * one is cleared. (e.g. F4X, F1X, and F2X). |
| * The stm32 F4X, F1X, and F2X also reads the usart DR when clearing Errors |
| */ |
| if (LL_USART_IsActiveFlag_ORE(config->usart)) { |
| err |= UART_ERROR_OVERRUN; |
| } |
| |
| if (LL_USART_IsActiveFlag_PE(config->usart)) { |
| err |= UART_ERROR_PARITY; |
| } |
| |
| if (LL_USART_IsActiveFlag_FE(config->usart)) { |
| err |= UART_ERROR_FRAMING; |
| } |
| |
| if (LL_USART_IsActiveFlag_NE(config->usart)) { |
| err |= UART_ERROR_NOISE; |
| } |
| |
| #if !defined(CONFIG_SOC_SERIES_STM32F0X) || defined(USART_LIN_SUPPORT) |
| if (LL_USART_IsActiveFlag_LBD(config->usart)) { |
| err |= UART_BREAK; |
| } |
| |
| if (err & UART_BREAK) { |
| LL_USART_ClearFlag_LBD(config->usart); |
| } |
| #endif |
| /* Clearing error : |
| * the stm32 F4X, F1X, and F2X sw sequence is reading the usart SR |
| * then the usart DR to clear the Error flags ORE, PE, FE, NE |
| * --> so is the RXNE flag also cleared ! |
| */ |
| if (err & UART_ERROR_OVERRUN) { |
| LL_USART_ClearFlag_ORE(config->usart); |
| } |
| |
| if (err & UART_ERROR_PARITY) { |
| LL_USART_ClearFlag_PE(config->usart); |
| } |
| |
| if (err & UART_ERROR_FRAMING) { |
| LL_USART_ClearFlag_FE(config->usart); |
| } |
| |
| if (err & UART_ERROR_NOISE) { |
| LL_USART_ClearFlag_NE(config->usart); |
| } |
| |
| return err; |
| } |
| |
| static inline void __uart_stm32_get_clock(const struct device *dev) |
| { |
| struct uart_stm32_data *data = dev->data; |
| const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE); |
| |
| data->clock = clk; |
| } |
| |
| #ifdef CONFIG_UART_INTERRUPT_DRIVEN |
| |
| static int uart_stm32_fifo_fill(const struct device *dev, |
| const uint8_t *tx_data, |
| int size) |
| { |
| const struct uart_stm32_config *config = dev->config; |
| uint8_t num_tx = 0U; |
| unsigned int key; |
| |
| if (!LL_USART_IsActiveFlag_TXE(config->usart)) { |
| return num_tx; |
| } |
| |
| /* Lock interrupts to prevent nested interrupts or thread switch */ |
| key = irq_lock(); |
| |
| while ((size - num_tx > 0) && |
| LL_USART_IsActiveFlag_TXE(config->usart)) { |
| /* TXE flag will be cleared with byte write to DR|RDR register */ |
| |
| /* Send a character (8bit , parity none) */ |
| LL_USART_TransmitData8(config->usart, tx_data[num_tx++]); |
| } |
| |
| irq_unlock(key); |
| |
| return num_tx; |
| } |
| |
| static int uart_stm32_fifo_read(const struct device *dev, uint8_t *rx_data, |
| const int size) |
| { |
| const struct uart_stm32_config *config = dev->config; |
| uint8_t num_rx = 0U; |
| |
| while ((size - num_rx > 0) && |
| LL_USART_IsActiveFlag_RXNE(config->usart)) { |
| /* RXNE flag will be cleared upon read from DR|RDR register */ |
| |
| /* Receive a character (8bit , parity none) */ |
| rx_data[num_rx++] = LL_USART_ReceiveData8(config->usart); |
| |
| /* Clear overrun error flag */ |
| if (LL_USART_IsActiveFlag_ORE(config->usart)) { |
| LL_USART_ClearFlag_ORE(config->usart); |
| /* |
| * On stm32 F4X, F1X, and F2X, the RXNE flag is affected (cleared) by |
| * the uart_err_check function call (on errors flags clearing) |
| */ |
| } |
| } |
| |
| return num_rx; |
| } |
| |
| static void uart_stm32_irq_tx_enable(const struct device *dev) |
| { |
| const struct uart_stm32_config *config = dev->config; |
| #ifdef CONFIG_PM |
| struct uart_stm32_data *data = dev->data; |
| unsigned int key; |
| #endif |
| |
| #ifdef CONFIG_PM |
| key = irq_lock(); |
| data->tx_poll_stream_on = false; |
| data->tx_int_stream_on = true; |
| uart_stm32_pm_policy_state_lock_get(dev); |
| #endif |
| LL_USART_EnableIT_TC(config->usart); |
| |
| #ifdef CONFIG_PM |
| irq_unlock(key); |
| #endif |
| } |
| |
| static void uart_stm32_irq_tx_disable(const struct device *dev) |
| { |
| const struct uart_stm32_config *config = dev->config; |
| #ifdef CONFIG_PM |
| struct uart_stm32_data *data = dev->data; |
| unsigned int key; |
| |
| key = irq_lock(); |
| #endif |
| |
| LL_USART_DisableIT_TC(config->usart); |
| |
| #ifdef CONFIG_PM |
| data->tx_int_stream_on = false; |
| uart_stm32_pm_policy_state_lock_put(dev); |
| #endif |
| |
| #ifdef CONFIG_PM |
| irq_unlock(key); |
| #endif |
| } |
| |
| static int uart_stm32_irq_tx_ready(const struct device *dev) |
| { |
| const struct uart_stm32_config *config = dev->config; |
| |
| return LL_USART_IsActiveFlag_TXE(config->usart) && |
| LL_USART_IsEnabledIT_TC(config->usart); |
| } |
| |
| static int uart_stm32_irq_tx_complete(const struct device *dev) |
| { |
| const struct uart_stm32_config *config = dev->config; |
| |
| return LL_USART_IsActiveFlag_TC(config->usart); |
| } |
| |
| static void uart_stm32_irq_rx_enable(const struct device *dev) |
| { |
| const struct uart_stm32_config *config = dev->config; |
| |
| LL_USART_EnableIT_RXNE(config->usart); |
| } |
| |
| static void uart_stm32_irq_rx_disable(const struct device *dev) |
| { |
| const struct uart_stm32_config *config = dev->config; |
| |
| LL_USART_DisableIT_RXNE(config->usart); |
| } |
| |
| static int uart_stm32_irq_rx_ready(const struct device *dev) |
| { |
