blob: 76a6ce7773ed13bae7dd835e53dfcfc89e4a89a0 [file] [log] [blame]
/*
* Copyright (c) 2013-2014 Wind River Systems, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
* @brief ARM Cortex-A, Cortex-M and Cortex-R interrupt management
*
*
* Interrupt management: enabling/disabling and dynamic ISR
* connecting/replacing. SW_ISR_TABLE_DYNAMIC has to be enabled for
* connecting ISRs at runtime.
*/
#include <zephyr/kernel.h>
#include <zephyr/arch/cpu.h>
#if defined(CONFIG_CPU_CORTEX_M)
#include <zephyr/arch/arm/aarch32/cortex_m/cmsis.h>
#elif defined(CONFIG_CPU_AARCH32_CORTEX_A) \
|| defined(CONFIG_CPU_AARCH32_CORTEX_R)
#include <zephyr/drivers/interrupt_controller/gic.h>
#endif
#include <zephyr/sys/__assert.h>
#include <zephyr/toolchain.h>
#include <zephyr/linker/sections.h>
#include <zephyr/sw_isr_table.h>
#include <zephyr/irq.h>
#include <zephyr/tracing/tracing.h>
#include <zephyr/pm/pm.h>
extern void z_arm_reserved(void);
#if defined(CONFIG_CPU_CORTEX_M)
#define NUM_IRQS_PER_REG 32
#define REG_FROM_IRQ(irq) (irq / NUM_IRQS_PER_REG)
#define BIT_FROM_IRQ(irq) (irq % NUM_IRQS_PER_REG)
void arch_irq_enable(unsigned int irq)
{
NVIC_EnableIRQ((IRQn_Type)irq);
}
void arch_irq_disable(unsigned int irq)
{
NVIC_DisableIRQ((IRQn_Type)irq);
}
int arch_irq_is_enabled(unsigned int irq)
{
return NVIC->ISER[REG_FROM_IRQ(irq)] & BIT(BIT_FROM_IRQ(irq));
}
/**
* @internal
*
* @brief Set an interrupt's priority
*
* The priority is verified if ASSERT_ON is enabled. The maximum number
* of priority levels is a little complex, as there are some hardware
* priority levels which are reserved.
*/
void z_arm_irq_priority_set(unsigned int irq, unsigned int prio, uint32_t flags)
{
/* The kernel may reserve some of the highest priority levels.
* So we offset the requested priority level with the number
* of priority levels reserved by the kernel.
*/
/* If we have zero latency interrupts, those interrupts will
* run at a priority level which is not masked by irq_lock().
* Our policy is to express priority levels with special properties
* via flags
*/
if (IS_ENABLED(CONFIG_ZERO_LATENCY_IRQS) && (flags & IRQ_ZERO_LATENCY)) {
if (ZERO_LATENCY_LEVELS == 1) {
prio = _EXC_ZERO_LATENCY_IRQS_PRIO;
} else {
/* Use caller supplied prio level as-is */
}
} else {
prio += _IRQ_PRIO_OFFSET;
}
/* The last priority level is also used by PendSV exception, but
* allow other interrupts to use the same level, even if it ends up
* affecting performance (can still be useful on systems with a
* reduced set of priorities, like Cortex-M0/M0+).
*/
__ASSERT(prio <= (BIT(NUM_IRQ_PRIO_BITS) - 1),
"invalid priority %d for %d irq! values must be less than %lu\n",
prio - _IRQ_PRIO_OFFSET, irq,
BIT(NUM_IRQ_PRIO_BITS) - (_IRQ_PRIO_OFFSET));
NVIC_SetPriority((IRQn_Type)irq, prio);
}
#elif defined(CONFIG_CPU_AARCH32_CORTEX_A) \
|| defined(CONFIG_CPU_AARCH32_CORTEX_R)
/*
* For Cortex-A and Cortex-R cores, the default interrupt controller is the ARM
* Generic Interrupt Controller (GIC) and therefore the architecture interrupt
* control functions are mapped to the GIC driver interface.
