| /* |
| * Copyright (c) 2010-2014 Wind River Systems, Inc. |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| /** |
| * @file |
| * @brief Kernel initialization module |
| * |
| * This module contains routines that are used to initialize the kernel. |
| */ |
| |
| #include <zephyr.h> |
| #include <offsets_short.h> |
| #include <kernel.h> |
| #include <sys/printk.h> |
| #include <debug/stack.h> |
| #include <random/rand32.h> |
| #include <linker/sections.h> |
| #include <toolchain.h> |
| #include <kernel_structs.h> |
| #include <device.h> |
| #include <init.h> |
| #include <linker/linker-defs.h> |
| #include <ksched.h> |
| #include <string.h> |
| #include <sys/dlist.h> |
| #include <kernel_internal.h> |
| #include <drivers/entropy.h> |
| #include <logging/log_ctrl.h> |
| #include <tracing/tracing.h> |
| #include <stdbool.h> |
| #include <debug/gcov.h> |
| #include <kswap.h> |
| #include <timing/timing.h> |
| #include <logging/log.h> |
| LOG_MODULE_REGISTER(os, CONFIG_KERNEL_LOG_LEVEL); |
| |
| /* the only struct z_kernel instance */ |
| struct z_kernel _kernel; |
| |
| /* init/main and idle threads */ |
| K_THREAD_PINNED_STACK_DEFINE(z_main_stack, CONFIG_MAIN_STACK_SIZE); |
| struct k_thread z_main_thread; |
| |
| #ifdef CONFIG_MULTITHREADING |
| __pinned_bss |
| struct k_thread z_idle_threads[CONFIG_MP_NUM_CPUS]; |
| |
| static K_KERNEL_PINNED_STACK_ARRAY_DEFINE(z_idle_stacks, |
| CONFIG_MP_NUM_CPUS, |
| CONFIG_IDLE_STACK_SIZE); |
| #endif /* CONFIG_MULTITHREADING */ |
| |
| /* |
| * storage space for the interrupt stack |
| * |
| * Note: This area is used as the system stack during kernel initialization, |
| * since the kernel hasn't yet set up its own stack areas. The dual purposing |
| * of this area is safe since interrupts are disabled until the kernel context |
| * switches to the init thread. |
| */ |
| K_KERNEL_PINNED_STACK_ARRAY_DEFINE(z_interrupt_stacks, |
| CONFIG_MP_NUM_CPUS, |
| CONFIG_ISR_STACK_SIZE); |
| |
| extern void idle(void *unused1, void *unused2, void *unused3); |
| |
| |
| /* LCOV_EXCL_START |
| * |
| * This code is called so early in the boot process that code coverage |
| * doesn't work properly. In addition, not all arches call this code, |
| * some like x86 do this with optimized assembly |
| */ |
| |
| /** |
| * @brief equivalent of memset() for early boot usage |
| * |
| * Architectures that can't safely use the regular (optimized) memset very |
| * early during boot because e.g. hardware isn't yet sufficiently initialized |
| * may override this with their own safe implementation. |
| */ |
| __boot_func |
| void __weak z_early_memset(void *dst, int c, size_t n) |
| { |
| (void) memset(dst, c, n); |
| } |
| |
| /** |
| * @brief equivalent of memcpy() for early boot usage |
| * |
| * Architectures that can't safely use the regular (optimized) memcpy very |
| * early during boot because e.g. hardware isn't yet sufficiently initialized |
| * may override this with their own safe implementation. |
| */ |
| __boot_func |
| void __weak z_early_memcpy(void *dst, const void *src, size_t n) |
| { |
| (void) memcpy(dst, src, n); |
| } |
| |
| /** |
| * @brief Clear BSS |
| * |
| * This routine clears the BSS region, so all bytes are 0. |
| */ |
| __boot_func |
| void z_bss_zero(void) |
| { |
| z_early_memset(__bss_start, 0, __bss_end - __bss_start); |
| #if DT_NODE_HAS_STATUS(DT_CHOSEN(zephyr_ccm), okay) |
| z_early_memset(&__ccm_bss_start, 0, |
| (uintptr_t) &__ccm_bss_end |
| - (uintptr_t) &__ccm_bss_start); |
| #endif |
