blob: 3468d24c73ba79926c1aa5e53b345d232dc2cca1 [file] [log] [blame]
/*
* Copyright (c) 2018 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/device.h>
#include <zephyr/devicetree.h>
#include <zephyr/drivers/timer/system_timer.h>
#include <zephyr/sys_clock.h>
#include <zephyr/spinlock.h>
/* andestech,machine-timer */
#if DT_HAS_COMPAT_STATUS_OKAY(andestech_machine_timer)
#define DT_DRV_COMPAT andestech_machine_timer
#define MTIME_REG DT_INST_REG_ADDR(0)
#define MTIMECMP_REG (DT_INST_REG_ADDR(0) + 8)
#define TIMER_IRQN DT_INST_IRQN(0)
/* neorv32-machine-timer */
#elif DT_HAS_COMPAT_STATUS_OKAY(neorv32_machine_timer)
#define DT_DRV_COMPAT neorv32_machine_timer
#define MTIME_REG DT_INST_REG_ADDR(0)
#define MTIMECMP_REG (DT_INST_REG_ADDR(0) + 8)
#define TIMER_IRQN DT_INST_IRQN(0)
/* nuclei,systimer */
#elif DT_HAS_COMPAT_STATUS_OKAY(nuclei_systimer)
#define DT_DRV_COMPAT nuclei_systimer
#define MTIME_REG DT_INST_REG_ADDR(0)
#define MTIMECMP_REG (DT_INST_REG_ADDR(0) + 8)
#define TIMER_IRQN DT_INST_IRQ_BY_IDX(0, 1, irq)
/* sifive,clint0 */
#elif DT_HAS_COMPAT_STATUS_OKAY(sifive_clint0)
#define DT_DRV_COMPAT sifive_clint0
#define MTIME_REG (DT_INST_REG_ADDR(0) + 0xbff8U)
#define MTIMECMP_REG (DT_INST_REG_ADDR(0) + 0x4000U)
#define TIMER_IRQN DT_INST_IRQ_BY_IDX(0, 1, irq)
/* telink,machine-timer */
#elif DT_HAS_COMPAT_STATUS_OKAY(telink_machine_timer)
#define DT_DRV_COMPAT telink_machine_timer
#define MTIME_REG DT_INST_REG_ADDR(0)
#define MTIMECMP_REG (DT_INST_REG_ADDR(0) + 8)
#define TIMER_IRQN DT_INST_IRQN(0)
#endif
#define CYC_PER_TICK ((uint32_t)((uint64_t) (sys_clock_hw_cycles_per_sec() \
>> CONFIG_RISCV_MACHINE_TIMER_SYSTEM_CLOCK_DIVIDER) \
/ (uint64_t)CONFIG_SYS_CLOCK_TICKS_PER_SEC))
#define MAX_CYC INT_MAX
#define MAX_TICKS ((MAX_CYC - CYC_PER_TICK) / CYC_PER_TICK)
#define MIN_DELAY CONFIG_RISCV_MACHINE_TIMER_MIN_DELAY
#define TICKLESS IS_ENABLED(CONFIG_TICKLESS_KERNEL)
static struct k_spinlock lock;
static uint64_t last_count;
#if defined(CONFIG_TEST)
const int32_t z_sys_timer_irq_for_test = TIMER_IRQN;
#endif
static uint64_t get_hart_mtimecmp(void)
{
return MTIMECMP_REG + (_current_cpu->id * 8);
}
static void set_mtimecmp(uint64_t time)
{
#ifdef CONFIG_64BIT
*(volatile uint64_t *)get_hart_mtimecmp() = time;
#else
volatile uint32_t *r = (uint32_t *)(uint32_t)get_hart_mtimecmp();
/* Per spec, the RISC-V MTIME/MTIMECMP registers are 64 bit,
* but are NOT internally latched for multiword transfers. So
* we have to be careful about sequencing to avoid triggering
* spurious interrupts: always set the high word to a max
* value first.
