blob: 5f9d0059be81f14826877221413c05b44042e970 [file] [log] [blame]
/*
* Copyright (c) 2016, Wind River Systems, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @file PWM driver for Freescale K64 FlexTimer Module (FTM)
*
* This file implements Pulse Width Modulation using the Freescale FlexTimer
* Module (FTM). Basic functionality is implemented using edge-aligned PWM
* mode. More complex functionality such as non-zero phase is not supported
* since combined mode operation is not implemented.
*
* The following configuration options are supported. ("x" can be one of the
* following values: 0, 1, 2, or 3 representing one of the four FMT modules
* FTM0, FTM1, FTM2, or FTM3.)
*
* - CONFIG_PWM_K64_FTM_x_DEV_NAME: string representing the device name
* - CONFIG_PWM_K64_FTM_x_PRESCALE: the clock prescaler value
* - CONFIG_PWM_K64_FTM_x_CLOCK_SOURCE: the clock source
* - CONFIG_PWM_K64_FTM_DEBUG: enable debug log output for the driver
* - CONFIG_STDOUT_CONSOLE: choose debug logs using printf of printk
*
* The following configuration options need to be defined in
* soc.h or board.h ("x" can be 0, 1, 2 or 3).
* - PWM_K64_FTM_x_REG_BASE: the base address of FTM (FTMx_SC)
*
* The following configuration options are not supported. These are place
* holders for future functionality
*
* - CONFIG_PWM_K64_FTM_x_PHASE_ENABLE_0 support non-zero phase on channel 0
* - CONFIG_PWM_K64_FTM_x_PHASE_ENABLE_1 support non-zero phase on channel 1
* - CONFIG_PWM_K64_FTM_x_PHASE_ENABLE_2 support non-zero phase on channel 2
* - CONFIG_PWM_K64_FTM_x_PHASE_ENABLE_3 support non-zero phase on channel 3
*/
#include <errno.h>
#include <nanokernel.h>
#include <board.h>
#include <k20_sim.h>
#include <pwm.h>
#include "pwm_k64_ftm.h"
#include <stdio.h>
/*
* Non-zero phase is not supported because combine mode is not yet
* implemented.
*/
#undef COMBINE_MODE_SUPPORT
#ifndef CONFIG_PWM_K64_FTM_DEBUG
#define DBG(...) do { } while ((0))
#else /* CONFIG_PWM_K64_FTM_DEBUG */
#if defined(CONFIG_STDOUT_CONSOLE)
#include <stdio.h>
#define DBG printf
#else
#include <misc/printk.h>
#define DBG printk
#endif /* CONFIG_STDOUT_CONSOLE */
#endif /* CONFIG_PWM_K64_FTM_DEBUG */
/* Maximum PWM outputs */
#define MAX_PWM_OUT 8
/**
* @brief Enable the clock for the FTM subsystem
*
* This function must be called before writing to FTM registers. Failure to
* do so may result in bus fault.
*
* @param ftm_num index indicating which FTM
*
* @return 0 if successful, failed otherwise
*/
static int pwm_ftm_clk_enable(uint8_t ftm_num)
{
volatile struct K20_SIM *sim =
(volatile struct K20_SIM *)PERIPH_ADDR_BASE_SIM; /* sys integ. ctl */
if (ftm_num > 3) {
DBG("ERROR: Illegal FTM number (%d).\n"
" Cannot enable PWM clock\n", ftm_num);
return -EINVAL;
}
/* enabling the FTM by setting one of the bits SIM_SCGC6[26:24] */
sim->scgc6 |= 1 << (24 + ftm_num);
return 0;
}
/**
* @brief Initial FTM configuration
*
* Initialize the FTM hardware based on configuration options.