| #if DT_NODE_HAS_STATUS(DT_CHOSEN(zephyr_dtcm), okay) |
| z_early_memset(&__dtcm_bss_start, 0, |
| (uintptr_t) &__dtcm_bss_end |
| - (uintptr_t) &__dtcm_bss_start); |
| #endif |
| #if DT_NODE_HAS_STATUS(DT_CHOSEN(zephyr_ocm), okay) |
| z_early_memset(&__ocm_bss_start, 0, |
| (uintptr_t) &__ocm_bss_end |
| - (uintptr_t) &__ocm_bss_start); |
| #endif |
| #ifdef CONFIG_CODE_DATA_RELOCATION |
| extern void bss_zeroing_relocation(void); |
| |
| bss_zeroing_relocation(); |
| #endif /* CONFIG_CODE_DATA_RELOCATION */ |
| #ifdef CONFIG_COVERAGE_GCOV |
| z_early_memset(&__gcov_bss_start, 0, |
| ((uintptr_t) &__gcov_bss_end - (uintptr_t) &__gcov_bss_start)); |
| #endif |
| } |
| |
| #ifdef CONFIG_LINKER_USE_BOOT_SECTION |
| /** |
| * @brief Clear BSS within the bot region |
| * |
| * This routine clears the BSS within the boot region. |
| * This is separate from z_bss_zero() as boot region may |
| * contain symbols required for the boot process before |
| * paging is initialized. |
| */ |
| __boot_func |
| void z_bss_zero_boot(void) |
| { |
| z_early_memset(&lnkr_boot_bss_start, 0, |
| (uintptr_t)&lnkr_boot_bss_end |
| - (uintptr_t)&lnkr_boot_bss_start); |
| } |
| #endif /* CONFIG_LINKER_USE_BOOT_SECTION */ |
| |
| #ifdef CONFIG_LINKER_USE_PINNED_SECTION |
| /** |
| * @brief Clear BSS within the pinned region |
| * |
| * This routine clears the BSS within the pinned region. |
| * This is separate from z_bss_zero() as pinned region may |
| * contain symbols required for the boot process before |
| * paging is initialized. |
| */ |
| #ifdef CONFIG_LINKER_USE_BOOT_SECTION |
| __boot_func |
| #else |
| __pinned_func |
| #endif |
| void z_bss_zero_pinned(void) |
| { |
| z_early_memset(&lnkr_pinned_bss_start, 0, |
| (uintptr_t)&lnkr_pinned_bss_end |
| - (uintptr_t)&lnkr_pinned_bss_start); |
| } |
| #endif /* CONFIG_LINKER_USE_PINNED_SECTION */ |
| |
| #ifdef CONFIG_STACK_CANARIES |
| extern volatile uintptr_t __stack_chk_guard; |
| #endif /* CONFIG_STACK_CANARIES */ |
| |
| /* LCOV_EXCL_STOP */ |
| |
| __pinned_bss |
| bool z_sys_post_kernel; |
| |
| extern void boot_banner(void); |
| |
| /** |
| * @brief Mainline for kernel's background thread |
| * |
| * This routine completes kernel initialization by invoking the remaining |
| * init functions, then invokes application's main() routine. |
| */ |
| __boot_func |
| static void bg_thread_main(void *unused1, void *unused2, void *unused3) |
| { |
| ARG_UNUSED(unused1); |
| ARG_UNUSED(unused2); |
| ARG_UNUSED(unused3); |
| |
| #ifdef CONFIG_MMU |
| /* Invoked here such that backing store or eviction algorithms may |
| * initialize kernel objects, and that all POST_KERNEL and later tasks |
| * may perform memory management tasks (except for z_phys_map() which |
| * is allowed at any time) |
| */ |
| z_mem_manage_init(); |
| #endif /* CONFIG_MMU */ |
| z_sys_post_kernel = true; |
| |
| z_sys_init_run_level(_SYS_INIT_LEVEL_POST_KERNEL); |
| #if CONFIG_STACK_POINTER_RANDOM |
| z_stack_adjust_initialized = 1; |
| #endif |
| boot_banner(); |
| |
| #if defined(CONFIG_CPLUSPLUS) && !defined(CONFIG_ARCH_POSIX) |
| void z_cpp_init_static(void); |
| z_cpp_init_static(); |
| #endif |
| |
| /* Final init level before app starts */ |
| z_sys_init_run_level(_SYS_INIT_LEVEL_APPLICATION); |
| |
| z_init_static_threads(); |
| |
| #ifdef CONFIG_KERNEL_COHERENCE |
| __ASSERT_NO_MSG(arch_mem_coherent(&_kernel)); |
| #endif |
| |
| #ifdef CONFIG_SMP |
| if (!IS_ENABLED(CONFIG_SMP_BOOT_DELAY)) { |
| z_smp_init(); |
| } |
| z_sys_init_run_level(_SYS_INIT_LEVEL_SMP); |