| const struct uart_stm32_config *config = dev->config; |
| /* |
| * On stm32 F4X, F1X, and F2X, the RXNE flag is affected (cleared) by |
| * the uart_err_check function call (on errors flags clearing) |
| */ |
| return LL_USART_IsActiveFlag_RXNE(config->usart); |
| } |
| |
| static void uart_stm32_irq_err_enable(const struct device *dev) |
| { |
| const struct uart_stm32_config *config = dev->config; |
| |
| /* Enable FE, ORE interruptions */ |
| LL_USART_EnableIT_ERROR(config->usart); |
| #if !defined(CONFIG_SOC_SERIES_STM32F0X) || defined(USART_LIN_SUPPORT) |
| /* Enable Line break detection */ |
| if (IS_UART_LIN_INSTANCE(config->usart)) { |
| LL_USART_EnableIT_LBD(config->usart); |
| } |
| #endif |
| /* Enable parity error interruption */ |
| LL_USART_EnableIT_PE(config->usart); |
| } |
| |
| static void uart_stm32_irq_err_disable(const struct device *dev) |
| { |
| const struct uart_stm32_config *config = dev->config; |
| |
| /* Disable FE, ORE interruptions */ |
| LL_USART_DisableIT_ERROR(config->usart); |
| #if !defined(CONFIG_SOC_SERIES_STM32F0X) || defined(USART_LIN_SUPPORT) |
| /* Disable Line break detection */ |
| if (IS_UART_LIN_INSTANCE(config->usart)) { |
| LL_USART_DisableIT_LBD(config->usart); |
| } |
| #endif |
| /* Disable parity error interruption */ |
| LL_USART_DisableIT_PE(config->usart); |
| } |
| |
| static int uart_stm32_irq_is_pending(const struct device *dev) |
| { |
| const struct uart_stm32_config *config = dev->config; |
| |
| return ((LL_USART_IsActiveFlag_RXNE(config->usart) && |
| LL_USART_IsEnabledIT_RXNE(config->usart)) || |
| (LL_USART_IsActiveFlag_TC(config->usart) && |
| LL_USART_IsEnabledIT_TC(config->usart))); |
| } |
| |
| static int uart_stm32_irq_update(const struct device *dev) |
| { |
| return 1; |
| } |
| |
| static void uart_stm32_irq_callback_set(const struct device *dev, |
| uart_irq_callback_user_data_t cb, |
| void *cb_data) |
| { |
| struct uart_stm32_data *data = dev->data; |
| |
| data->user_cb = cb; |
| data->user_data = cb_data; |
| } |
| |
| #endif /* CONFIG_UART_INTERRUPT_DRIVEN */ |
| |
| #ifdef CONFIG_UART_ASYNC_API |
| |
| static inline void async_user_callback(struct uart_stm32_data *data, |
| struct uart_event *event) |
| { |
| if (data->async_cb) { |
| data->async_cb(data->uart_dev, event, data->async_user_data); |
| } |
| } |
| |
| static inline void async_evt_rx_rdy(struct uart_stm32_data *data) |
| { |
| LOG_DBG("rx_rdy: (%d %d)", data->dma_rx.offset, data->dma_rx.counter); |
| |
| struct uart_event event = { |
| .type = UART_RX_RDY, |
| .data.rx.buf = data->dma_rx.buffer, |
| .data.rx.len = data->dma_rx.counter - data->dma_rx.offset, |
| .data.rx.offset = data->dma_rx.offset |
| }; |
| |
| /* update the current pos for new data */ |
| data->dma_rx.offset = data->dma_rx.counter; |
| |
| /* send event only for new data */ |
| if (event.data.rx.len > 0) { |
| async_user_callback(data, &event); |
| } |
| } |
| |
| static inline void async_evt_rx_err(struct uart_stm32_data *data, int err_code) |
| { |
| LOG_DBG("rx error: %d", err_code); |
| |
| struct uart_event event = { |
| .type = UART_RX_STOPPED, |
| .data.rx_stop.reason = err_code, |
| .data.rx_stop.data.len = data->dma_rx.counter, |
| .data.rx_stop.data.offset = 0, |
| .data.rx_stop.data.buf = data->dma_rx.buffer |
| }; |
| |
| async_user_callback(data, &event); |
| } |
| |
| static inline void async_evt_tx_done(struct uart_stm32_data *data) |
| { |
| LOG_DBG("tx done: %d", data->dma_tx.counter); |
| |
| struct uart_event event = { |
| .type = UART_TX_DONE, |
| .data.tx.buf = data->dma_tx.buffer, |
| .data.tx.len = data->dma_tx.counter |
| }; |
| |
| /* Reset tx buffer */ |
| data->dma_tx.buffer_length = 0; |
| data->dma_tx.counter = 0; |
| |
| async_user_callback(data, &event); |
| } |
| |
| static inline void async_evt_tx_abort(struct uart_stm32_data *data) |
| { |
| LOG_DBG("tx abort: %d", data->dma_tx.counter); |
| |
| struct uart_event event = { |
| .type = UART_TX_ABORTED, |
| .data.tx.buf = data->dma_tx.buffer, |
| .data.tx.len = data->dma_tx.counter |
| }; |
| |
| /* Reset tx buffer */ |
| data->dma_tx.buffer_length = 0; |
| data->dma_tx.counter = 0; |
| |
| async_user_callback(data, &event); |
| } |
| |
| static inline void async_evt_rx_buf_request(struct uart_stm32_data *data) |
| { |
| struct uart_event evt = { |
| .type = UART_RX_BUF_REQUEST, |
| }; |
| |
| async_user_callback(data, &evt); |
| } |
| |
| static inline void async_evt_rx_buf_release(struct uart_stm32_data *data) |
| { |
| struct uart_event evt = { |
| .type = UART_RX_BUF_RELEASED, |
| .data.rx_buf.buf = data->dma_rx.buffer, |
| }; |
| |
| async_user_callback(data, &evt); |
| } |
| |
| static inline void async_timer_start(struct k_work_delayable *work, |
| int32_t timeout) |
| { |
| if ((timeout != SYS_FOREVER_US) && (timeout != 0)) { |
| /* start timer */ |
| LOG_DBG("async timer started for %d us", timeout); |
| k_work_reschedule(work, K_USEC(timeout)); |
| } |
| } |
| |
| static void uart_stm32_dma_rx_flush(const struct device *dev) |
| { |
| struct dma_status stat; |