*
* @param dev Device struct
* @param access_op Access operation (pin or port)
* @param channel The pwm channel number
* @param flags Device flags (unused)
*
* @return 0 if successful, failed otherwise
*/
static int pwm_ftm_configure(struct device *dev, int access_op,
uint32_t channel, int flags)
{
int return_val = 0;
uint32_t clock_source;
uint32_t prescale;
uint32_t polarity;
uint32_t reg_val;
DBG("pwm_ftm_configure...\n");
const struct pwm_ftm_config * const config =
dev->config->config_info;
ARG_UNUSED(access_op);
ARG_UNUSED(flags);
/* enable the clock for the FTM subsystem */
pwm_ftm_clk_enable(config->ftm_num);
/*
* Initialize:
* clock source = x (system, fixed, external) from config
* prescaler divide-by x=(1,2,4,8,16,32,64,128) from config
* free-running count-up
* edge-aligned PWM mode
* pair: independent outputs
* polarity +
* no interrupt
*/
/*
* PS[2:0] = prescale
* MOD = pulse width
*/
clock_source = (config->clock_source & 0x3) << PWM_K64_FTM_SC_CLKS_SHIFT;
if (clock_source == 0) {
DBG("Warning: no clock source. PWM is disabled\n");
}
switch (config->prescale) {
case PWM_K64_FTM_PRESCALE_1:
prescale = PWM_K64_FTM_SC_PS_D1;
break;
case PWM_K64_FTM_PRESCALE_2:
prescale = PWM_K64_FTM_SC_PS_D2;
break;
case PWM_K64_FTM_PRESCALE_4:
prescale = PWM_K64_FTM_SC_PS_D4;
break;
case PWM_K64_FTM_PRESCALE_8:
prescale = PWM_K64_FTM_SC_PS_D8;
break;
case PWM_K64_FTM_PRESCALE_16:
prescale = PWM_K64_FTM_SC_PS_D16;
break;
case PWM_K64_FTM_PRESCALE_32:
prescale = PWM_K64_FTM_SC_PS_D32;
break;
case PWM_K64_FTM_PRESCALE_64:
prescale = PWM_K64_FTM_SC_PS_D64;
break;
case PWM_K64_FTM_PRESCALE_128:
prescale = PWM_K64_FTM_SC_PS_D128;
break;
default:
/* Illegal prescale value. Default to 1. */
prescale = PWM_K64_FTM_SC_PS_D1;
return_val = -ENOTSUP;
break;
}
#ifdef COMBINE_MODE_SUPPORT
/* Enable FTMEN=1 and set outputs to initial value */
mode_reg_val = sys_read32(PWM_K64_FTM_MODE(config->reg_base));
mode_reg_val |= PWM_K64_FTM_MODE_FTMEN | PWM_K64_FTM_MODE_INIT;
DBG("pwm_ftm_configure sys_write32(0x%08x, 0x%08x)..\n",
mode_reg_val, PWM_K64_FTM_MODE(config->reg_base));
sys_write32(mode_reg_val, PWM_K64_FTM_MODE(config->reg_base));
/* Enable enhanced synchronization */
DBG("pwm_ftm_configure sys_write32(0x%08x, 0x%08x)..\n",
PWM_K64_FTM_SYNCONF_SYNCMODE|PWM_K64_FTM_SYNCONF_CNTINC,
PWM_K64_FTM_SYNCONF(config->reg_base));
sys_write32(PWM_K64_FTM_SYNCONF_SYNCMODE|PWM_K64_FTM_SYNCONF_CNTINC,
PWM_K64_FTM_SYNCONF(config->reg_base));
#endif /*COMBINE_MODE_SUPPORT*/
/* Configure: PS | CLKS | up-counter | disable TOF intr */
reg_val = prescale | clock_source;
DBG("pwm_ftm_configure sys_write32(0x%08x, 0x%08x)..\n",
reg_val, PWM_K64_FTM_SC(config->reg_base));
sys_write32(reg_val, PWM_K64_FTM_SC(config->reg_base));
DBG("pwm_ftm_configure sys_write32(0x%08x, 0x%08x)..\n",
config->period, PWM_K64_FTM_MOD(config->reg_base));
/* set MOD to max */
sys_write32(config->period, PWM_K64_FTM_MOD(config->reg_base));
/* set channel control to edge-aligned */
reg_val = PWM_K64_FTM_CNSC_MSB | PWM_K64_FTM_CNSC_ELSB;
DBG("pwm_ftm_configure sys_write32(0x%08x, 0x%08x)..\n",
reg_val, PWM_K64_FTM_CNSC(config->reg_base, channel));
sys_write32(reg_val, PWM_K64_FTM_CNSC(config->reg_base, channel));