| #endif |
| |
| #ifdef CONFIG_MMU |
| z_mem_manage_boot_finish(); |
| #endif /* CONFIG_MMU */ |
| |
| extern void main(void); |
| |
| main(); |
| |
| /* Mark nonessential since main() has no more work to do */ |
| z_main_thread.base.user_options &= ~K_ESSENTIAL; |
| |
| #ifdef CONFIG_COVERAGE_DUMP |
| /* Dump coverage data once the main() has exited. */ |
| gcov_coverage_dump(); |
| #endif |
| } /* LCOV_EXCL_LINE ... because we just dumped final coverage data */ |
| |
| #if defined(CONFIG_MULTITHREADING) |
| __boot_func |
| static void init_idle_thread(int i) |
| { |
| struct k_thread *thread = &z_idle_threads[i]; |
| k_thread_stack_t *stack = z_idle_stacks[i]; |
| |
| #ifdef CONFIG_THREAD_NAME |
| |
| #if CONFIG_MP_NUM_CPUS > 1 |
| char tname[8]; |
| snprintk(tname, 8, "idle %02d", i); |
| #else |
| char *tname = "idle"; |
| #endif |
| |
| #else |
| char *tname = NULL; |
| #endif /* CONFIG_THREAD_NAME */ |
| |
| z_setup_new_thread(thread, stack, |
| CONFIG_IDLE_STACK_SIZE, idle, &_kernel.cpus[i], |
| NULL, NULL, K_IDLE_PRIO, K_ESSENTIAL, |
| tname); |
| z_mark_thread_as_started(thread); |
| |
| #ifdef CONFIG_SMP |
| thread->base.is_idle = 1U; |
| #endif |
| } |
| |
| void z_init_cpu(int id) |
| { |
| init_idle_thread(id); |
| _kernel.cpus[id].idle_thread = &z_idle_threads[id]; |
| _kernel.cpus[id].id = id; |
| _kernel.cpus[id].irq_stack = |
| (Z_KERNEL_STACK_BUFFER(z_interrupt_stacks[id]) + |
| K_KERNEL_STACK_SIZEOF(z_interrupt_stacks[id])); |
| #ifdef CONFIG_SCHED_THREAD_USAGE_ALL |
| _kernel.cpus[id].usage.track_usage = |
| CONFIG_SCHED_THREAD_USAGE_AUTO_ENABLE; |
| #endif |
| } |
| |
| /** |
| * |
| * @brief Initializes kernel data structures |
| * |
| * This routine initializes various kernel data structures, including |
| * the init and idle threads and any architecture-specific initialization. |
| * |
| * Note that all fields of "_kernel" are set to zero on entry, which may |
| * be all the initialization many of them require. |
| * |
| * @return initial stack pointer for the main thread |
| */ |
| __boot_func |
| static char *prepare_multithreading(void) |
| { |
| char *stack_ptr; |
| |
| /* _kernel.ready_q is all zeroes */ |
| z_sched_init(); |
| |
| #ifndef CONFIG_SMP |
| /* |
| * prime the cache with the main thread since: |
| * |
| * - the cache can never be NULL |
| * - the main thread will be the one to run first |
| * - no other thread is initialized yet and thus their priority fields |
| * contain garbage, which would prevent the cache loading algorithm |
| * to work as intended |
| */ |
| _kernel.ready_q.cache = &z_main_thread; |
| #endif |
| stack_ptr = z_setup_new_thread(&z_main_thread, z_main_stack, |
| CONFIG_MAIN_STACK_SIZE, bg_thread_main, |
| NULL, NULL, NULL, |
| CONFIG_MAIN_THREAD_PRIORITY, |
| K_ESSENTIAL, "main"); |
| z_mark_thread_as_started(&z_main_thread); |
| z_ready_thread(&z_main_thread); |
| |
| z_init_cpu(0); |
| |
| return stack_ptr; |
| } |
| |
| __boot_func |
| static FUNC_NORETURN void switch_to_main_thread(char *stack_ptr) |
| { |
| #ifdef CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN |
| arch_switch_to_main_thread(&z_main_thread, stack_ptr, bg_thread_main); |
| #else |
| ARG_UNUSED(stack_ptr); |
| /* |
| * Context switch to main task (entry function is _main()): the |
| * current fake thread is not on a wait queue or ready queue, so it |
| * will never be rescheduled in. |
| */ |
| z_swap_unlocked(); |
| #endif |
| CODE_UNREACHABLE; /* LCOV_EXCL_LINE */ |
| } |
| #endif /* CONFIG_MULTITHREADING */ |
| |
