blob: 7d9bac7edb2494e05326c2403917d69ac1d651a8 [file] [log] [blame]
#!/usr/bin/env python2
#
# Copyright (c) 2016, Intel Corporation
#
# SPDX-License-Identifier: Apache-2.0
# Based on a script by:
# Chereau, Fabien <fabien.chereau@intel.com>
import os
import re
from optparse import OptionParser
import sys
import argparse
import subprocess
import json
import operator
class bcolors:
HEADER = '\033[95m'
OKBLUE = '\033[94m'
OKGREEN = '\033[92m'
WARNING = '\033[93m'
FAIL = '\033[91m'
ENDC = '\033[0m'
BOLD = '\033[1m'
UNDERLINE = '\033[4m'
parser = OptionParser()
parser.add_option("-d", "--depth", dest="depth", type="int",
help="How deep should we go into the tree", metavar="DEPTH")
parser.add_option("-o", "--outdir", dest="outdir",
help="read files from directory OUT", metavar="OUT")
parser.add_option("-k", "--kernel-name", dest="binary", default="zephyr",
help="kernel binary name")
parser.add_option("-r", "--ram",
action="store_true", dest="ram", default=False,
help="print RAM statistics")
parser.add_option("-F", "--rom",
action="store_true", dest="rom", default=False,
help="print ROM statistics")
(options, args) = parser.parse_args()
# Return a dict containing symbol_name: path/to/file/where/it/originates
# for all symbols from the .elf file. Optionnaly strips the path according
# to the passed sub-path
def load_symbols_and_paths(elf_file, path_to_strip = None):
symbols_paths = {}
nm_out = subprocess.check_output(["nm", elf_file, "-S", "-l", "--size-sort", "--radix=d"])
for line in nm_out.split('\n'):
fields = line.replace('\t', ' ').split(' ')
# Get rid of trailing empty field
if len(fields) == 1 and fields[0] == '':
continue
assert len(fields)>=4
if len(fields)<5:
path = ":/" + fields[3]
else:
path = fields[4].split(':')[0]
if path_to_strip != None:
if path_to_strip in path:
path = path.replace(path_to_strip, "") + '/' + fields[3]
else:
path = ":/" + fields[3]
symbols_paths[fields[3]] = path
return symbols_paths
def get_section_size(f, section_name):
decimal_size = 0
re_res = re.search(r"(.*] "+section_name+".*)", f, re.MULTILINE)
if re_res != None :
# Replace multiple spaces with one space
# Skip first characters to avoid having 1 extra random space
res = ' '.join(re_res.group(1).split())[5:]
decimal_size = int(res.split()[4], 16)
return decimal_size
def get_footprint_from_bin_and_statfile(bin_file, stat_file, total_flash, total_ram):
"""Compute flash and RAM memory footprint from a .bin and.stat file"""
f = open(stat_file).read()
# Get kctext + text + ctors + rodata + kcrodata segment size
total_used_flash = os.path.getsize(bin_file)
#getting used ram on target
total_used_ram = (get_section_size(f, "noinit") + get_section_size(f, "bss")
+ get_section_size(f, "initlevel") + get_section_size(f, "datas") + get_section_size(f, ".data")
+ get_section_size(f, ".heap") + get_section_size(f, ".stack") + get_section_size(f, ".bss")
+ get_section_size(f, ".panic_section"))
total_percent_ram = 0
total_percent_flash = 0
if total_ram > 0:
total_percent_ram = float(total_used_ram) / total_ram * 100
if total_flash >0:
total_percent_flash = float(total_used_flash) / total_flash * 100
res = { "total_flash": total_used_flash,
"percent_flash": total_percent_flash,
"total_ram": total_used_ram,
"percent_ram": total_percent_ram}
return res
def generate_target_memory_section(out, kernel_name, source_dir, features_json):
features_path_data = None
try:
features_path_data = json.loads(open(features_json, 'r').read())
except:
pass
bin_file_abs = os.path.join(out, kernel_name+'.bin')
elf_file_abs = os.path.join(out, kernel_name+'.elf')
# First deal with size on flash. These are the symbols flagged as LOAD in objdump output
size_out = subprocess.check_output(["objdump", "-hw", elf_file_abs])
loaded_section_total = 0
loaded_section_names = []
loaded_section_names_sizes = {}
ram_section_total = 0
ram_section_names = []
ram_section_names_sizes = {}
for line in size_out.split('\n'):
if "LOAD" in line:
loaded_section_total = loaded_section_total + int(line.split()[2], 16)
loaded_section_names.append(line.split()[1])
loaded_section_names_sizes[line.split()[1]] = int(line.split()[2], 16)
if "ALLOC" in line and "READONLY" not in line and "rodata" not in line and "CODE" not in line:
ram_section_total = ram_section_total + int(line.split()[2], 16)
ram_section_names.append(line.split()[1])
ram_section_names_sizes[line.split()[1]] = int(line.split()[2], 16)
# Actual .bin size, which doesn't not always match section sizes
bin_size = os.stat(bin_file_abs).st_size
# Get the path associated to each symbol
symbols_paths = load_symbols_and_paths(elf_file_abs, source_dir)