DBG("pwm_ftm_configure sys_read32 4..\n");
/* set polarity high for this channel */
polarity = sys_read32(PWM_K64_FTM_POL(config->reg_base));
polarity &= ~(1<<channel);
DBG("pwm_ftm_configure sys_write32(0x%08x, 0x%08x)..\n",
polarity, PWM_K64_FTM_POL(config->reg_base));
sys_write32(polarity, PWM_K64_FTM_POL(config->reg_base));
return return_val;
}
/**
* @brief API call to set the on/off timer values
*
* @param dev Device struct
* @param access_op Access operation (pin or port)
* @param channel The pwm channel number
* @param on Timer count value for the start of the pulse on each cycle
* (must be 0)
* @param off Timer count value for the end of the pulse. After this, the
* signal will be off (low if positive polarity) for the rest of
* the cycle.
*
* @return 0 if successful, failed otherwise
*/
static int pwm_ftm_set_values(struct device *dev, int access_op,
uint32_t channel, uint32_t on, uint32_t off)
{
const struct pwm_ftm_config * const config =
dev->config->config_info;
struct pwm_ftm_drv_data * const drv_data =
(struct pwm_ftm_drv_data * const)dev->driver_data;
DBG("pwm_ftm_set_values (on=%d, off=%d)\n", on, off);
uint32_t pwm_pair;
uint32_t combine;
switch (access_op) {
case PWM_ACCESS_BY_PIN:
break;
case PWM_ACCESS_ALL:
return -ENOTSUP;
default:
return -ENOTSUP;
}
/* If either ON and/or OFF > max ticks, treat PWM as 100%.
* If OFF value == 0, treat it as 0%.
* Otherwise, populate registers accordingly.
*/
if ((on >= config->period) || (off >= config->period)) {
/* Fully on. Set to 100% */
DBG("pwm_ftm_set_values sys_write32(0x%08x, 0x%08x)..\n",
config->period, PWM_K64_FTM_CNV(config->reg_base, channel));
/* CnV = pulse width */
sys_write32(config->period, PWM_K64_FTM_CNV(config->reg_base, channel));
} else if (off == 0) {
/* Fully off. Set to 0% */
DBG("pwm_ftm_set_values sys_write32(0x%08x, 0x%08x)..\n",
0, PWM_K64_FTM_CNV(config->reg_base, channel));
/* CnV = 0 */
sys_write32(0, PWM_K64_FTM_CNV(config->reg_base, channel));
} else {
/* if on != 0 then set to combine mode and pwm must be even */
if (on != 0) {
#ifdef COMBINE_MODE_SUPPORT
/* TODO should verify that the other channel is not in
* use in non-combine mode
*/
/* If phase != 0 enable combine mode */
if (channel % 2 != 0) {
DBG("If Phase is non-zero pwm must be 0, 2, 4, 6.\n");
return -EINVAL;
}
DBG("Note: Enabling phase on pwm%d therefore "
"pwm%d is not valid for output\n", channel, channel+1);
pwm_pair = channel / 2;
/* verify that the pair is configured for non-zero phase */
switch (pwm_pair) {
case 0:
if (!config->phase_enable0) {
DBG("Error: Phase capability must be enabled on FTM0\n");
return -EINVAL;
}
break;
case 1:
if (!config->phase_enable2) {
DBG("Error: Phase capability must be enabled on FTM2\n");
return -EINVAL;
}
drv_data->phase[1] = on;
break;
case 2:
if (!config->phase_enable4) {
DBG("Error: Phase capability must be enabled on FTM4\n");
return -EINVAL;
}
break;
case 3:
if (!config->phase_enable6) {
DBG("Error: Phase capability must be enabled on FTM0\n");
return -EINVAL;
}
break;
default:
return -EINVAL;
}
drv_data->phase[pwm_pair] = on;
combine =
sys_read32(PWM_K64_FTM_COMBINE(config->reg_base));
combine |= 1 << (pwm_pair * 8);
DBG("pwm_ftm_set_values sys_write32(0x%08x, 0x%08x)..\n",