| struct uart_stm32_data *data = dev->data; |
| |
| if (dma_get_status(data->dma_rx.dma_dev, |
| data->dma_rx.dma_channel, &stat) == 0) { |
| size_t rx_rcv_len = data->dma_rx.buffer_length - |
| stat.pending_length; |
| if (rx_rcv_len > data->dma_rx.offset) { |
| data->dma_rx.counter = rx_rcv_len; |
| |
| async_evt_rx_rdy(data); |
| } |
| } |
| } |
| |
| #endif /* CONFIG_UART_ASYNC_API */ |
| |
| #if defined(CONFIG_UART_INTERRUPT_DRIVEN) || \ |
| defined(CONFIG_UART_ASYNC_API) || \ |
| defined(CONFIG_PM) |
| |
| static void uart_stm32_isr(const struct device *dev) |
| { |
| struct uart_stm32_data *data = dev->data; |
| #if defined(CONFIG_PM) || defined(CONFIG_UART_ASYNC_API) |
| const struct uart_stm32_config *config = dev->config; |
| #endif |
| |
| #ifdef CONFIG_PM |
| if (LL_USART_IsEnabledIT_TC(config->usart) && |
| LL_USART_IsActiveFlag_TC(config->usart)) { |
| |
| if (data->tx_poll_stream_on) { |
| /* A poll stream transmission just completed, |
| * allow system to suspend |
| */ |
| LL_USART_DisableIT_TC(config->usart); |
| data->tx_poll_stream_on = false; |
| uart_stm32_pm_policy_state_lock_put(dev); |
| } |
| /* Stream transmission was either async or IRQ based, |
| * constraint will be released at the same time TC IT |
| * is disabled |
| */ |
| } |
| #endif |
| |
| #ifdef CONFIG_UART_INTERRUPT_DRIVEN |
| if (data->user_cb) { |
| data->user_cb(dev, data->user_data); |
| } |
| #endif /* CONFIG_UART_INTERRUPT_DRIVEN */ |
| |
| #ifdef CONFIG_UART_ASYNC_API |
| if (LL_USART_IsEnabledIT_IDLE(config->usart) && |
| LL_USART_IsActiveFlag_IDLE(config->usart)) { |
| |
| LL_USART_ClearFlag_IDLE(config->usart); |
| |
| LOG_DBG("idle interrupt occurred"); |
| |
| if (data->dma_rx.timeout == 0) { |
| uart_stm32_dma_rx_flush(dev); |
| } else { |
| /* Start the RX timer not null */ |
| async_timer_start(&data->dma_rx.timeout_work, |
| data->dma_rx.timeout); |
| } |
| } else if (LL_USART_IsEnabledIT_TC(config->usart) && |
| LL_USART_IsActiveFlag_TC(config->usart)) { |
| |
| LL_USART_DisableIT_TC(config->usart); |
| LL_USART_ClearFlag_TC(config->usart); |
| /* Generate TX_DONE event when transmission is done */ |
| async_evt_tx_done(data); |
| |
| #ifdef CONFIG_PM |
| uart_stm32_pm_policy_state_lock_put(dev); |
| #endif |
| } else if (LL_USART_IsEnabledIT_RXNE(config->usart) && |
| LL_USART_IsActiveFlag_RXNE(config->usart)) { |
| #ifdef USART_SR_RXNE |
| /* clear the RXNE flag, because Rx data was not read */ |
| LL_USART_ClearFlag_RXNE(config->usart); |
| #else |
| /* clear the RXNE by flushing the fifo, because Rx data was not read */ |
| LL_USART_RequestRxDataFlush(config->usart); |
| #endif /* USART_SR_RXNE */ |
| } |
| |
| /* Clear errors */ |
| uart_stm32_err_check(dev); |
| #endif /* CONFIG_UART_ASYNC_API */ |
| } |
| #endif /* CONFIG_UART_INTERRUPT_DRIVEN || CONFIG_UART_ASYNC_API || CONFIG_PM */ |
| |
| #ifdef CONFIG_UART_ASYNC_API |
| |
| static int uart_stm32_async_callback_set(const struct device *dev, |
| uart_callback_t callback, |
| void *user_data) |
| { |
| struct uart_stm32_data *data = dev->data; |
| |
| data->async_cb = callback; |
| data->async_user_data = user_data; |
| |
| return 0; |
| } |
| |
| static inline void uart_stm32_dma_tx_enable(const struct device *dev) |
| { |
| const struct uart_stm32_config *config = dev->config; |
| |
| LL_USART_EnableDMAReq_TX(config->usart); |
| } |
| |
| static inline void uart_stm32_dma_tx_disable(const struct device *dev) |
| { |
| #if DT_HAS_COMPAT_STATUS_OKAY(st_stm32u5_dma) |
| ARG_UNUSED(dev); |
| |
| /* |
| * Errata Sheet ES0499 : STM32U575xx and STM32U585xx device errata |
| * USART does not generate DMA requests after setting/clearing DMAT bit |
| * (also seen on stm32H5 serie) |
| */ |
| #else |
| const struct uart_stm32_config *config = dev->config; |
| |
| LL_USART_DisableDMAReq_TX(config->usart); |
| #endif /* ! st_stm32u5_dma */ |
| } |
| |
| static inline void uart_stm32_dma_rx_enable(const struct device *dev) |
| { |
| const struct uart_stm32_config *config = dev->config; |
| struct uart_stm32_data *data = dev->data; |
| |
| LL_USART_EnableDMAReq_RX(config->usart); |
| |
| data->dma_rx.enabled = true; |
| } |
| |
| static inline void uart_stm32_dma_rx_disable(const struct device *dev) |
| { |
| struct uart_stm32_data *data = dev->data; |
| |
| data->dma_rx.enabled = false; |
| } |
| |
| static int uart_stm32_async_rx_disable(const struct device *dev) |
| { |
| const struct uart_stm32_config *config = dev->config; |
| struct uart_stm32_data *data = dev->data; |
| struct uart_event disabled_event = { |
| .type = UART_RX_DISABLED |
| }; |
| |
| if (!data->dma_rx.enabled) { |
| async_user_callback(data, &disabled_event); |
| return -EFAULT; |
| } |
| |
| LL_USART_DisableIT_IDLE(config->usart); |
| |
| uart_stm32_dma_rx_flush(dev); |
| |
| async_evt_rx_buf_release(data); |
| |
| uart_stm32_dma_rx_disable(dev); |
| |
| (void)k_work_cancel_delayable(&data->dma_rx.timeout_work); |
| |
| dma_stop(data->dma_rx.dma_dev, data->dma_rx.dma_channel); |
| |
| if (data->rx_next_buffer) { |