# A set of helper function for building a simple tree with a path-like
# hierarchy.
def _insert_one_elem(tree, path, size):
splitted_path = path.split('/')
cur = None
for p in splitted_path:
if cur == None:
cur = p
else:
cur = cur + '/' + p
if cur in tree:
tree[cur] += size
else:
tree[cur] = size
def _parent_for_node(e):
parent = "root" if len(e.split('/')) == 1 else e.rsplit('/', 1)[0]
if e == "root":
parent = None
return parent
def _childs_for_node(tree, node):
res = []
for e in tree:
if _parent_for_node(e) == node:
res += [e]
return res
def _siblings_for_node(tree, node):
return _childs_for_node(tree, _parent_for_node(node))
def _max_sibling_size(tree, node):
siblings = _siblings_for_node(tree, node)
return max([tree[e] for e in siblings])
# Extract the list of symbols a second time but this time using the objdump tool
# which provides more info as nm
symbols_out = subprocess.check_output(["objdump", "-tw", elf_file_abs])
flash_symbols_total = 0
data_nodes = {}
data_nodes['root'] = 0
ram_symbols_total = 0
ram_nodes = {}
ram_nodes['root'] = 0
for l in symbols_out.split('\n'):
line = l[0:9] + "......." + l[16:]
fields = line.replace('\t', ' ').split(' ')
# Get rid of trailing empty field
if len(fields) != 5:
continue
size = int(fields[3], 16)
if fields[2] in loaded_section_names and size != 0:
flash_symbols_total += size
_insert_one_elem(data_nodes, symbols_paths[fields[4]], size)
if fields[2] in ram_section_names and size != 0:
ram_symbols_total += size
_insert_one_elem(ram_nodes, symbols_paths[fields[4]], size)
def _init_features_list_results(features_list):
for feature in features_list:
_init_feature_results(feature)
def _init_feature_results(feature):
feature["size"] = 0
# recursive through children
for child in feature["children"]:
_init_feature_results(child)
def _check_all_symbols(symbols_struct, features_list):
out = ""
sorted_nodes = sorted(symbols_struct.items(), key=operator.itemgetter(0))
named_symbol_filter = re.compile('.*\.[a-zA-Z]+/.*')
out_symbols_filter = re.compile('^:/')
for symbpath in sorted_nodes:
matched = 0
# The files and folders (not matching regex) are discarded
# like: folder folder/file.ext
is_symbol=named_symbol_filter.match(symbpath[0])
is_generated=out_symbols_filter.match(symbpath[0])
if is_symbol == None and is_generated == None:
continue
# The symbols inside a file are kept: folder/file.ext/symbol
# and unrecognized paths too (":/")
for feature in features_list:
matched = matched + _does_symbol_matches_feature(symbpath[0], symbpath[1], feature)
if matched is 0:
out += "UNCATEGORIZED: %s %d<br/>" % (symbpath[0], symbpath[1])
return out
def _does_symbol_matches_feature(symbol, size, feature):
matched = 0
# check each include-filter in feature
for inc_path in feature["folders"]:
# filter out if the include-filter is not in the symbol string
if inc_path not in symbol:
continue
# if the symbol match the include-filter, check against exclude-filter
is_excluded = 0
for exc_path in feature["excludes"]:
if exc_path in symbol:
is_excluded = 1
break
if is_excluded == 0:
matched = 1
feature["size"] = feature["size"] + size
# it can only be matched once per feature (add size once)
break
# check children independently of this feature's result
for child in feature["children"]:
child_matched = _does_symbol_matches_feature(symbol, size, child)
matched = matched + child_matched
return matched
# Create a simplified tree keeping only the most important contributors
# This is used for the pie diagram summary
min_parent_size = bin_size/25
min_sibling_size = bin_size/35
tmp = {}
for e in data_nodes:
if _parent_for_node(e) == None:
continue
if data_nodes[_parent_for_node(e)] < min_parent_size:
continue
if _max_sibling_size(data_nodes, e) < min_sibling_size:
continue
tmp[e] = data_nodes[e]
# Keep only final nodes
tmp2 = {}
for e in tmp:
if len(_childs_for_node(tmp, e)) == 0:
tmp2[e] = tmp[e]
# Group nodes too small in an "other" section
filtered_data_nodes = {}
for e in tmp2:
if tmp[e] < min_sibling_size:
k = _parent_for_node(e) + "/(other)"
if k in filtered_data_nodes:
filtered_data_nodes[k] += tmp[e]
else:
filtered_data_nodes[k] = tmp[e]
else:
filtered_data_nodes[e] = tmp[e]
def _parent_level_3_at_most(node):
e = _parent_for_node(node)
while e.count('/')>2:
e = _parent_for_node(e)
return e
return ram_nodes, data_nodes
def print_tree(data, total, depth):
base = os.environ['ZEPHYR_BASE']
totp = 0
print '{:92s} {:10s} {:8s}'.format(bcolors.FAIL + "Path", "Size", "%" + bcolors.ENDC)
print '='*110
for i in sorted(data):
p = i.split("/")
if depth and len(p) > depth:
continue
percent = 100 * float(data[i])/float(total)
percent_c = percent
if len(p) < 2:
totp += percent
if len(p) > 1:
if not os.path.exists(os.path.join(base, i)):
s = bcolors.WARNING + p[-1] + bcolors.ENDC
else:
s = bcolors.OKBLUE + p[-1] + bcolors.ENDC
print '{:80s} {:20d} {:8.2f}%'.format(" "*(len(p)-1) + s, data[i], percent_c )
else:
print '{:80s} {:20d} {:8.2f}%'.format(bcolors.OKBLUE + i + bcolors.ENDC, data[i], percent_c )
print '='*110
print '{:92d}'.format(total)
return totp
binary = os.path.join(options.outdir, options.binary + ".elf")
if options.outdir and os.path.exists(binary):
fp = get_footprint_from_bin_and_statfile("%s/%s.bin" %(options.outdir, options.binary),
"%s/%s.stat" %(options.outdir,options.binary), 0, 0 )
base = os.environ['ZEPHYR_BASE']
ram, data = generate_target_memory_section(options.outdir, options.binary, base + '/', None)
if options.rom:
print_tree(data, fp['total_flash'], options.depth)
if options.ram:
print_tree(ram, fp['total_ram'], options.depth)
else:
print "%s does not exist." %(binary)