combine, PWM_K64_FTM_COMBINE(config->reg_base));
sys_write32(combine, PWM_K64_FTM_COMBINE(config->reg_base));
DBG("pwm_ftm_set_values sys_write32(0x%08x, 0x%08x)..\n",
on, PWM_K64_FTM_CNV(config->reg_base, channel));
/* set the on value */
sys_write32(on, PWM_K64_FTM_CNV(config->reg_base, channel));
DBG("pwm_ftm_set_values sys_write32(0x%08x, 0x%08x)..\n",
off, PWM_K64_FTM_CNV(config->reg_base, channel+1));
/* set the off value */
sys_write32(off, PWM_K64_FTM_CNV(config->reg_base, channel+1));
#else /*COMBINE_MODE_SUPPORT*/
DBG("Error: \"on\" value must be zero. Phase is not supported\n");
return -EINVAL;
#endif /*COMBINE_MODE_SUPPORT*/
} else {
/* zero phase. No need to combine two channels. */
if (channel % 2 != 0) {
pwm_pair = (channel - 1) / 2;
} else {
pwm_pair = channel / 2;
}
drv_data->phase[pwm_pair] = 0;
combine =
sys_read32(PWM_K64_FTM_COMBINE(config->reg_base));
combine &= ~(1 << (pwm_pair * 8));
DBG("pwm_ftm_set_values sys_write32(0x%08x, 0x%08x)..\n",
combine, PWM_K64_FTM_COMBINE(config->reg_base));
sys_write32(combine, PWM_K64_FTM_COMBINE(config->reg_base));
/* set the off value */
DBG("pwm_ftm_set_values sys_write32(0x%08x, 0x%08x)..\n",
off, PWM_K64_FTM_CNV(config->reg_base, channel));
sys_write32(off, PWM_K64_FTM_CNV(config->reg_base, channel));
}
}
DBG("pwm_ftm_set_values done.\n");
return 0;
}
/**
* @brief API call to set the duty cycle
*
* Duty cycle describes the percentage of time a signal is in the ON state.
*
* @param dev Device struct
* @param access_op Access operation (pin or port)
* @param channel The pwm channel number
* @param duty Percentage of time signal is on (value between 0 and 100)
*
* @return 0 if successful, failed otherwise
*/
static int pwm_ftm_set_duty_cycle(struct device *dev, int access_op,
uint32_t channel, uint8_t duty)
{
uint32_t on, off;
const struct pwm_ftm_config * const config =
dev->config->config_info;
struct pwm_ftm_drv_data * const drv_data =
(struct pwm_ftm_drv_data * const)dev->driver_data;
ARG_UNUSED(access_op);
DBG("pwm_ftm_set_duty_cycle...\n");
if (duty == 0) {
/* Turn off PWM */
on = 0;
off = 0;
} else if (duty >= 100) {
/* Force PWM to be 100% */
on = 0;
off = config->period + 1;
} else {
on = 0;
/*
* Set the "on" value to the phase offset if it was set by
* pwm_ftm_set_phase()
*/
switch (channel) {
case 0:
if (config->phase_enable0)
on = drv_data->phase[0];
break;
case 2:
if (config->phase_enable2)
on = drv_data->phase[1];
break;
case 4:
if (config->phase_enable4)
on = drv_data->phase[2];
break;
case 6:
if (config->phase_enable6)
on = drv_data->phase[3];
break;
default:
break;
}
/* Calculate the timer value for when to stop the pulse */
off = on + config->period * duty / 100;
DBG("pwm_ftm_set_duty_cycle on=%d, off=%d, "
"period=%d, duty=%d.\n",
on, off, config->period, duty);
/* check for valid off value */
if (off > config->period)
return -ENOTSUP;
}
return pwm_ftm_set_values(dev, access_op, channel, on, off);
DBG("pwm_ftm_set_duty_cycle done.\n");
}
/**
* @brief API call to set the phase
*
* Phase describes number of clock ticks of delay before the start of the
* pulse. The maximum count of the FTM timer is 65536 so the phase value is
* an integer from 0 to 65536.
