| /* |
| * Copyright (c) 2017 Intel Corporation |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| #include <zephyr/kernel.h> |
| #include <ksched.h> |
| #include <zephyr/wait_q.h> |
| #include <zephyr/posix/pthread.h> |
| |
| extern struct k_spinlock z_pthread_spinlock; |
| |
| int64_t timespec_to_timeoutms(const struct timespec *abstime); |
| |
| static int cond_wait(pthread_cond_t *cv, pthread_mutex_t *mut, |
| k_timeout_t timeout) |
| { |
| __ASSERT(mut->lock_count == 1U, ""); |
| |
| int ret; |
| k_spinlock_key_t key = k_spin_lock(&z_pthread_spinlock); |
| |
| mut->lock_count = 0U; |
| mut->owner = NULL; |
| _ready_one_thread(&mut->wait_q); |
| ret = z_sched_wait(&z_pthread_spinlock, key, &cv->wait_q, timeout, NULL); |
| |
| /* FIXME: this extra lock (and the potential context switch it |
| * can cause) could be optimized out. At the point of the |
| * signal/broadcast, it's possible to detect whether or not we |
| * will be swapping back to this particular thread and lock it |
| * (i.e. leave the lock variable unchanged) on our behalf. |
| * But that requires putting scheduler intelligence into this |
| * higher level abstraction and is probably not worth it. |
| */ |
| pthread_mutex_lock(mut); |
| |
| return ret == -EAGAIN ? ETIMEDOUT : ret; |
| } |
| |
| int pthread_cond_signal(pthread_cond_t *cv) |
| { |
| z_sched_wake(&cv->wait_q, 0, NULL); |
| return 0; |
| } |
| |
| int pthread_cond_broadcast(pthread_cond_t *cv) |
| { |
| z_sched_wake_all(&cv->wait_q, 0, NULL); |
| return 0; |
| } |
| |
| int pthread_cond_wait(pthread_cond_t *cv, pthread_mutex_t *mut) |
| { |
| return cond_wait(cv, mut, K_FOREVER); |
| } |
| |
| int pthread_cond_timedwait(pthread_cond_t *cv, pthread_mutex_t *mut, |
| const struct timespec *abstime) |
| { |
| int32_t timeout = (int32_t)timespec_to_timeoutms(abstime); |
| return cond_wait(cv, mut, K_MSEC(timeout)); |
| } |