| /* |
| * Copyright (c) 2010-2014 Wind River Systems, Inc. |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| /** |
| * @file |
| * @brief Kernel thread support |
| * |
| * This module provides general purpose thread support. |
| */ |
| |
| #include <kernel.h> |
| |
| #include <toolchain.h> |
| #include <sections.h> |
| |
| #include <kernel_structs.h> |
| #include <misc/printk.h> |
| #include <sys_clock.h> |
| #include <drivers/system_timer.h> |
| #include <ksched.h> |
| #include <wait_q.h> |
| |
| extern struct _static_thread_data _static_thread_data_list_start[]; |
| extern struct _static_thread_data _static_thread_data_list_end[]; |
| |
| #define _FOREACH_STATIC_THREAD(thread_data) \ |
| for (struct _static_thread_data *thread_data = \ |
| _static_thread_data_list_start; \ |
| thread_data < _static_thread_data_list_end; \ |
| thread_data++) |
| |
| #if defined(CONFIG_LEGACY_KERNEL) && defined(CONFIG_FP_SHARING) |
| static inline void _task_group_adjust(struct _static_thread_data *thread_data) |
| { |
| /* |
| * set thread options corresponding to legacy FPU and SSE task groups |
| * so thread spawns properly; EXE and SYS task groups need no adjustment |
| */ |
| if (thread_data->init_groups & K_TASK_GROUP_FPU) { |
| thread_data->init_options |= K_FP_REGS; |
| } |
| #ifdef CONFIG_SSE |
| if (thread_data->init_groups & K_TASK_GROUP_SSE) { |
| thread_data->init_options |= K_SSE_REGS; |
| } |
| #endif /* CONFIG_SSE */ |
| } |
| #else |
| #define _task_group_adjust(thread_data) do { } while (0) |
| #endif /* CONFIG_LEGACY_KERNEL && CONFIG_FP_SHARING */ |
| |
| /* Legacy API */ |
| #if defined(CONFIG_LEGACY_KERNEL) |
| int sys_execution_context_type_get(void) |
| { |
| if (k_is_in_isr()) |
| return NANO_CTX_ISR; |
| |
| if (_current->base.prio < 0) |
| return NANO_CTX_FIBER; |
| |
| return NANO_CTX_TASK; |
| } |
| #endif |
| |
| int k_is_in_isr(void) |
| { |
| return _is_in_isr(); |
| } |
| |
| /* |
| * This function tags the current thread as essential to system operation. |
| * Exceptions raised by this thread will be treated as a fatal system error. |
| */ |
| void _thread_essential_set(void) |
| { |
| _current->base.user_options |= K_ESSENTIAL; |
| } |
| |
| /* |
| * This function tags the current thread as not essential to system operation. |
| * Exceptions raised by this thread may be recoverable. |
| * (This is the default tag for a thread.) |
| */ |
| void _thread_essential_clear(void) |
| { |
| _current->base.user_options &= ~K_ESSENTIAL; |
| } |
| |
| /* |
| * This routine indicates if the current thread is an essential system thread. |
| * |
| * Returns non-zero if current thread is essential, zero if it is not. |
| */ |
| int _is_thread_essential(void) |
| { |
| return _current->base.user_options & K_ESSENTIAL; |
| } |
| |
| void k_busy_wait(uint32_t usec_to_wait) |
| { |
| /* use 64-bit math to prevent overflow when multiplying */ |
| uint32_t cycles_to_wait = (uint32_t)( |
| (uint64_t)usec_to_wait * |
| (uint64_t)sys_clock_hw_cycles_per_sec / |
| (uint64_t)USEC_PER_SEC |
| ); |
| uint32_t start_cycles = k_cycle_get_32(); |
| |
| for (;;) { |
| uint32_t current_cycles = k_cycle_get_32(); |
| |
| /* this handles the rollover on an unsigned 32-bit value */ |
| if ((current_cycles - start_cycles) >= cycles_to_wait) { |
| break; |
| } |
| } |
| } |
| |
| #ifdef CONFIG_THREAD_CUSTOM_DATA |
| |
| void k_thread_custom_data_set(void *value) |
| { |
| _current->custom_data = value; |
| } |
| |
| void *k_thread_custom_data_get(void) |
| { |
| return _current->custom_data; |
| } |
| |
| #endif /* CONFIG_THREAD_CUSTOM_DATA */ |
| |
| #if defined(CONFIG_THREAD_MONITOR) |
| /* |
| * Remove a thread from the kernel's list of active threads. |
| */ |
| void _thread_monitor_exit(struct k_thread *thread) |
| { |
| unsigned int key = irq_lock(); |
| |
| if (thread == _kernel.threads) { |
| _kernel.threads = _kernel.threads->next_thread; |
| } else { |
| struct k_thread *prev_thread; |
| |
| prev_thread = _kernel.threads; |