*
* A non-zero phase value requires the timer pair to be set to combined mode
* so the odd-numbered (n+1) channel is not available for output
*
* Note: non-zero phase is not supported in this implementation
*
* @param dev Device struct
* @param access_op Access operation (pin or port)
* @param channel The pwm channel number
* @param phase Clock ticks of delay before start of the pulse (must be 0)
*
* @return 0 if successful, failed otherwise
*/
static int pwm_ftm_set_phase(struct device *dev, int access_op,
uint32_t channel, uint8_t phase)
{
#ifdef COMBINE_MODE_SUPPORT
const struct pwm_ftm_config * const config =
dev->config->config_info;
struct pwm_ftm_drv_data * const drv_data =
(struct pwm_ftm_drv_data * const)dev->driver_data;
ARG_UNUSED(access_op);
DBG("pwm_ftm_set_phase...\n");
if ((phase < 0) || (phase > config->period))
return -ENOTSUP;
switch (channel) {
case 0:
if (!config->phase_enable0)
return -ENOTSUP;
drv_data->phase[0] = phase;
break;
case 2:
if (!config->phase_enable2)
return -ENOTSUP;
drv_data->phase[1] = phase;
break;
case 4:
if (!config->phase_enable4)
return -ENOTSUP;
drv_data->phase[2] = phase;
break;
case 6:
if (!config->phase_enable6)
return -ENOTSUP;
drv_data->phase[3] = phase;
break;
default:
/* channel must be 0, 2, 4, or 6 */
return -ENOTSUP;
}
DBG("pwm_ftm_set_phase done.\n");
return 0;
#else /*COMBINE_MODE_SUPPORT*/
ARG_UNUSED(dev);
ARG_UNUSED(access_op);
ARG_UNUSED(channel);
ARG_UNUSED(phase);
DBG("ERROR: non-zero phase is not supported.\n");
return -ENOTSUP;
#endif /*COMBINE_MODE_SUPPORT*/
}
/**
* @brief API call to disable FTM
*
* This function simply sets the clock source to "no clock selected" thus
* disabling the FTM
*
* @param dev Device struct
*
* @return 0 if successful, failed otherwise
*/
static int pwm_ftm_suspend(struct device *dev)
{
uint32_t reg_val;
const struct pwm_ftm_config * const config =
dev->config->config_info;
DBG("pwm_ftm_suspend...\n");
/* set clock source to "no clock selected" */
reg_val = sys_read32(PWM_K64_FTM_SC(config->reg_base));
reg_val &= ~PWM_K64_FTM_SC_CLKS_MASK;
reg_val |= PWM_K64_FTM_SC_CLKS_DISABLE;
sys_write32(reg_val, PWM_K64_FTM_SC(config->reg_base));
DBG("pwm_ftm_suspend done.\n");
return 0;
}
/**
* @brief API call to reenable FTM
*
* This function simply sets the clock source to the configuration value with
* the assumption that FTM was previously disabled by setting the clock source
* to "no clock selected" due to a call to pwm_ftm_suspend.
