blob: ac7ef369c1ff2bde87b83efd99b45a64e950dc69 [file] [log] [blame]
/*
* Copyright (c) 2013-2014 Wind River Systems, Inc.
* Copyright (c) 2019 Nordic Semiconductor ASA.
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
* @brief ARM AArch32 public interrupt handling
*
* ARM AArch32-specific kernel interrupt handling interface. Included by
* arm/arch.h.
*/
#ifndef ZEPHYR_INCLUDE_ARCH_ARM_AARCH32_IRQ_H_
#define ZEPHYR_INCLUDE_ARCH_ARM_AARCH32_IRQ_H_
#include <zephyr/irq.h>
#include <zephyr/sw_isr_table.h>
#include <stdbool.h>
#ifdef __cplusplus
extern "C" {
#endif
#ifdef _ASMLANGUAGE
GTEXT(z_arm_int_exit);
GTEXT(arch_irq_enable)
GTEXT(arch_irq_disable)
GTEXT(arch_irq_is_enabled)
#if defined(CONFIG_ARM_CUSTOM_INTERRUPT_CONTROLLER)
GTEXT(z_soc_irq_get_active)
GTEXT(z_soc_irq_eoi)
#endif /* CONFIG_ARM_CUSTOM_INTERRUPT_CONTROLLER */
#else
#if !defined(CONFIG_ARM_CUSTOM_INTERRUPT_CONTROLLER)
extern void arch_irq_enable(unsigned int irq);
extern void arch_irq_disable(unsigned int irq);
extern int arch_irq_is_enabled(unsigned int irq);
/* internal routine documented in C file, needed by IRQ_CONNECT() macro */
extern void z_arm_irq_priority_set(unsigned int irq, unsigned int prio,
uint32_t flags);
#else
/*
* When a custom interrupt controller is specified, map the architecture
* interrupt control functions to the SoC layer interrupt control functions.
*/
void z_soc_irq_init(void);
void z_soc_irq_enable(unsigned int irq);
void z_soc_irq_disable(unsigned int irq);
int z_soc_irq_is_enabled(unsigned int irq);
void z_soc_irq_priority_set(
unsigned int irq, unsigned int prio, unsigned int flags);
unsigned int z_soc_irq_get_active(void);
void z_soc_irq_eoi(unsigned int irq);
#define arch_irq_enable(irq) z_soc_irq_enable(irq)
#define arch_irq_disable(irq) z_soc_irq_disable(irq)
#define arch_irq_is_enabled(irq) z_soc_irq_is_enabled(irq)
#define z_arm_irq_priority_set(irq, prio, flags) \
z_soc_irq_priority_set(irq, prio, flags)
#endif /* !CONFIG_ARM_CUSTOM_INTERRUPT_CONTROLLER */
extern void z_arm_int_exit(void);
extern void z_arm_interrupt_init(void);
/* macros convert value of its argument to a string */
#define DO_TOSTR(s) #s
#define TOSTR(s) DO_TOSTR(s)
/* concatenate the values of the arguments into one */
#define DO_CONCAT(x, y) x ## y
#define CONCAT(x, y) DO_CONCAT(x, y)
/* Flags for use with IRQ_CONNECT() */
/**
* Set this interrupt up as a zero-latency IRQ. If CONFIG_ZERO_LATENCY_LEVELS
* is 1 it has a fixed hardware priority level (discarding what was supplied
* in the interrupt's priority argument). If CONFIG_ZERO_LATENCY_LEVELS is
* greater 1 it has the priority level assigned by the argument.
* The interrupt wil run even if irq_lock() is active. Be careful!
*/
#define IRQ_ZERO_LATENCY BIT(0)
#ifdef CONFIG_CPU_CORTEX_M
#if defined(CONFIG_ZERO_LATENCY_LEVELS)
#define ZERO_LATENCY_LEVELS CONFIG_ZERO_LATENCY_LEVELS
#else
#define ZERO_LATENCY_LEVELS 1
#endif
#define _CHECK_PRIO(priority_p, flags_p) \
BUILD_ASSERT(((flags_p & IRQ_ZERO_LATENCY) && \
((ZERO_LATENCY_LEVELS == 1) || \
(priority_p < ZERO_LATENCY_LEVELS))) || \
(priority_p <= IRQ_PRIO_LOWEST), \
"Invalid interrupt priority. Values must not exceed IRQ_PRIO_LOWEST");
#else
#define _CHECK_PRIO(priority_p, flags_p)
#endif
/* All arguments must be computable by the compiler at build time.
*
* Z_ISR_DECLARE will populate the .intList section with the interrupt's
* parameters, which will then be used by gen_irq_tables.py to create
* the vector table and the software ISR table. This is all done at
* build-time.
*
* We additionally set the priority in the interrupt controller at
* runtime.