| while (thread != prev_thread->next_thread) { |
| prev_thread = prev_thread->next_thread; |
| } |
| prev_thread->next_thread = thread->next_thread; |
| } |
| |
| irq_unlock(key); |
| } |
| #endif /* CONFIG_THREAD_MONITOR */ |
| |
| /* |
| * Common thread entry point function (used by all threads) |
| * |
| * This routine invokes the actual thread entry point function and passes |
| * it three arguments. It also handles graceful termination of the thread |
| * if the entry point function ever returns. |
| * |
| * This routine does not return, and is marked as such so the compiler won't |
| * generate preamble code that is only used by functions that actually return. |
| */ |
| FUNC_NORETURN void _thread_entry(void (*entry)(void *, void *, void *), |
| void *p1, void *p2, void *p3) |
| { |
| entry(p1, p2, p3); |
| |
| #ifdef CONFIG_MULTITHREADING |
| if (_is_thread_essential()) { |
| _NanoFatalErrorHandler(_NANO_ERR_INVALID_TASK_EXIT, |
| &_default_esf); |
| } |
| |
| k_thread_abort(_current); |
| #else |
| for (;;) { |
| k_cpu_idle(); |
| } |
| #endif |
| |
| /* |
| * Compiler can't tell that k_thread_abort() won't return and issues a |
| * warning unless we tell it that control never gets this far. |
| */ |
| |
| CODE_UNREACHABLE; |
| } |
| |
| #ifdef CONFIG_MULTITHREADING |
| static void start_thread(struct k_thread *thread) |
| { |
| int key = irq_lock(); /* protect kernel queues */ |
| |
| _mark_thread_as_started(thread); |
| |
| if (_is_thread_ready(thread)) { |
| _add_thread_to_ready_q(thread); |
| if (_must_switch_threads()) { |
| _Swap(key); |
| return; |
| } |
| } |
| |
| irq_unlock(key); |
| } |
| #endif |
| |
| #ifdef CONFIG_MULTITHREADING |
| static void schedule_new_thread(struct k_thread *thread, int32_t delay) |
| { |
| #ifdef CONFIG_SYS_CLOCK_EXISTS |
| if (delay == 0) { |
| start_thread(thread); |
| } else { |
| int32_t ticks = _TICK_ALIGN + _ms_to_ticks(delay); |
| int key = irq_lock(); |
| |
| _add_thread_timeout(thread, NULL, ticks); |
| irq_unlock(key); |
| } |
| #else |
| ARG_UNUSED(delay); |
| start_thread(thread); |
| #endif |
| } |
| #endif |
| |
| #ifdef CONFIG_MULTITHREADING |
| k_tid_t k_thread_spawn(char *stack, size_t stack_size, |
| void (*entry)(void *, void *, void*), |
| void *p1, void *p2, void *p3, |
| int prio, uint32_t options, int32_t delay) |
| { |
| __ASSERT(!_is_in_isr(), ""); |
| |
| struct k_thread *new_thread = (struct k_thread *)stack; |
| |
| _new_thread(stack, stack_size, entry, p1, p2, p3, prio, options); |
| |
| schedule_new_thread(new_thread, delay); |
| |
| return new_thread; |
| } |
| #endif |
| |
| int k_thread_cancel(k_tid_t tid) |
| { |
| struct k_thread *thread = tid; |
| |
| int key = irq_lock(); |
| |
| if (_has_thread_started(thread) || |
| !_is_thread_timeout_active(thread)) { |
| irq_unlock(key); |
| return -EINVAL; |
| } |
| |
| _abort_thread_timeout(thread); |
| _thread_monitor_exit(thread); |
| |
| irq_unlock(key); |
| |
| return 0; |
| } |
| |
| static inline int is_in_any_group(struct _static_thread_data *thread_data, |
| uint32_t groups) |
| { |
| return !!(thread_data->init_groups & groups); |
| } |
| |
| void _k_thread_group_op(uint32_t groups, void (*func)(struct k_thread *)) |
| { |
| unsigned int key; |
| |
| __ASSERT(!_is_in_isr(), ""); |
| |
| _sched_lock(); |
| |
| /* Invoke func() on each static thread in the specified group set. */ |
| |
| _FOREACH_STATIC_THREAD(thread_data) { |
| if (is_in_any_group(thread_data, groups)) { |
| key = irq_lock(); |
| func(thread_data->thread); |
| irq_unlock(key); |
| } |
| } |
| |
| /* |
| * If the current thread is still in a ready state, then let the |
| * "unlock scheduler" code determine if any rescheduling is needed. |
| */ |
| if (_is_thread_ready(_current)) { |
| k_sched_unlock(); |
| return; |
| } |
| |
| /* The current thread is no longer in a ready state--reschedule. */ |
| key = irq_lock(); |
| _sched_unlock_no_reschedule(); |
| _Swap(key); |
| } |
| |
| void _k_thread_single_start(struct k_thread *thread) |
| { |