*
* @param dev Device struct
*
* @return 0 if successful, failed otherwise
*/
static int pwm_ftm_resume(struct device *dev)
{
uint32_t clock_source;
uint32_t reg_val;
/* set clock source to config value */
const struct pwm_ftm_config * const config =
dev->config->config_info;
DBG("pwm_ftm_resume...\n");
clock_source = (config->clock_source << PWM_K64_FTM_SC_CLKS_SHIFT) &&
PWM_K64_FTM_SC_CLKS_MASK;
reg_val = sys_read32(PWM_K64_FTM_SC(config->reg_base));
reg_val &= ~PWM_K64_FTM_SC_CLKS_MASK;
reg_val |= clock_source;
sys_write32(reg_val, PWM_K64_FTM_SC(config->reg_base));
DBG("pwm_ftm_resume done.\n");
return 0;
}
static struct pwm_driver_api pwm_ftm_drv_api_funcs = {
.config = pwm_ftm_configure,
.set_values = pwm_ftm_set_values,
.set_duty_cycle = pwm_ftm_set_duty_cycle,
.set_phase = pwm_ftm_set_phase,
.suspend = pwm_ftm_suspend,
.resume = pwm_ftm_resume,
};
/**
* @brief Initialization function of FTM
*
* @param dev Device struct
* @return 0 if successful, failed otherwise.
*/
int pwm_ftm_init(struct device *dev)
{
DBG("pwm_ftm_init...\n");
return 0;
}
/* Initialization for PWM_K64_FTM_0 */
#ifdef CONFIG_PWM_K64_FTM_0
#include <device.h>
#include <init.h>
static struct pwm_ftm_config pwm_ftm_0_cfg = {
.ftm_num = 0,
.reg_base = PWM_K64_FTM_0_REG_BASE,
.prescale = CONFIG_PWM_K64_FTM_0_PRESCALE,
.clock_source = CONFIG_PWM_K64_FTM_0_CLOCK_SOURCE,
#ifdef CONFIG_PWM_K64_FTM_0_PHASE_ENABLE_0
.phase_enable0 = 1,
#else
.phase_enable0 = 0,
#endif
#ifdef CONFIG_PWM_K64_FTM_0_PHASE_ENABLE_2
.phase_enable2 = 1,
#else
.phase_enable2 = 0,
#endif
#ifdef CONFIG_PWM_K64_FTM_0_PHASE_ENABLE_4
.phase_enable4 = 1,
#else
.phase_enable4 = 0,
#endif
#ifdef CONFIG_PWM_K64_FTM_0_PHASE_ENABLE_6
.phase_enable6 = 1,
#else
.phase_enable6 = 0,
#endif
.period = CONFIG_PWM_K64_FTM_0_PERIOD,
};
static struct pwm_ftm_drv_data pwm_ftm_0_drvdata;
DEVICE_AND_API_INIT(pwm_ftm_0, CONFIG_PWM_K64_FTM_0_DEV_NAME, pwm_ftm_init,
&pwm_ftm_0_drvdata, &pwm_ftm_0_cfg,
SECONDARY, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT,
&pwm_ftm_drv_api_funcs);
#endif /* CONFIG_PWM_K64_FTM_0 */
/* Initialization for PWM_K64_FTM_1 */
#ifdef CONFIG_PWM_K64_FTM_1
#include <device.h>
#include <init.h>
static struct pwm_ftm_config pwm_ftm_1_cfg = {
.ftm_num = 1,
.reg_base = PWM_K64_FTM_1_REG_BASE,
.prescale = CONFIG_PWM_K64_FTM_1_PRESCALE,
.clock_source = CONFIG_PWM_K64_FTM_1_CLOCK_SOURCE,
#ifdef CONFIG_PWM_K64_FTM_1_PHASE_ENABLE_0
.phase_enable0 = 1,
#else
.phase_enable0 = 0,
#endif
#ifdef CONFIG_PWM_K64_FTM_1_PHASE_ENABLE_2