| #if defined(CONFIG_ENTROPY_HAS_DRIVER) || defined(CONFIG_TEST_RANDOM_GENERATOR) |
| __boot_func |
| void z_early_boot_rand_get(uint8_t *buf, size_t length) |
| { |
| #ifdef CONFIG_ENTROPY_HAS_DRIVER |
| const struct device *entropy = DEVICE_DT_GET_OR_NULL(DT_CHOSEN(zephyr_entropy)); |
| int rc; |
| |
| if (!device_is_ready(entropy)) { |
| goto sys_rand_fallback; |
| } |
| |
| /* Try to see if driver provides an ISR-specific API */ |
| rc = entropy_get_entropy_isr(entropy, buf, length, ENTROPY_BUSYWAIT); |
| if (rc == -ENOTSUP) { |
| /* Driver does not provide an ISR-specific API, assume it can |
| * be called from ISR context |
| */ |
| rc = entropy_get_entropy(entropy, buf, length); |
| } |
| |
| if (rc >= 0) { |
| return; |
| } |
| |
| /* Fall through to fallback */ |
| |
| sys_rand_fallback: |
| #endif |
| |
| /* FIXME: this assumes sys_rand32_get() won't use any synchronization |
| * primitive, like semaphores or mutexes. It's too early in the boot |
| * process to use any of them. Ideally, only the path where entropy |
| * devices are available should be built, this is only a fallback for |
| * those devices without a HWRNG entropy driver. |
| */ |
| sys_rand_get(buf, length); |
| } |
| /* defined(CONFIG_ENTROPY_HAS_DRIVER) || defined(CONFIG_TEST_RANDOM_GENERATOR) */ |
| #endif |
| |
| /** |
| * |
| * @brief Initialize kernel |
| * |
| * This routine is invoked when the system is ready to run C code. The |
| * processor must be running in 32-bit mode, and the BSS must have been |
| * cleared/zeroed. |
| * |
| * @return Does not return |
| */ |
| __boot_func |
| FUNC_NORETURN void z_cstart(void) |
| { |
| /* gcov hook needed to get the coverage report.*/ |
| gcov_static_init(); |
| |
| /* perform any architecture-specific initialization */ |
| arch_kernel_init(); |
| |
| LOG_CORE_INIT(); |
| |
| #if defined(CONFIG_MULTITHREADING) |
| /* Note: The z_ready_thread() call in prepare_multithreading() requires |
| * a dummy thread even if CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN=y |
| */ |
| struct k_thread dummy_thread; |
| |
| z_dummy_thread_init(&dummy_thread); |
| #endif |
| /* do any necessary initialization of static devices */ |
| z_device_state_init(); |
| |
| /* perform basic hardware initialization */ |
| z_sys_init_run_level(_SYS_INIT_LEVEL_PRE_KERNEL_1); |
| z_sys_init_run_level(_SYS_INIT_LEVEL_PRE_KERNEL_2); |
| |
| #ifdef CONFIG_STACK_CANARIES |
| uintptr_t stack_guard; |
| |
| z_early_boot_rand_get((uint8_t *)&stack_guard, sizeof(stack_guard)); |
| __stack_chk_guard = stack_guard; |
| __stack_chk_guard <<= 8; |
| #endif /* CONFIG_STACK_CANARIES */ |
| |
| #ifdef CONFIG_TIMING_FUNCTIONS_NEED_AT_BOOT |
| timing_init(); |
| timing_start(); |
| #endif |
| |
| #ifdef CONFIG_MULTITHREADING |
| switch_to_main_thread(prepare_multithreading()); |
| #else |
| #ifdef ARCH_SWITCH_TO_MAIN_NO_MULTITHREADING |
| /* Custom ARCH-specific routine to switch to main() |
| * in the case of no multi-threading. |
| */ |
| ARCH_SWITCH_TO_MAIN_NO_MULTITHREADING(bg_thread_main, |
| NULL, NULL, NULL); |
| #else |
| bg_thread_main(NULL, NULL, NULL); |
| |
| /* LCOV_EXCL_START |
| * We've already dumped coverage data at this point. |
| */ |
| irq_lock(); |
| while (true) { |
| } |
| /* LCOV_EXCL_STOP */ |
| #endif |
| #endif /* CONFIG_MULTITHREADING */ |
| |
| /* |
| * Compiler can't tell that the above routines won't return and issues |
| * a warning unless we explicitly tell it that control never gets this |
| * far. |
| */ |
| |
| CODE_UNREACHABLE; /* LCOV_EXCL_LINE */ |
| } |