| _mark_thread_as_started(thread); |
| |
| if (_is_thread_ready(thread)) { |
| _add_thread_to_ready_q(thread); |
| } |
| } |
| |
| void _k_thread_single_suspend(struct k_thread *thread) |
| { |
| if (_is_thread_ready(thread)) { |
| _remove_thread_from_ready_q(thread); |
| } |
| |
| _mark_thread_as_suspended(thread); |
| } |
| |
| void k_thread_suspend(struct k_thread *thread) |
| { |
| unsigned int key = irq_lock(); |
| |
| _k_thread_single_suspend(thread); |
| |
| if (thread == _current) { |
| _Swap(key); |
| } else { |
| irq_unlock(key); |
| } |
| } |
| |
| void _k_thread_single_resume(struct k_thread *thread) |
| { |
| _mark_thread_as_not_suspended(thread); |
| |
| if (_is_thread_ready(thread)) { |
| _add_thread_to_ready_q(thread); |
| } |
| } |
| |
| void k_thread_resume(struct k_thread *thread) |
| { |
| unsigned int key = irq_lock(); |
| |
| _k_thread_single_resume(thread); |
| |
| _reschedule_threads(key); |
| } |
| |
| void _k_thread_single_abort(struct k_thread *thread) |
| { |
| if (thread->fn_abort != NULL) { |
| thread->fn_abort(); |
| } |
| |
| if (_is_thread_ready(thread)) { |
| _remove_thread_from_ready_q(thread); |
| } else { |
| if (_is_thread_pending(thread)) { |
| _unpend_thread(thread); |
| } |
| if (_is_thread_timeout_active(thread)) { |
| _abort_thread_timeout(thread); |
| } |
| } |
| _mark_thread_as_dead(thread); |
| } |
| |
| #ifdef CONFIG_MULTITHREADING |
| void _init_static_threads(void) |
| { |
| unsigned int key; |
| |
| _FOREACH_STATIC_THREAD(thread_data) { |
| _task_group_adjust(thread_data); |
| _new_thread( |
| thread_data->init_stack, |
| thread_data->init_stack_size, |
| thread_data->init_entry, |
| thread_data->init_p1, |
| thread_data->init_p2, |
| thread_data->init_p3, |
| thread_data->init_prio, |
| thread_data->init_options); |
| |
| thread_data->thread->init_data = thread_data; |
| } |
| |
| _sched_lock(); |
| #if defined(CONFIG_LEGACY_KERNEL) |
| /* Start all (legacy) threads that are part of the EXE task group */ |
| _k_thread_group_op(K_TASK_GROUP_EXE, _k_thread_single_start); |
| #endif |
| |
| /* |
| * Non-legacy static threads may be started immediately or after a |
| * previously specified delay. Even though the scheduler is locked, |
| * ticks can still be delivered and processed. Lock interrupts so |
| * that the countdown until execution begins from the same tick. |
| * |
| * Note that static threads defined using the legacy API have a |
| * delay of K_FOREVER. |
| */ |
| key = irq_lock(); |
| _FOREACH_STATIC_THREAD(thread_data) { |
| if (thread_data->init_delay != K_FOREVER) { |
| schedule_new_thread(thread_data->thread, |
| thread_data->init_delay); |
| } |
| } |
| irq_unlock(key); |
| k_sched_unlock(); |
| } |
| #endif |
| |
| void _init_thread_base(struct _thread_base *thread_base, int priority, |
| uint32_t initial_state, unsigned int options) |
| { |
| /* k_q_node is initialized upon first insertion in a list */ |
| |
| thread_base->user_options = (uint8_t)options; |
| thread_base->thread_state = (uint8_t)initial_state; |
| |
| thread_base->prio = priority; |
| |
| thread_base->sched_locked = 0; |
| |
| /* swap_data does not need to be initialized */ |
| |
| _init_thread_timeout(thread_base); |
| } |
| |
| uint32_t _k_thread_group_mask_get(struct k_thread *thread) |
| { |
| struct _static_thread_data *thread_data = thread->init_data; |
| |
| return thread_data->init_groups; |
| } |
| |
| void _k_thread_group_join(uint32_t groups, struct k_thread *thread) |
| { |
| struct _static_thread_data *thread_data = thread->init_data; |
| |
| thread_data->init_groups |= groups; |
| } |
| |
| void _k_thread_group_leave(uint32_t groups, struct k_thread *thread) |
| { |
| struct _static_thread_data *thread_data = thread->init_data; |
| |
| thread_data->init_groups &= groups; |
| } |
| |
| /* legacy API */ |
| #if defined(CONFIG_LEGACY_KERNEL) |
| void task_start(ktask_t task) |
| { |
| int key = irq_lock(); |
| |
| _k_thread_single_start(task); |
| _reschedule_threads(key); |
| } |
| #endif |