*/
#define ARCH_IRQ_CONNECT(irq_p, priority_p, isr_p, isr_param_p, flags_p) \
{ \
BUILD_ASSERT(IS_ENABLED(CONFIG_ZERO_LATENCY_IRQS) || !(flags_p & IRQ_ZERO_LATENCY), \
"ZLI interrupt registered but feature is disabled"); \
_CHECK_PRIO(priority_p, flags_p) \
Z_ISR_DECLARE(irq_p, 0, isr_p, isr_param_p); \
z_arm_irq_priority_set(irq_p, priority_p, flags_p); \
}
#define ARCH_IRQ_DIRECT_CONNECT(irq_p, priority_p, isr_p, flags_p) \
{ \
BUILD_ASSERT(IS_ENABLED(CONFIG_ZERO_LATENCY_IRQS) || !(flags_p & IRQ_ZERO_LATENCY), \
"ZLI interrupt registered but feature is disabled"); \
_CHECK_PRIO(priority_p, flags_p) \
Z_ISR_DECLARE(irq_p, ISR_FLAG_DIRECT, isr_p, NULL); \
z_arm_irq_priority_set(irq_p, priority_p, flags_p); \
}
#ifdef CONFIG_PM
extern void _arch_isr_direct_pm(void);
#define ARCH_ISR_DIRECT_PM() _arch_isr_direct_pm()
#else
#define ARCH_ISR_DIRECT_PM() do { } while (false)
#endif
#define ARCH_ISR_DIRECT_HEADER() arch_isr_direct_header()
#define ARCH_ISR_DIRECT_FOOTER(swap) arch_isr_direct_footer(swap)
/* arch/arm/core/aarch32/exc_exit.S */
extern void z_arm_int_exit(void);
#ifdef CONFIG_TRACING_ISR
extern void sys_trace_isr_enter(void);
extern void sys_trace_isr_exit(void);
#endif
static inline void arch_isr_direct_header(void)
{
#ifdef CONFIG_TRACING_ISR
sys_trace_isr_enter();
#endif
}
static inline void arch_isr_direct_footer(int maybe_swap)
{
#ifdef CONFIG_TRACING_ISR
sys_trace_isr_exit();
#endif
if (maybe_swap != 0) {
z_arm_int_exit();
}
}
#define ARCH_ISR_DIRECT_DECLARE(name) \
static inline int name##_body(void); \
_Pragma("GCC diagnostic push") \
_Pragma("GCC diagnostic ignored \"-Wattributes\"") \
__attribute__ ((interrupt ("IRQ"))) void name(void) \
{ \
int check_reschedule; \
ISR_DIRECT_HEADER(); \
check_reschedule = name##_body(); \
ISR_DIRECT_FOOTER(check_reschedule); \
} \
_Pragma("GCC diagnostic pop") \
static inline int name##_body(void)
#if defined(CONFIG_DYNAMIC_DIRECT_INTERRUPTS)
extern void z_arm_irq_direct_dynamic_dispatch_reschedule(void);
extern void z_arm_irq_direct_dynamic_dispatch_no_reschedule(void);
/**
* @brief Macro to register an ISR Dispatcher (with or without re-scheduling
* request) for dynamic direct interrupts.
*
* This macro registers the ISR dispatcher function for dynamic direct
* interrupts for a particular IRQ line, allowing the use of dynamic
* direct ISRs in the kernel for that interrupt source.
* The dispatcher function is invoked when the hardware
* interrupt occurs and then triggers the (software) Interrupt Service Routine
* (ISR) that is registered dynamically (i.e. at run-time) into the software
* ISR table stored in SRAM. The ISR must be connected with
* irq_connect_dynamic() and enabled via irq_enable() before the dynamic direct
* interrupt can be serviced. This ISR dispatcher must be configured by the
* user to trigger thread re-secheduling upon return, using the @param resch
* parameter.
*
* These ISRs are designed for performance-critical interrupt handling and do
* not go through all of the common interrupt handling code.
*
* With respect to their declaration, dynamic 'direct' interrupts are regular
* Zephyr interrupts; their signature must match void isr(void* parameter), as,
* unlike regular direct interrupts, they are not placed directly into the
* ROM hardware vector table but instead they are installed in the software
* ISR table.
*
* The major differences with regular Zephyr interrupts are the following:
* - Similar to direct interrupts, the call into the OS to exit power
* management idle state is optional. Normal interrupts always do this
* before the ISR is run, but with dynamic direct ones when and if it runs
* is controlled by the placement of
* a ISR_DIRECT_PM() macro, or omitted entirely.
* - Similar to direct interrupts, scheduling decisions are optional. Unlike
* direct interrupts, the decisions must be made at build time.
* They are controlled by @param resch to this macro.
*
* @param irq_p IRQ line number.
* @param priority_p Interrupt priority.
* @param flags_p Architecture-specific IRQ configuration flags.
* @param resch Set flag to 'reschedule' to request thread
* re-scheduling upon ISR function. Set flag
* 'no_reschedule' to skip thread re-scheduling
*
* Note: the function is an ARM Cortex-M only API.
*
* @return Interrupt vector assigned to this interrupt.
*/
#define ARM_IRQ_DIRECT_DYNAMIC_CONNECT(irq_p, priority_p, flags_p, resch) \
IRQ_DIRECT_CONNECT(irq_p, priority_p, \
CONCAT(z_arm_irq_direct_dynamic_dispatch_, resch), flags_p)
#endif /* CONFIG_DYNAMIC_DIRECT_INTERRUPTS */
#if defined(CONFIG_ARM_SECURE_FIRMWARE)
/* Architecture-specific definition for the target security
* state of an NVIC IRQ line.
*/
typedef enum {
IRQ_TARGET_STATE_SECURE = 0,
IRQ_TARGET_STATE_NON_SECURE
} irq_target_state_t;
#endif /* CONFIG_ARM_SECURE_FIRMWARE */
#endif /* _ASMLANGUAGE */
#ifdef __cplusplus
}
#endif
#endif /* ZEPHYR_INCLUDE_ARCH_ARM_AARCH32_IRQ_H_ */