*
* When a custom interrupt controller is used (i.e.
* CONFIG_ARM_CUSTOM_INTERRUPT_CONTROLLER is enabled), the architecture
* interrupt control functions are mapped to the SoC layer in
* `include/arch/arm/aarch32/irq.h`.
*/
#if !defined(CONFIG_ARM_CUSTOM_INTERRUPT_CONTROLLER)
void arch_irq_enable(unsigned int irq)
{
arm_gic_irq_enable(irq);
}
void arch_irq_disable(unsigned int irq)
{
arm_gic_irq_disable(irq);
}
int arch_irq_is_enabled(unsigned int irq)
{
return arm_gic_irq_is_enabled(irq);
}
/**
* @internal
*
* @brief Set an interrupt's priority
*
* The priority is verified if ASSERT_ON is enabled. The maximum number
* of priority levels is a little complex, as there are some hardware
* priority levels which are reserved: three for various types of exceptions,
* and possibly one additional to support zero latency interrupts.
*/
void z_arm_irq_priority_set(unsigned int irq, unsigned int prio, uint32_t flags)
{
arm_gic_irq_set_priority(irq, prio, flags);
}
#endif /* !CONFIG_ARM_CUSTOM_INTERRUPT_CONTROLLER */
#endif /* CONFIG_CPU_CORTEX_M */
void z_arm_fatal_error(unsigned int reason, const z_arch_esf_t *esf);
/**
*
* @brief Spurious interrupt handler
*
* Installed in all _sw_isr_table slots at boot time. Throws an error if
* called.
*
*/
void z_irq_spurious(const void *unused)
{
ARG_UNUSED(unused);
z_arm_fatal_error(K_ERR_SPURIOUS_IRQ, NULL);
}
#ifdef CONFIG_PM
void _arch_isr_direct_pm(void)
{
#if defined(CONFIG_ARMV6_M_ARMV8_M_BASELINE) \
|| defined(CONFIG_ARMV7_R) \
|| defined(CONFIG_AARCH32_ARMV8_R) \
|| defined(CONFIG_ARMV7_A)
unsigned int key;
/* irq_lock() does what we want for this CPU */
key = irq_lock();
#elif defined(CONFIG_ARMV7_M_ARMV8_M_MAINLINE)
/* Lock all interrupts. irq_lock() will on this CPU only disable those
* lower than BASEPRI, which is not what we want. See comments in
* arch/arm/core/aarch32/isr_wrapper.S
*/
__asm__ volatile("cpsid i" : : : "memory");
#else
#error Unknown ARM architecture
#endif /* CONFIG_ARMV6_M_ARMV8_M_BASELINE */
if (_kernel.idle) {
_kernel.idle = 0;
z_pm_save_idle_exit();
}
#if defined(CONFIG_ARMV6_M_ARMV8_M_BASELINE) \
|| defined(CONFIG_ARMV7_R) \
|| defined(CONFIG_AARCH32_ARMV8_R) \
|| defined(CONFIG_ARMV7_A)
irq_unlock(key);
#elif defined(CONFIG_ARMV7_M_ARMV8_M_MAINLINE)
__asm__ volatile("cpsie i" : : : "memory");
#else
#error Unknown ARM architecture
#endif /* CONFIG_ARMV6_M_ARMV8_M_BASELINE */
}
#endif
#if defined(CONFIG_ARM_SECURE_FIRMWARE)
/**
*
* @brief Set the target security state for the given IRQ
*
* Function sets the security state (Secure or Non-Secure) targeted
* by the given irq. It requires ARMv8-M MCU.
* It is only compiled if ARM_SECURE_FIRMWARE is defined.
* It should only be called while in Secure state, otherwise, a write attempt
* to NVIC.ITNS register is write-ignored(WI), as the ITNS register is not
* banked between security states and, therefore, has no Non-Secure instance.
