blob: d7d6dd70cdb761bc7bd5507179091572289298a2 [file] [log] [blame]
/** @file
* @brief Network packet buffer descriptor API
*
* Network data is passed between different parts of the stack via
* net_buf struct.
*/
/*
* Copyright (c) 2016 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
/* Data buffer API - used for all data to/from net */
#ifndef ZEPHYR_INCLUDE_NET_NET_PKT_H_
#define ZEPHYR_INCLUDE_NET_NET_PKT_H_
#include <zephyr/types.h>
#include <stdbool.h>
#include <zephyr/net/buf.h>
#include <zephyr/net/net_core.h>
#include <zephyr/net/net_linkaddr.h>
#include <zephyr/net/net_ip.h>
#include <zephyr/net/net_if.h>
#include <zephyr/net/net_context.h>
#include <zephyr/net/ethernet_vlan.h>
#include <zephyr/net/ptp_time.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief Network packet management library
* @defgroup net_pkt Network Packet Library
* @ingroup networking
* @{
*/
struct net_context;
/* buffer cursor used in net_pkt */
struct net_pkt_cursor {
/** Current net_buf pointer by the cursor */
struct net_buf *buf;
/** Current position in the data buffer of the net_buf */
uint8_t *pos;
};
/**
* @brief Network packet.
*
* Note that if you add new fields into net_pkt, remember to update
* net_pkt_clone() function.
*/
struct net_pkt {
/**
* The fifo is used by RX/TX threads and by socket layer. The net_pkt
* is queued via fifo to the processing thread.
*/
intptr_t fifo;
/** Slab pointer from where it belongs to */
struct k_mem_slab *slab;
/** buffer holding the packet */
union {
struct net_buf *frags;
struct net_buf *buffer;
};
/** Internal buffer iterator used for reading/writing */
struct net_pkt_cursor cursor;
/** Network connection context */
struct net_context *context;
/** Network interface */
struct net_if *iface;
/** @cond ignore */
#if defined(CONFIG_NET_ROUTING) || defined(CONFIG_NET_ETHERNET_BRIDGE)
struct net_if *orig_iface; /* Original network interface */
#endif
#if defined(CONFIG_NET_PKT_TIMESTAMP)
/** Timestamp if available. */
struct net_ptp_time timestamp;
#endif
#if defined(CONFIG_NET_PKT_RXTIME_STATS) || defined(CONFIG_NET_PKT_TXTIME_STATS)
struct {
/** Create time in cycles */
uint32_t create_time;
#if defined(CONFIG_NET_PKT_TXTIME_STATS_DETAIL) || \
defined(CONFIG_NET_PKT_RXTIME_STATS_DETAIL)
/** Collect extra statistics for net_pkt processing
* from various points in the IP stack. See networking
* documentation where these points are located and how
* to interpret the results.
*/
struct {
uint32_t stat[NET_PKT_DETAIL_STATS_COUNT];
int count;
} detail;
#endif /* CONFIG_NET_PKT_TXTIME_STATS_DETAIL ||
CONFIG_NET_PKT_RXTIME_STATS_DETAIL */
};
#endif /* CONFIG_NET_PKT_RXTIME_STATS || CONFIG_NET_PKT_TXTIME_STATS */
#if defined(CONFIG_NET_PKT_TXTIME)
/** Network packet TX time in the future (in nanoseconds) */
uint64_t txtime;
#endif /* CONFIG_NET_PKT_TXTIME */
/** Reference counter */
atomic_t atomic_ref;
/* Filled by layer 2 when network packet is received. */
struct net_linkaddr lladdr_src;
struct net_linkaddr lladdr_dst;
uint16_t ll_proto_type;
#if defined(CONFIG_NET_TCP)
/** Allow placing the packet into sys_slist_t */
sys_snode_t next;
#endif
#if defined(CONFIG_NET_IP)
uint8_t ip_hdr_len; /* pre-filled in order to avoid func call */
#endif
uint8_t overwrite : 1; /* Is packet content being overwritten? */
uint8_t sent_or_eof: 1; /* For outgoing packet: is this sent or not
* For incoming packet of a socket: last
* packet before EOF
* Used only if defined(CONFIG_NET_TCP)
*/
union {
uint8_t pkt_queued: 1; /* For outgoing packet: is this packet
* queued to be sent but has not reached
* the driver yet.
* Used only if defined(CONFIG_NET_TCP)
*/
uint8_t ptp_pkt: 1; /* For outgoing packet: is this packet
* a L2 PTP packet.
* Used only if defined (CONFIG_NET_L2_PTP)
*/
};
uint8_t forwarding : 1; /* Are we forwarding this pkt
* Used only if defined(CONFIG_NET_ROUTE)
*/
uint8_t family : 3; /* Address family, see net_ip.h */
union {
#if defined(CONFIG_NET_IPV4_AUTO)
uint8_t ipv4_auto_arp_msg : 1; /* Is this pkt IPv4 autoconf ARP
* message.
