blob: e41efdee4f918f9ced06a540e7f2ad7c00ecfa14 [file] [log] [blame]
/*
* Copyright (c) 2016 Jean-Paul Etienne <fractalclone@gmail.com>
* Contributors: 2018 Antmicro <www.antmicro.com>
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
* @brief RISCV specific kernel interface header
* This header contains the RISCV specific kernel interface. It is
* included by the generic kernel interface header (arch/cpu.h)
*/
#ifndef ZEPHYR_INCLUDE_ARCH_RISCV_ARCH_H_
#define ZEPHYR_INCLUDE_ARCH_RISCV_ARCH_H_
#include <zephyr/arch/riscv/thread.h>
#include <zephyr/arch/riscv/exp.h>
#include <zephyr/arch/riscv/irq.h>
#include <zephyr/arch/common/sys_bitops.h>
#include <zephyr/arch/common/sys_io.h>
#include <zephyr/arch/common/ffs.h>
#if defined(CONFIG_USERSPACE)
#include <zephyr/arch/riscv/syscall.h>
#endif /* CONFIG_USERSPACE */
#include <zephyr/irq.h>
#include <zephyr/sw_isr_table.h>
#include <soc.h>
#include <zephyr/devicetree.h>
#include <zephyr/arch/riscv/csr.h>
#include <zephyr/arch/riscv/exp.h>
/* stacks, for RISCV architecture stack should be 16byte-aligned */
#define ARCH_STACK_PTR_ALIGN 16
#ifdef CONFIG_PMP_STACK_GUARD
/*
* The StackGuard is an area at the bottom of the kernel-mode stack made to
* fault when accessed. It is _not_ faulting when in exception mode as we rely
* on that area to save the exception stack frame and to process said fault.
* Therefore the guard area must be large enough to hold the esf, plus some
* configurable stack wiggle room to execute the fault handling code off of,
* as well as some guard size to cover possible sudden stack pointer
* displacement before the fault.
*
* The m-mode PMP set is not overly used so no need to force NAPOT.
*/
#define Z_RISCV_STACK_GUARD_SIZE \
ROUND_UP(sizeof(z_arch_esf_t) + CONFIG_PMP_STACK_GUARD_MIN_SIZE, \
ARCH_STACK_PTR_ALIGN)
/* Kernel-only stacks have the following layout if a stack guard is enabled:
*
* +------------+ <- thread.stack_obj
* | Guard | } Z_RISCV_STACK_GUARD_SIZE
* +------------+ <- thread.stack_info.start
* | Kernel |
* | stack |
* | |
* +............|
* | TLS | } thread.stack_info.delta
* +------------+ <- thread.stack_info.start + thread.stack_info.size
*/
#define ARCH_KERNEL_STACK_RESERVED Z_RISCV_STACK_GUARD_SIZE
#else /* !CONFIG_PMP_STACK_GUARD */
#define Z_RISCV_STACK_GUARD_SIZE 0
#endif
#ifdef CONFIG_MPU_REQUIRES_POWER_OF_TWO_ALIGNMENT
/* The privilege elevation stack is located in another area of memory
* generated at build time by gen_kobject_list.py
*
* +------------+ <- thread.arch.priv_stack_start
* | Guard | } Z_RISCV_STACK_GUARD_SIZE
* +------------+
* | Priv Stack | } CONFIG_PRIVILEGED_STACK_SIZE
* +------------+ <- thread.arch.priv_stack_start +
* CONFIG_PRIVILEGED_STACK_SIZE +
* Z_RISCV_STACK_GUARD_SIZE
*
* The main stack will be initially (or potentially only) used by kernel
* mode so we need to make room for a possible stack guard area when enabled:
*
* +------------+ <- thread.stack_obj
* | Guard | } Z_RISCV_STACK_GUARD_SIZE
* +............| <- thread.stack_info.start
* | Thread |
* | stack |
* | |
* +............|
* | TLS | } thread.stack_info.delta
* +------------+ <- thread.stack_info.start + thread.stack_info.size
*
* When transitioning to user space, the guard area will be removed from
* the main stack. Any thread running in user mode will have full access
* to the region denoted by thread.stack_info. Make it PMP-NAPOT compatible.
*
* +------------+ <- thread.stack_obj = thread.stack_info.start
* | Thread |
* | stack |
* | |
* +............|
* | TLS | } thread.stack_info.delta
* +------------+ <- thread.stack_info.start + thread.stack_info.size
*/
#define ARCH_THREAD_STACK_RESERVED Z_RISCV_STACK_GUARD_SIZE
#define ARCH_THREAD_STACK_SIZE_ADJUST(size) \
Z_POW2_CEIL(MAX(size, CONFIG_PRIVILEGED_STACK_SIZE))
#define ARCH_THREAD_STACK_OBJ_ALIGN(size) \
ARCH_THREAD_STACK_SIZE_ADJUST(size)
#else /* !CONFIG_MPU_REQUIRES_POWER_OF_TWO_ALIGNMENT */
/* The stack object will contain the PMP guard, the privilege stack, and then
* the usermode stack buffer in that order:
*
* +------------+ <- thread.stack_obj
* | Guard | } Z_RISCV_STACK_GUARD_SIZE
* +------------+
* | Priv Stack | } CONFIG_PRIVILEGED_STACK_SIZE
* +------------+ <- thread.stack_info.start
* | Thread |
* | stack |
* | |
* +............|
* | TLS | } thread.stack_info.delta
* +------------+ <- thread.stack_info.start + thread.stack_info.size
*/
#define ARCH_THREAD_STACK_RESERVED \
ROUND_UP(Z_RISCV_STACK_GUARD_SIZE + CONFIG_PRIVILEGED_STACK_SIZE, \
ARCH_STACK_PTR_ALIGN)
#endif /* CONFIG_MPU_REQUIRES_POWER_OF_TWO_ALIGNMENT */
#ifdef CONFIG_64BIT
#define RV_REGSIZE 8
#define RV_REGSHIFT 3
#else
#define RV_REGSIZE 4
#define RV_REGSHIFT 2
#endif
/* Common mstatus bits. All supported cores today have the same
* layouts.