| struct uart_event rx_next_buf_release_evt = { |
| .type = UART_RX_BUF_RELEASED, |
| .data.rx_buf.buf = data->rx_next_buffer, |
| }; |
| async_user_callback(data, &rx_next_buf_release_evt); |
| } |
| |
| data->rx_next_buffer = NULL; |
| data->rx_next_buffer_len = 0; |
| |
| /* When async rx is disabled, enable interruptible instance of uart to function normally */ |
| LL_USART_EnableIT_RXNE(config->usart); |
| |
| LOG_DBG("rx: disabled"); |
| |
| async_user_callback(data, &disabled_event); |
| |
| return 0; |
| } |
| |
| void uart_stm32_dma_tx_cb(const struct device *dma_dev, void *user_data, |
| uint32_t channel, int status) |
| { |
| const struct device *uart_dev = user_data; |
| struct uart_stm32_data *data = uart_dev->data; |
| struct dma_status stat; |
| unsigned int key = irq_lock(); |
| |
| /* Disable TX */ |
| uart_stm32_dma_tx_disable(uart_dev); |
| |
| (void)k_work_cancel_delayable(&data->dma_tx.timeout_work); |
| |
| if (!dma_get_status(data->dma_tx.dma_dev, |
| data->dma_tx.dma_channel, &stat)) { |
| data->dma_tx.counter = data->dma_tx.buffer_length - |
| stat.pending_length; |
| } |
| |
| data->dma_tx.buffer_length = 0; |
| |
| irq_unlock(key); |
| } |
| |
| static void uart_stm32_dma_replace_buffer(const struct device *dev) |
| { |
| const struct uart_stm32_config *config = dev->config; |
| struct uart_stm32_data *data = dev->data; |
| |
| /* Replace the buffer and reload the DMA */ |
| LOG_DBG("Replacing RX buffer: %d", data->rx_next_buffer_len); |
| |
| /* reload DMA */ |
| data->dma_rx.offset = 0; |
| data->dma_rx.counter = 0; |
| data->dma_rx.buffer = data->rx_next_buffer; |
| data->dma_rx.buffer_length = data->rx_next_buffer_len; |
| data->dma_rx.blk_cfg.block_size = data->dma_rx.buffer_length; |
| data->dma_rx.blk_cfg.dest_address = (uint32_t)data->dma_rx.buffer; |
| data->rx_next_buffer = NULL; |
| data->rx_next_buffer_len = 0; |
| |
| dma_reload(data->dma_rx.dma_dev, data->dma_rx.dma_channel, |
| data->dma_rx.blk_cfg.source_address, |
| data->dma_rx.blk_cfg.dest_address, |
| data->dma_rx.blk_cfg.block_size); |
| |
| dma_start(data->dma_rx.dma_dev, data->dma_rx.dma_channel); |
| |
| LL_USART_ClearFlag_IDLE(config->usart); |
| |
| /* Request next buffer */ |
| async_evt_rx_buf_request(data); |
| } |
| |
| void uart_stm32_dma_rx_cb(const struct device *dma_dev, void *user_data, |
| uint32_t channel, int status) |
| { |
| const struct device *uart_dev = user_data; |
| struct uart_stm32_data *data = uart_dev->data; |
| |
| if (status < 0) { |
| async_evt_rx_err(data, status); |
| return; |
| } |
| |
| (void)k_work_cancel_delayable(&data->dma_rx.timeout_work); |
| |
| /* true since this functions occurs when buffer if full */ |
| data->dma_rx.counter = data->dma_rx.buffer_length; |
| |
| async_evt_rx_rdy(data); |
| |
| if (data->rx_next_buffer != NULL) { |
| async_evt_rx_buf_release(data); |
| |
| /* replace the buffer when the current |
| * is full and not the same as the next |
| * one. |
| */ |
| uart_stm32_dma_replace_buffer(uart_dev); |
| } else { |
| /* Buffer full without valid next buffer, |
| * an UART_RX_DISABLED event must be generated, |
| * but uart_stm32_async_rx_disable() cannot be |
| * called in ISR context. So force the RX timeout |
| * to minimum value and let the RX timeout to do the job. |
| */ |
| k_work_reschedule(&data->dma_rx.timeout_work, K_TICKS(1)); |
| } |
| } |
| |
| static int uart_stm32_async_tx(const struct device *dev, |
| const uint8_t *tx_data, size_t buf_size, int32_t timeout) |
| { |
| const struct uart_stm32_config *config = dev->config; |
| struct uart_stm32_data *data = dev->data; |
| int ret; |
| |
| if (data->dma_tx.dma_dev == NULL) { |
| return -ENODEV; |
| } |
| |
| if (data->dma_tx.buffer_length != 0) { |
| return -EBUSY; |
| } |
| |
| data->dma_tx.buffer = (uint8_t *)tx_data; |
| data->dma_tx.buffer_length = buf_size; |
| data->dma_tx.timeout = timeout; |
| |
| LOG_DBG("tx: l=%d", data->dma_tx.buffer_length); |
| |
| /* Clear TC flag */ |
| LL_USART_ClearFlag_TC(config->usart); |
| |
| /* Enable TC interrupt so we can signal correct TX done */ |
| LL_USART_EnableIT_TC(config->usart); |
| |
| /* set source address */ |
| data->dma_tx.blk_cfg.source_address = (uint32_t)data->dma_tx.buffer; |
| data->dma_tx.blk_cfg.block_size = data->dma_tx.buffer_length; |
| |
| ret = dma_config(data->dma_tx.dma_dev, data->dma_tx.dma_channel, |
| &data->dma_tx.dma_cfg); |
| |
| if (ret != 0) { |
| LOG_ERR("dma tx config error!"); |
| return -EINVAL; |
| } |
| |
| if (dma_start(data->dma_tx.dma_dev, data->dma_tx.dma_channel)) { |
| LOG_ERR("UART err: TX DMA start failed!"); |
| return -EFAULT; |
| } |
| |
| /* Start TX timer */ |
| async_timer_start(&data->dma_tx.timeout_work, data->dma_tx.timeout); |
| |
| #ifdef CONFIG_PM |
| |
| /* Do not allow system to suspend until transmission has completed */ |
| uart_stm32_pm_policy_state_lock_get(dev); |
| #endif |
| |
| /* Enable TX DMA requests */ |
| uart_stm32_dma_tx_enable(dev); |
| |
| return 0; |
| } |
| |
| static int uart_stm32_async_rx_enable(const struct device *dev, |