.phase_enable2 = 1,
#else
.phase_enable2 = 0,
#endif
#ifdef CONFIG_PWM_K64_FTM_1_PHASE_ENABLE_4
.phase_enable4 = 1,
#else
.phase_enable4 = 0,
#endif
#ifdef CONFIG_PWM_K64_FTM_1_PHASE_ENABLE_6
.phase_enable6 = 1,
#else
.phase_enable6 = 0,
#endif
};
static struct pwm_ftm_drv_data pwm_ftm_1_drvdata;
DEVICE_AND_API_INIT(pwm_ftm_1, CONFIG_PWM_K64_FTM_1_DEV_NAME, pwm_ftm_init,
&pwm_ftm_1_drvdata, &pwm_ftm_1_cfg,
SECONDARY, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT,
&pwm_ftm_drv_api_funcs);
#endif /* CONFIG_PWM_K64_FTM_1 */
/* Initialization for PWM_K64_FTM_2 */
#ifdef CONFIG_PWM_K64_FTM_2
#include <device.h>
#include <init.h>
static struct pwm_ftm_config pwm_ftm_2_cfg = {
.ftm_num = 2,
.reg_base = PWM_K64_FTM_2_REG_BASE,
.prescale = CONFIG_PWM_K64_FTM_2_PRESCALE,
.clock_source = CONFIG_PWM_K64_FTM_2_CLOCK_SOURCE,
#ifdef CONFIG_PWM_K64_FTM_2_PHASE_ENABLE_0
.phase_enable0 = 1,
#else
.phase_enable0 = 0,
#endif
#ifdef CONFIG_PWM_K64_FTM_2_PHASE_ENABLE_2
.phase_enable2 = 1,
#else
.phase_enable2 = 0,
#endif
#ifdef CONFIG_PWM_K64_FTM_2_PHASE_ENABLE_4
.phase_enable4 = 1,
#else
.phase_enable4 = 0,
#endif
#ifdef CONFIG_PWM_K64_FTM_2_PHASE_ENABLE_6
.phase_enable6 = 1,
#else
.phase_enable6 = 0,
#endif
};
static struct pwm_ftm_drv_data pwm_ftm_2_drvdata;
DEVICE_AND_API_INIT(pwm_ftm_2, CONFIG_PWM_K64_FTM_2_DEV_NAME, pwm_ftm_init,
&pwm_ftm_2_drvdata, &pwm_ftm_2_cfg,
SECONDARY, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT,
&pwm_ftm_drv_api_funcs);
#endif /* CONFIG_PWM_K64_FTM_2 */
/* Initialization for PWM_K64_FTM_3 */
#ifdef CONFIG_PWM_K64_FTM_3
#include <device.h>
#include <init.h>
static struct pwm_ftm_config pwm_ftm_3_cfg = {
.ftm_num = 3,
.reg_base = PWM_K64_FTM_3_REG_BASE,
.prescale = CONFIG_PWM_K64_FTM_3_PRESCALE,
.clock_source = CONFIG_PWM_K64_FTM_3_CLOCK_SOURCE,
#ifdef CONFIG_PWM_K64_FTM_3_PHASE_ENABLE_0
.phase_enable0 = 1,
#else
.phase_enable0 = 0,
#endif
#ifdef CONFIG_PWM_K64_FTM_3_PHASE_ENABLE_2
.phase_enable2 = 1,
#else
.phase_enable2 = 0,
#endif
#ifdef CONFIG_PWM_K64_FTM_3_PHASE_ENABLE_4
.phase_enable4 = 1,
#else
.phase_enable4 = 0,
#endif
#ifdef CONFIG_PWM_K64_FTM_3_PHASE_ENABLE_6
.phase_enable6 = 1,
#else
.phase_enable6 = 0,
#endif
};
static struct pwm_ftm_drv_data pwm_ftm_3_drvdata;
DEVICE_AND_API_INIT(pwm_ftm_3, CONFIG_PWM_K64_FTM_3_DEV_NAME, pwm_ftm_init,
&pwm_ftm_3_drvdata, &pwm_ftm_3_cfg,
SECONDARY, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT,
&pwm_ftm_drv_api_funcs);
#endif /* CONFIG_PWM_K64_FTM_3 */