*/
#define MSTATUS_IEN (1UL << 3)
#define MSTATUS_MPP_M (3UL << 11)
#define MSTATUS_MPIE_EN (1UL << 7)
#define MSTATUS_FS_INIT (1UL << 13)
#define MSTATUS_FS_MASK ((1UL << 13) | (1UL << 14))
/* This comes from openisa_rv32m1, but doesn't seem to hurt on other
* platforms:
* - Preserve machine privileges in MPP. If you see any documentation
* telling you that MPP is read-only on this SoC, don't believe its
* lies.
* - Enable interrupts when exiting from exception into a new thread
* by setting MPIE now, so it will be copied into IE on mret.
*/
#define MSTATUS_DEF_RESTORE (MSTATUS_MPP_M | MSTATUS_MPIE_EN)
#ifndef _ASMLANGUAGE
#include <zephyr/sys/util.h>
#ifdef __cplusplus
extern "C" {
#endif
#ifdef CONFIG_IRQ_VECTOR_TABLE_JUMP_BY_CODE
#define ARCH_IRQ_VECTOR_JUMP_CODE(v) "j " STRINGIFY(v)
#endif
/* Kernel macros for memory attribution
* (access permissions and cache-ability).
*
* The macros are to be stored in k_mem_partition_attr_t
* objects. The format of a k_mem_partition_attr_t object
* is an uint8_t composed by configuration register flags
* located in arch/riscv/include/core_pmp.h
*/
/* Read-Write access permission attributes */
#define K_MEM_PARTITION_P_RW_U_RW ((k_mem_partition_attr_t) \
{PMP_R | PMP_W})
#define K_MEM_PARTITION_P_RW_U_RO ((k_mem_partition_attr_t) \
{PMP_R})
#define K_MEM_PARTITION_P_RW_U_NA ((k_mem_partition_attr_t) \
{0})
#define K_MEM_PARTITION_P_RO_U_RO ((k_mem_partition_attr_t) \
{PMP_R})
#define K_MEM_PARTITION_P_RO_U_NA ((k_mem_partition_attr_t) \
{0})
#define K_MEM_PARTITION_P_NA_U_NA ((k_mem_partition_attr_t) \
{0})
/* Execution-allowed attributes */
#define K_MEM_PARTITION_P_RWX_U_RWX ((k_mem_partition_attr_t) \
{PMP_R | PMP_W | PMP_X})
#define K_MEM_PARTITION_P_RX_U_RX ((k_mem_partition_attr_t) \
{PMP_R | PMP_X})
/* Typedef for the k_mem_partition attribute */
typedef struct {
uint8_t pmp_attr;
} k_mem_partition_attr_t;
struct arch_mem_domain {
unsigned int pmp_update_nr;
};
extern void z_irq_spurious(const void *unused);
/*
* use atomic instruction csrrc to lock global irq
* csrrc: atomic read and clear bits in CSR register
*/
static ALWAYS_INLINE unsigned int arch_irq_lock(void)
{
unsigned int key;
__asm__ volatile ("csrrc %0, mstatus, %1"
: "=r" (key)
: "rK" (MSTATUS_IEN)
: "memory");
return key;
}
/*
* use atomic instruction csrs to unlock global irq
* csrs: atomic set bits in CSR register
*/
static ALWAYS_INLINE void arch_irq_unlock(unsigned int key)
{
__asm__ volatile ("csrs mstatus, %0"
:
: "r" (key & MSTATUS_IEN)
: "memory");
}
static ALWAYS_INLINE bool arch_irq_unlocked(unsigned int key)
{
return (key & MSTATUS_IEN) != 0;
}
static ALWAYS_INLINE void arch_nop(void)
{
__asm__ volatile("nop");
}
extern uint32_t sys_clock_cycle_get_32(void);
static inline uint32_t arch_k_cycle_get_32(void)
{
return sys_clock_cycle_get_32();
}
extern uint64_t sys_clock_cycle_get_64(void);
static inline uint64_t arch_k_cycle_get_64(void)
{
return sys_clock_cycle_get_64();
}
#include <zephyr/arch/riscv/error.h>
#ifdef __cplusplus
}
#endif
#endif /*_ASMLANGUAGE */
#if defined(CONFIG_SOC_FAMILY_RISCV_PRIVILEGE)
#include <zephyr/arch/riscv/riscv-privilege/asm_inline.h>
#endif
#endif