| uint8_t *rx_buf, size_t buf_size, int32_t timeout) |
| { |
| const struct uart_stm32_config *config = dev->config; |
| struct uart_stm32_data *data = dev->data; |
| int ret; |
| |
| if (data->dma_rx.dma_dev == NULL) { |
| return -ENODEV; |
| } |
| |
| if (data->dma_rx.enabled) { |
| LOG_WRN("RX was already enabled"); |
| return -EBUSY; |
| } |
| |
| data->dma_rx.offset = 0; |
| data->dma_rx.buffer = rx_buf; |
| data->dma_rx.buffer_length = buf_size; |
| data->dma_rx.counter = 0; |
| data->dma_rx.timeout = timeout; |
| |
| /* Disable RX interrupts to let DMA to handle it */ |
| LL_USART_DisableIT_RXNE(config->usart); |
| |
| data->dma_rx.blk_cfg.block_size = buf_size; |
| data->dma_rx.blk_cfg.dest_address = (uint32_t)data->dma_rx.buffer; |
| |
| ret = dma_config(data->dma_rx.dma_dev, data->dma_rx.dma_channel, |
| &data->dma_rx.dma_cfg); |
| |
| if (ret != 0) { |
| LOG_ERR("UART ERR: RX DMA config failed!"); |
| return -EINVAL; |
| } |
| |
| if (dma_start(data->dma_rx.dma_dev, data->dma_rx.dma_channel)) { |
| LOG_ERR("UART ERR: RX DMA start failed!"); |
| return -EFAULT; |
| } |
| |
| /* Enable RX DMA requests */ |
| uart_stm32_dma_rx_enable(dev); |
| |
| /* Enable IRQ IDLE to define the end of a |
| * RX DMA transaction. |
| */ |
| LL_USART_ClearFlag_IDLE(config->usart); |
| LL_USART_EnableIT_IDLE(config->usart); |
| |
| LL_USART_EnableIT_ERROR(config->usart); |
| |
| /* Request next buffer */ |
| async_evt_rx_buf_request(data); |
| |
| LOG_DBG("async rx enabled"); |
| |
| return ret; |
| } |
| |
| static int uart_stm32_async_tx_abort(const struct device *dev) |
| { |
| struct uart_stm32_data *data = dev->data; |
| size_t tx_buffer_length = data->dma_tx.buffer_length; |
| struct dma_status stat; |
| |
| if (tx_buffer_length == 0) { |
| return -EFAULT; |
| } |
| |
| (void)k_work_cancel_delayable(&data->dma_tx.timeout_work); |
| if (!dma_get_status(data->dma_tx.dma_dev, |
| data->dma_tx.dma_channel, &stat)) { |
| data->dma_tx.counter = tx_buffer_length - stat.pending_length; |
| } |
| |
| #if DT_HAS_COMPAT_STATUS_OKAY(st_stm32u5_dma) |
| dma_suspend(data->dma_tx.dma_dev, data->dma_tx.dma_channel); |
| #endif /* st_stm32u5_dma */ |
| dma_stop(data->dma_tx.dma_dev, data->dma_tx.dma_channel); |
| async_evt_tx_abort(data); |
| |
| return 0; |
| } |
| |
| static void uart_stm32_async_rx_timeout(struct k_work *work) |
| { |
| struct k_work_delayable *dwork = k_work_delayable_from_work(work); |
| struct uart_dma_stream *rx_stream = CONTAINER_OF(dwork, |
| struct uart_dma_stream, timeout_work); |
| struct uart_stm32_data *data = CONTAINER_OF(rx_stream, |
| struct uart_stm32_data, dma_rx); |
| const struct device *dev = data->uart_dev; |
| |
| LOG_DBG("rx timeout"); |
| |
| if (data->dma_rx.counter == data->dma_rx.buffer_length) { |
| uart_stm32_async_rx_disable(dev); |
| } else { |
| uart_stm32_dma_rx_flush(dev); |
| } |
| } |
| |
| static void uart_stm32_async_tx_timeout(struct k_work *work) |
| { |
| struct k_work_delayable *dwork = k_work_delayable_from_work(work); |
| struct uart_dma_stream *tx_stream = CONTAINER_OF(dwork, |
| struct uart_dma_stream, timeout_work); |
| struct uart_stm32_data *data = CONTAINER_OF(tx_stream, |
| struct uart_stm32_data, dma_tx); |
| const struct device *dev = data->uart_dev; |
| |
| uart_stm32_async_tx_abort(dev); |
| |
| LOG_DBG("tx: async timeout"); |
| } |
| |
| static int uart_stm32_async_rx_buf_rsp(const struct device *dev, uint8_t *buf, |
| size_t len) |
| { |
| struct uart_stm32_data *data = dev->data; |
| |
| LOG_DBG("replace buffer (%d)", len); |
| data->rx_next_buffer = buf; |
| data->rx_next_buffer_len = len; |
| |
| return 0; |
| } |
| |
| static int uart_stm32_async_init(const struct device *dev) |
| { |
| const struct uart_stm32_config *config = dev->config; |
| struct uart_stm32_data *data = dev->data; |
| |
| data->uart_dev = dev; |
| |
| if (data->dma_rx.dma_dev != NULL) { |
| if (!device_is_ready(data->dma_rx.dma_dev)) { |
| return -ENODEV; |
| } |
| } |
| |
| if (data->dma_tx.dma_dev != NULL) { |
| if (!device_is_ready(data->dma_tx.dma_dev)) { |
| return -ENODEV; |
| } |
| } |
| |
| /* Disable both TX and RX DMA requests */ |
| uart_stm32_dma_rx_disable(dev); |
| uart_stm32_dma_tx_disable(dev); |
| |
| k_work_init_delayable(&data->dma_rx.timeout_work, |
| uart_stm32_async_rx_timeout); |
| k_work_init_delayable(&data->dma_tx.timeout_work, |
| uart_stm32_async_tx_timeout); |
| |
| /* Configure dma rx config */ |
| memset(&data->dma_rx.blk_cfg, 0, sizeof(data->dma_rx.blk_cfg)); |
| |
| #if defined(CONFIG_SOC_SERIES_STM32F1X) || \ |
| defined(CONFIG_SOC_SERIES_STM32F2X) || \ |
| defined(CONFIG_SOC_SERIES_STM32F4X) || \ |
| defined(CONFIG_SOC_SERIES_STM32L1X) |
| data->dma_rx.blk_cfg.source_address = |
| LL_USART_DMA_GetRegAddr(config->usart); |
| #else |
| data->dma_rx.blk_cfg.source_address = |
| LL_USART_DMA_GetRegAddr(config->usart, |
| LL_USART_DMA_REG_DATA_RECEIVE); |
| #endif |
| |
| data->dma_rx.blk_cfg.dest_address = 0; /* dest not ready */ |
| |
| if (data->dma_rx.src_addr_increment) { |