*/
r[1] = 0xffffffff;
r[0] = (uint32_t)time;
r[1] = (uint32_t)(time >> 32);
#endif
}
static uint64_t mtime(void)
{
#ifdef CONFIG_64BIT
return *(volatile uint64_t *)MTIME_REG;
#else
volatile uint32_t *r = (uint32_t *)MTIME_REG;
uint32_t lo, hi;
/* Likewise, must guard against rollover when reading */
do {
hi = r[1];
lo = r[0];
} while (r[1] != hi);
return (((uint64_t)hi) << 32) | lo;
#endif
}
static void timer_isr(const void *arg)
{
ARG_UNUSED(arg);
k_spinlock_key_t key = k_spin_lock(&lock);
uint64_t now = mtime();
uint32_t dticks = (uint32_t)((now - last_count) / CYC_PER_TICK);
last_count = now;
if (!TICKLESS) {
uint64_t next = last_count + CYC_PER_TICK;
if ((int64_t)(next - now) < MIN_DELAY) {
next += CYC_PER_TICK;
}
set_mtimecmp(next);
}
k_spin_unlock(&lock, key);
sys_clock_announce(IS_ENABLED(CONFIG_TICKLESS_KERNEL) ? dticks : 1);
}
void sys_clock_set_timeout(int32_t ticks, bool idle)
{
ARG_UNUSED(idle);
#if defined(CONFIG_TICKLESS_KERNEL)
/* RISCV has no idle handler yet, so if we try to spin on the
* logic below to reset the comparator, we'll always bump it
* forward to the "next tick" due to MIN_DELAY handling and
* the interrupt will never fire! Just rely on the fact that
* the OS gave us the proper timeout already.
*/
if (idle) {
return;
}
ticks = ticks == K_TICKS_FOREVER ? MAX_TICKS : ticks;
ticks = CLAMP(ticks - 1, 0, (int32_t)MAX_TICKS);
k_spinlock_key_t key = k_spin_lock(&lock);
uint64_t now = mtime();
uint32_t adj, cyc = ticks * CYC_PER_TICK;
/* Round up to next tick boundary. */
adj = (uint32_t)(now - last_count) + (CYC_PER_TICK - 1);
if (cyc <= MAX_CYC - adj) {
cyc += adj;
} else {
cyc = MAX_CYC;
}
cyc = (cyc / CYC_PER_TICK) * CYC_PER_TICK;
if ((int32_t)(cyc + last_count - now) < MIN_DELAY) {
cyc += CYC_PER_TICK;
}
set_mtimecmp(cyc + last_count);
k_spin_unlock(&lock, key);
#endif
}
uint32_t sys_clock_elapsed(void)
{
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
return 0;
}
k_spinlock_key_t key = k_spin_lock(&lock);
uint32_t ret = ((uint32_t)mtime() - (uint32_t)last_count) / CYC_PER_TICK;
k_spin_unlock(&lock, key);
return ret;
}
uint32_t sys_clock_cycle_get_32(void)
{
return (uint32_t)(mtime() << CONFIG_RISCV_MACHINE_TIMER_SYSTEM_CLOCK_DIVIDER);
}
uint64_t sys_clock_cycle_get_64(void)
{
return (mtime() << CONFIG_RISCV_MACHINE_TIMER_SYSTEM_CLOCK_DIVIDER);
}
static int sys_clock_driver_init(const struct device *dev)
{
ARG_UNUSED(dev);
IRQ_CONNECT(TIMER_IRQN, 0, timer_isr, NULL, 0);
last_count = mtime();
set_mtimecmp(last_count + CYC_PER_TICK);
irq_enable(TIMER_IRQN);
return 0;
}
#ifdef CONFIG_SMP
void smp_timer_init(void)
{
set_mtimecmp(last_count + CYC_PER_TICK);
irq_enable(TIMER_IRQN);
}
#endif
SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2,
CONFIG_SYSTEM_CLOCK_INIT_PRIORITY);