*
* It shall return the resulting target state of the given IRQ, indicating
* whether the operation has been performed successfully.
*
* @param irq IRQ line
* @param irq_target_state the desired IRQ target state
*
* @return The resulting target state of the given IRQ
*/
irq_target_state_t irq_target_state_set(unsigned int irq,
irq_target_state_t irq_target_state)
{
uint32_t result;
if (irq_target_state == IRQ_TARGET_STATE_SECURE) {
/* Set target to Secure */
result = NVIC_ClearTargetState(irq);
} else {
/* Set target to Non-Secure */
result = NVIC_SetTargetState(irq);
}
if (result) {
return IRQ_TARGET_STATE_NON_SECURE;
} else {
return IRQ_TARGET_STATE_SECURE;
}
}
/**
*
* @brief Determine whether the given IRQ targets the Secure state
*
* Function determines whether the given irq targets the Secure state
* or not (i.e. targets the Non-Secure state). It requires ARMv8-M MCU.
* It is only compiled if ARM_SECURE_FIRMWARE is defined.
* It should only be called while in Secure state, otherwise, a read attempt
* to NVIC.ITNS register is read-as-zero(RAZ), as the ITNS register is not
* banked between security states and, therefore, has no Non-Secure instance.
*
* @param irq IRQ line
*
* @return 1 if target state is Secure, 0 otherwise.
*/
int irq_target_state_is_secure(unsigned int irq)
{
return NVIC_GetTargetState(irq) == 0;
}
/**
*
* @brief Disable and set all interrupt lines to target Non-Secure state.
*
* The function is used to set all HW NVIC interrupt lines to target the
* Non-Secure state. The function shall only be called fron Secure state.
*
* Notes:
* - All NVIC interrupts are disabled before being routed to Non-Secure.
* - Bits corresponding to un-implemented interrupts are RES0, so writes
* will be ignored.
*
*/
void irq_target_state_set_all_non_secure(void)
{
int i;
/* Disable (Clear) all NVIC interrupt lines. */
for (i = 0; i < sizeof(NVIC->ICER) / sizeof(NVIC->ICER[0]); i++) {
NVIC->ICER[i] = 0xFFFFFFFF;
}
__DSB();
__ISB();
/* Set all NVIC interrupt lines to target Non-Secure */
for (i = 0; i < sizeof(NVIC->ITNS) / sizeof(NVIC->ITNS[0]); i++) {
NVIC->ITNS[i] = 0xFFFFFFFF;
}
}
#endif /* CONFIG_ARM_SECURE_FIRMWARE */
#ifdef CONFIG_DYNAMIC_INTERRUPTS
#ifdef CONFIG_GEN_ISR_TABLES
int arch_irq_connect_dynamic(unsigned int irq, unsigned int priority,
void (*routine)(const void *parameter),
const void *parameter, uint32_t flags)
{
z_isr_install(irq, routine, parameter);
z_arm_irq_priority_set(irq, priority, flags);
return irq;
}
#endif /* CONFIG_GEN_ISR_TABLES */
#ifdef CONFIG_DYNAMIC_DIRECT_INTERRUPTS
static inline void z_arm_irq_dynamic_direct_isr_dispatch(void)
{
uint32_t irq = __get_IPSR() - 16;
if (irq < IRQ_TABLE_SIZE) {
struct _isr_table_entry *isr_entry = &_sw_isr_table[irq];
isr_entry->isr(isr_entry->arg);
}
}
ISR_DIRECT_DECLARE(z_arm_irq_direct_dynamic_dispatch_reschedule)
{
z_arm_irq_dynamic_direct_isr_dispatch();
return 1;
}
ISR_DIRECT_DECLARE(z_arm_irq_direct_dynamic_dispatch_no_reschedule)
{
z_arm_irq_dynamic_direct_isr_dispatch();
return 0;
}
#endif /* CONFIG_DYNAMIC_DIRECT_INTERRUPTS */
#endif /* CONFIG_DYNAMIC_INTERRUPTS */