| data->dma_rx.blk_cfg.source_addr_adj = DMA_ADDR_ADJ_INCREMENT; |
| } else { |
| data->dma_rx.blk_cfg.source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; |
| } |
| |
| if (data->dma_rx.dst_addr_increment) { |
| data->dma_rx.blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_INCREMENT; |
| } else { |
| data->dma_rx.blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; |
| } |
| |
| /* RX disable circular buffer */ |
| data->dma_rx.blk_cfg.source_reload_en = 0; |
| data->dma_rx.blk_cfg.dest_reload_en = 0; |
| data->dma_rx.blk_cfg.fifo_mode_control = data->dma_rx.fifo_threshold; |
| |
| data->dma_rx.dma_cfg.head_block = &data->dma_rx.blk_cfg; |
| data->dma_rx.dma_cfg.user_data = (void *)dev; |
| data->rx_next_buffer = NULL; |
| data->rx_next_buffer_len = 0; |
| |
| /* Configure dma tx config */ |
| memset(&data->dma_tx.blk_cfg, 0, sizeof(data->dma_tx.blk_cfg)); |
| |
| #if defined(CONFIG_SOC_SERIES_STM32F1X) || \ |
| defined(CONFIG_SOC_SERIES_STM32F2X) || \ |
| defined(CONFIG_SOC_SERIES_STM32F4X) || \ |
| defined(CONFIG_SOC_SERIES_STM32L1X) |
| data->dma_tx.blk_cfg.dest_address = |
| LL_USART_DMA_GetRegAddr(config->usart); |
| #else |
| data->dma_tx.blk_cfg.dest_address = |
| LL_USART_DMA_GetRegAddr(config->usart, |
| LL_USART_DMA_REG_DATA_TRANSMIT); |
| #endif |
| |
| data->dma_tx.blk_cfg.source_address = 0; /* not ready */ |
| |
| if (data->dma_tx.src_addr_increment) { |
| data->dma_tx.blk_cfg.source_addr_adj = DMA_ADDR_ADJ_INCREMENT; |
| } else { |
| data->dma_tx.blk_cfg.source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; |
| } |
| |
| if (data->dma_tx.dst_addr_increment) { |
| data->dma_tx.blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_INCREMENT; |
| } else { |
| data->dma_tx.blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; |
| } |
| |
| data->dma_tx.blk_cfg.fifo_mode_control = data->dma_tx.fifo_threshold; |
| |
| data->dma_tx.dma_cfg.head_block = &data->dma_tx.blk_cfg; |
| data->dma_tx.dma_cfg.user_data = (void *)dev; |
| |
| return 0; |
| } |
| |
| #endif /* CONFIG_UART_ASYNC_API */ |
| |
| static const struct uart_driver_api uart_stm32_driver_api = { |
| .poll_in = uart_stm32_poll_in, |
| .poll_out = uart_stm32_poll_out, |
| .err_check = uart_stm32_err_check, |
| #ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE |
| .configure = uart_stm32_configure, |
| .config_get = uart_stm32_config_get, |
| #endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */ |
| #ifdef CONFIG_UART_INTERRUPT_DRIVEN |
| .fifo_fill = uart_stm32_fifo_fill, |
| .fifo_read = uart_stm32_fifo_read, |
| .irq_tx_enable = uart_stm32_irq_tx_enable, |
| .irq_tx_disable = uart_stm32_irq_tx_disable, |
| .irq_tx_ready = uart_stm32_irq_tx_ready, |
| .irq_tx_complete = uart_stm32_irq_tx_complete, |
| .irq_rx_enable = uart_stm32_irq_rx_enable, |
| .irq_rx_disable = uart_stm32_irq_rx_disable, |
| .irq_rx_ready = uart_stm32_irq_rx_ready, |
| .irq_err_enable = uart_stm32_irq_err_enable, |
| .irq_err_disable = uart_stm32_irq_err_disable, |
| .irq_is_pending = uart_stm32_irq_is_pending, |
| .irq_update = uart_stm32_irq_update, |
| .irq_callback_set = uart_stm32_irq_callback_set, |
| #endif /* CONFIG_UART_INTERRUPT_DRIVEN */ |
| #ifdef CONFIG_UART_ASYNC_API |
| .callback_set = uart_stm32_async_callback_set, |
| .tx = uart_stm32_async_tx, |
| .tx_abort = uart_stm32_async_tx_abort, |
| .rx_enable = uart_stm32_async_rx_enable, |
| .rx_disable = uart_stm32_async_rx_disable, |
| .rx_buf_rsp = uart_stm32_async_rx_buf_rsp, |
| #endif /* CONFIG_UART_ASYNC_API */ |
| }; |
| |
| /** |
| * @brief Initialize UART channel |
| * |
| * This routine is called to reset the chip in a quiescent state. |
| * It is assumed that this function is called only once per UART. |
| * |
| * @param dev UART device struct |
| * |
| * @return 0 |
| */ |
| static int uart_stm32_init(const struct device *dev) |
| { |
| const struct uart_stm32_config *config = dev->config; |
| struct uart_stm32_data *data = dev->data; |
| uint32_t ll_parity; |
| uint32_t ll_datawidth; |
| int err; |
| |
| __uart_stm32_get_clock(dev); |
| |
| if (!device_is_ready(data->clock)) { |
| LOG_ERR("clock control device not ready"); |
| return -ENODEV; |
| } |
| |
| /* enable clock */ |
| err = clock_control_on(data->clock, (clock_control_subsys_t)&config->pclken[0]); |
| if (err != 0) { |
| LOG_ERR("Could not enable (LP)UART clock"); |
| return err; |
| } |
| |
| if (IS_ENABLED(STM32_UART_DOMAIN_CLOCK_SUPPORT) && (config->pclk_len > 1)) { |
| err = clock_control_configure(DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE), |
| (clock_control_subsys_t) &config->pclken[1], |
| NULL); |
| if (err != 0) { |
| LOG_ERR("Could not select UART domain clock"); |
| return err; |
| } |
| } |
| |
| /* Configure dt provided device signals when available */ |
| err = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT); |
| if (err < 0) { |
| return err; |
| } |
| |
| LL_USART_Disable(config->usart); |
| |
| if (!device_is_ready(data->reset.dev)) { |
| LOG_ERR("reset controller not ready"); |
| return -ENODEV; |
| } |
| |
| /* Reset UART to default state using RCC */ |
| reset_line_toggle_dt(&data->reset); |
| |
| /* TX/RX direction */ |
| LL_USART_SetTransferDirection(config->usart, |
| LL_USART_DIRECTION_TX_RX); |
| |
| /* Determine the datawidth and parity. If we use other parity than |
| * 'none' we must use datawidth = 9 (to get 8 databit + 1 parity bit). |
| */ |
| if (config->parity == 2) { |
| /* 8 databit, 1 parity bit, parity even */ |
| ll_parity = LL_USART_PARITY_EVEN; |
| ll_datawidth = LL_USART_DATAWIDTH_9B; |
| } else if (config->parity == 1) { |
| /* 8 databit, 1 parity bit, parity odd */ |
| ll_parity = LL_USART_PARITY_ODD; |
| ll_datawidth = LL_USART_DATAWIDTH_9B; |
| } else { /* Default to 8N0, but show warning if invalid value */ |
| if (config->parity != 0) { |
| LOG_WRN("Invalid parity setting '%d'." |
| "Defaulting to 'none'.", config->parity); |
| } |
| /* 8 databit, parity none */ |
| ll_parity = LL_USART_PARITY_NONE; |
| ll_datawidth = LL_USART_DATAWIDTH_8B; |
| } |
| |
| /* Set datawidth and parity, 1 start bit, 1 stop bit */ |
| LL_USART_ConfigCharacter(config->usart, |
| ll_datawidth, |
| ll_parity, |
| LL_USART_STOPBITS_1); |
| |
| if (config->hw_flow_control) { |
| uart_stm32_set_hwctrl(dev, LL_USART_HWCONTROL_RTS_CTS); |
| } |
| |
| /* Set the default baudrate */ |
| uart_stm32_set_baudrate(dev, data->baud_rate); |
| |
| /* Enable the single wire / half-duplex mode */ |
| if (config->single_wire) { |
| LL_USART_EnableHalfDuplex(config->usart); |
| } |
| |
| #ifdef LL_USART_TXRX_SWAPPED |
| if (config->tx_rx_swap) { |
| LL_USART_SetTXRXSwap(config->usart, LL_USART_TXRX_SWAPPED); |
| } |
| #endif |
| |
| #ifdef LL_USART_RXPIN_LEVEL_INVERTED |
| if (config->rx_invert) { |
| LL_USART_SetRXPinLevel(config->usart, LL_USART_RXPIN_LEVEL_INVERTED); |
| } |
| #endif |
| |
| #ifdef LL_USART_TXPIN_LEVEL_INVERTED |
| if (config->tx_invert) { |
| LL_USART_SetTXPinLevel(config->usart, LL_USART_TXPIN_LEVEL_INVERTED); |
| } |
| #endif |
| |
| LL_USART_Enable(config->usart); |
| |
| #ifdef USART_ISR_TEACK |
| /* Wait until TEACK flag is set */ |
| while (!(LL_USART_IsActiveFlag_TEACK(config->usart))) { |
| } |
| #endif /* !USART_ISR_TEACK */ |
| |
| #ifdef USART_ISR_REACK |
| /* Wait until REACK flag is set */ |
| while (!(LL_USART_IsActiveFlag_REACK(config->usart))) { |
| } |
| #endif /* !USART_ISR_REACK */ |
| |
| #if defined(CONFIG_PM) || \ |
| defined(CONFIG_UART_INTERRUPT_DRIVEN) || \ |
| defined(CONFIG_UART_ASYNC_API) |
| config->irq_config_func(dev); |
| #endif /* CONFIG_PM || CONFIG_UART_INTERRUPT_DRIVEN || CONFIG_UART_ASYNC_API */ |
| |
| #if defined(CONFIG_PM) && defined(IS_UART_WAKEUP_FROMSTOP_INSTANCE) |
| if (config->wakeup_source) { |
| /* Enable ability to wakeup device in Stop mode |
| * Effect depends on CONFIG_PM_DEVICE status: |
| * CONFIG_PM_DEVICE=n : Always active |
| * CONFIG_PM_DEVICE=y : Controlled by pm_device_wakeup_enable() |
| */ |
| LL_USART_EnableInStopMode(config->usart); |
| if (config->wakeup_line != STM32_EXTI_LINE_NONE) { |
| /* Prepare the WAKEUP with the expected EXTI line */ |
| LL_EXTI_EnableIT_0_31(BIT(config->wakeup_line)); |
| } |
| } |
| #endif /* CONFIG_PM */ |
| |
| #ifdef CONFIG_UART_ASYNC_API |
| return uart_stm32_async_init(dev); |
| #else |
| return 0; |
| #endif |
| } |
| |
| #ifdef CONFIG_PM_DEVICE |
| static void uart_stm32_suspend_setup(const struct device *dev) |
| { |
| const struct uart_stm32_config *config = dev->config; |
| |
| #ifdef USART_ISR_BUSY |
| /* Make sure that no USART transfer is on-going */ |
| while (LL_USART_IsActiveFlag_BUSY(config->usart) == 1) { |
| } |
| #endif |
| while (LL_USART_IsActiveFlag_TC(config->usart) == 0) { |
| } |
| #ifdef USART_ISR_REACK |
| /* Make sure that USART is ready for reception */ |
| while (LL_USART_IsActiveFlag_REACK(config->usart) == 0) { |
| } |
| #endif |
| /* Clear OVERRUN flag */ |
| LL_USART_ClearFlag_ORE(config->usart); |
| } |
| |
| static int uart_stm32_pm_action(const struct device *dev, |
| enum pm_device_action action) |
| { |
| const struct uart_stm32_config *config = dev->config; |
| struct uart_stm32_data *data = dev->data; |
| int err; |
| |
| |
| switch (action) { |
| case PM_DEVICE_ACTION_RESUME: |
| /* Set pins to active state */ |
| err = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT); |
| if (err < 0) { |
| return err; |
| } |
| |
| /* enable clock */ |
| err = clock_control_on(data->clock, (clock_control_subsys_t)&config->pclken[0]); |
| if (err != 0) { |
| LOG_ERR("Could not enable (LP)UART clock"); |
| return err; |
| } |
| break; |
| case PM_DEVICE_ACTION_SUSPEND: |
| uart_stm32_suspend_setup(dev); |
| /* Stop device clock. Note: fixed clocks are not handled yet. */ |
| err = clock_control_off(data->clock, (clock_control_subsys_t)&config->pclken[0]); |
| if (err != 0) { |
| LOG_ERR("Could not enable (LP)UART clock"); |
| return err; |
| } |
| |
| /* Move pins to sleep state */ |
| err = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_SLEEP); |
| if ((err < 0) && (err != -ENOENT)) { |
| /* |
| * If returning -ENOENT, no pins where defined for sleep mode : |
| * Do not output on console (might sleep already) when going to sleep, |
| * "(LP)UART pinctrl sleep state not available" |
| * and don't block PM suspend. |
| * Else return the error. |
| */ |
| return err; |
| } |
| break; |
| default: |
| return -ENOTSUP; |
| } |
| |
| return 0; |
| } |
| #endif /* CONFIG_PM_DEVICE */ |
| |
| #ifdef CONFIG_UART_ASYNC_API |
| |
| /* src_dev and dest_dev should be 'MEMORY' or 'PERIPHERAL'. */ |
| #define UART_DMA_CHANNEL_INIT(index, dir, dir_cap, src_dev, dest_dev) \ |
| .dma_dev = DEVICE_DT_GET(STM32_DMA_CTLR(index, dir)), \ |
| .dma_channel = DT_INST_DMAS_CELL_BY_NAME(index, dir, channel), \ |
| .dma_cfg = { \ |
| .dma_slot = STM32_DMA_SLOT(index, dir, slot),\ |
| .channel_direction = STM32_DMA_CONFIG_DIRECTION( \ |
| STM32_DMA_CHANNEL_CONFIG(index, dir)),\ |
| .channel_priority = STM32_DMA_CONFIG_PRIORITY( \ |
| STM32_DMA_CHANNEL_CONFIG(index, dir)), \ |
| .source_data_size = STM32_DMA_CONFIG_##src_dev##_DATA_SIZE(\ |
| STM32_DMA_CHANNEL_CONFIG(index, dir)),\ |
| .dest_data_size = STM32_DMA_CONFIG_##dest_dev##_DATA_SIZE(\ |
| STM32_DMA_CHANNEL_CONFIG(index, dir)),\ |
| .source_burst_length = 1, /* SINGLE transfer */ \ |
| .dest_burst_length = 1, \ |
| .block_count = 1, \ |
| .dma_callback = uart_stm32_dma_##dir##_cb, \ |
| }, \ |
| .src_addr_increment = STM32_DMA_CONFIG_##src_dev##_ADDR_INC( \ |
| STM32_DMA_CHANNEL_CONFIG(index, dir)), \ |
| .dst_addr_increment = STM32_DMA_CONFIG_##dest_dev##_ADDR_INC( \ |
| STM32_DMA_CHANNEL_CONFIG(index, dir)), \ |
| .fifo_threshold = STM32_DMA_FEATURES_FIFO_THRESHOLD( \ |
| STM32_DMA_FEATURES(index, dir)), \ |
| |
| #endif |
| |
| #if defined(CONFIG_UART_INTERRUPT_DRIVEN) || defined(CONFIG_UART_ASYNC_API) || \ |
| defined(CONFIG_PM) |
| #define STM32_UART_IRQ_HANDLER_DECL(index) \ |
| static void uart_stm32_irq_config_func_##index(const struct device *dev); |
| #define STM32_UART_IRQ_HANDLER(index) \ |
| static void uart_stm32_irq_config_func_##index(const struct device *dev) \ |
| { \ |
| IRQ_CONNECT(DT_INST_IRQN(index), \ |
| DT_INST_IRQ(index, priority), \ |
| uart_stm32_isr, DEVICE_DT_INST_GET(index), \ |
| 0); \ |
| irq_enable(DT_INST_IRQN(index)); \ |
| } |
| #else |
| #define STM32_UART_IRQ_HANDLER_DECL(index) /* Not used */ |
| #define STM32_UART_IRQ_HANDLER(index) /* Not used */ |
| #endif |
| |
| #if defined(CONFIG_UART_INTERRUPT_DRIVEN) || defined(CONFIG_UART_ASYNC_API) || \ |
| defined(CONFIG_PM) |
| #define STM32_UART_IRQ_HANDLER_FUNC(index) \ |
| .irq_config_func = uart_stm32_irq_config_func_##index, |
| #else |
| #define STM32_UART_IRQ_HANDLER_FUNC(index) /* Not used */ |
| #endif |
| |
| #ifdef CONFIG_UART_ASYNC_API |
| #define UART_DMA_CHANNEL(index, dir, DIR, src, dest) \ |
| .dma_##dir = { \ |
| COND_CODE_1(DT_INST_DMAS_HAS_NAME(index, dir), \ |
| (UART_DMA_CHANNEL_INIT(index, dir, DIR, src, dest)), \ |
| (NULL)) \ |
| }, |
| |
| #else |
| #define UART_DMA_CHANNEL(index, dir, DIR, src, dest) |
| #endif |
| |
| #ifdef CONFIG_PM |
| #define STM32_UART_PM_WAKEUP(index) \ |
| .wakeup_source = DT_INST_PROP(index, wakeup_source), \ |
| .wakeup_line = COND_CODE_1(DT_INST_NODE_HAS_PROP(index, wakeup_line), \ |
| (DT_INST_PROP(index, wakeup_line)), \ |
| (STM32_EXTI_LINE_NONE)), |
| #else |
| #define STM32_UART_PM_WAKEUP(index) /* Not used */ |
| #endif |
| |
| #define STM32_UART_INIT(index) \ |
| STM32_UART_IRQ_HANDLER_DECL(index) \ |
| \ |
| PINCTRL_DT_INST_DEFINE(index); \ |
| \ |
| static const struct stm32_pclken pclken_##index[] = \ |
| STM32_DT_INST_CLOCKS(index);\ |
| \ |
| static const struct uart_stm32_config uart_stm32_cfg_##index = { \ |
| .usart = (USART_TypeDef *)DT_INST_REG_ADDR(index), \ |
| .pclken = pclken_##index, \ |
| .pclk_len = DT_INST_NUM_CLOCKS(index), \ |
| .hw_flow_control = DT_INST_PROP(index, hw_flow_control), \ |
| .parity = DT_INST_ENUM_IDX_OR(index, parity, UART_CFG_PARITY_NONE), \ |
| .pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(index), \ |
| .single_wire = DT_INST_PROP_OR(index, single_wire, false), \ |
| .tx_rx_swap = DT_INST_PROP_OR(index, tx_rx_swap, false), \ |
| .rx_invert = DT_INST_PROP(index, rx_invert), \ |
| .tx_invert = DT_INST_PROP(index, tx_invert), \ |
| STM32_UART_IRQ_HANDLER_FUNC(index) \ |
| STM32_UART_PM_WAKEUP(index) \ |
| }; \ |
| \ |
| static struct uart_stm32_data uart_stm32_data_##index = { \ |
| .baud_rate = DT_INST_PROP(index, current_speed), \ |
| .reset = RESET_DT_SPEC_GET(DT_DRV_INST(index)), \ |
| UART_DMA_CHANNEL(index, rx, RX, PERIPHERAL, MEMORY) \ |
| UART_DMA_CHANNEL(index, tx, TX, MEMORY, PERIPHERAL) \ |
| }; \ |
| \ |
| PM_DEVICE_DT_INST_DEFINE(index, uart_stm32_pm_action); \ |
| \ |
| DEVICE_DT_INST_DEFINE(index, \ |
| &uart_stm32_init, \ |
| PM_DEVICE_DT_INST_GET(index), \ |
| &uart_stm32_data_##index, &uart_stm32_cfg_##index, \ |
| PRE_KERNEL_1, CONFIG_SERIAL_INIT_PRIORITY, \ |
| &uart_stm32_driver_api); \ |
| \ |
| STM32_UART_IRQ_HANDLER(index) |
| |
| DT_INST_FOREACH_STATUS_OKAY(STM32_UART_INIT) |