* Note: family needs to be
* AF_INET.
*/
#endif
#if defined(CONFIG_NET_LLDP)
uint8_t lldp_pkt : 1; /* Is this pkt an LLDP message.
* Note: family needs to be
* AF_UNSPEC.
*/
#endif
uint8_t ppp_msg : 1; /* This is a PPP message */
};
#if defined(CONFIG_NET_TCP)
uint8_t tcp_first_msg : 1; /* Is this the first time this pkt is
* sent, or is this a resend of a TCP
* segment.
*/
#endif
uint8_t captured : 1; /* Set to 1 if this packet is already being
* captured
*/
uint8_t l2_bridged : 1; /* set to 1 if this packet comes from a bridge
* and already contains its L2 header to be
* preserved. Useful only if
* defined(CONFIG_NET_ETHERNET_BRIDGE).
*/
uint8_t l2_processed : 1; /* Set to 1 if this packet has already been
* processed by the L2
*/
#if defined(CONFIG_NET_IP)
union {
/* IPv6 hop limit or IPv4 ttl for this network packet.
* The value is shared between IPv6 and IPv4.
*/
#if defined(CONFIG_NET_IPV6)
uint8_t ipv6_hop_limit;
#endif
#if defined(CONFIG_NET_IPV4)
uint8_t ipv4_ttl;
#endif
};
union {
#if defined(CONFIG_NET_IPV4)
uint8_t ipv4_opts_len; /* Length if IPv4 Header Options */
#endif
#if defined(CONFIG_NET_IPV6)
uint16_t ipv6_ext_len; /* length of extension headers */
#endif
};
#endif /* CONFIG_NET_IP */
/** Network packet priority, can be left out in which case packet
* is not prioritised.
*/
uint8_t priority;
#if defined(CONFIG_NET_VLAN)
/* VLAN TCI (Tag Control Information). This contains the Priority
* Code Point (PCP), Drop Eligible Indicator (DEI) and VLAN
* Identifier (VID, called more commonly VLAN tag). This value is
* kept in host byte order.
*/
uint16_t vlan_tci;
#endif /* CONFIG_NET_VLAN */
#if defined(CONFIG_NET_IPV6)
/* Where is the start of the last header before payload data
* in IPv6 packet. This is offset value from start of the IPv6
* packet. Note that this value should be updated by who ever
* adds IPv6 extension headers to the network packet.
*/
uint16_t ipv6_prev_hdr_start;
#if defined(CONFIG_NET_IPV6_FRAGMENT)
uint16_t ipv6_fragment_flags; /* Fragment offset and M (More Fragment) flag */
uint32_t ipv6_fragment_id; /* Fragment id */
uint16_t ipv6_frag_hdr_start; /* Where starts the fragment header */
#endif /* CONFIG_NET_IPV6_FRAGMENT */
uint8_t ipv6_ext_opt_len; /* IPv6 ND option length */
uint8_t ipv6_next_hdr; /* What is the very first next header */
#endif /* CONFIG_NET_IPV6 */
#if defined(CONFIG_IEEE802154)
#if defined(CONFIG_IEEE802154_2015)
uint32_t ieee802154_ack_fc; /* Frame counter set in the ACK */
uint8_t ieee802154_ack_keyid; /* Key index set in the ACK */
#endif
uint8_t ieee802154_lqi; /* Link Quality Indicator */
union {
uint8_t ieee802154_rssi; /* Received Signal Strength Indication */
#if defined(CONFIG_IEEE802154_SELECTIVE_TXPOWER)
int8_t ieee802154_txpwr; /* TX power in dBm. It should be clear from
* the context which field of the union
* is valid at the moment.
*/
#endif /* CONFIG_IEEE802154_SELECTIVE_TXPOWER */
};
#if defined(CONFIG_IEEE802154_2015)
uint8_t ieee802154_fv2015 : 1; /* Frame version is IEEE 802.15.4-2015 */
uint8_t ieee802154_ack_seb : 1; /* Security Enabled Bit was set in the ACK */
#endif
uint8_t ieee802154_arb : 1; /* ACK Request Bit is set in the frame */
uint8_t ieee802154_ack_fpb : 1; /* Frame Pending Bit was set in the ACK */
uint8_t ieee802154_frame_secured : 1; /* Frame is authenticated and
* encrypted according to its
* Auxiliary Security Header
*/
uint8_t ieee802154_mac_hdr_rdy : 1; /* Indicates if frame's MAC header
* is ready to be transmitted or if
* it requires further modifications,
* e.g. Frame Counter injection.
*/
#endif
/* @endcond */
};
/** @cond ignore */
/* The interface real ll address */
static inline struct net_linkaddr *net_pkt_lladdr_if(struct net_pkt *pkt)
{
return net_if_get_link_addr(pkt->iface);
}
static inline struct net_context *net_pkt_context(struct net_pkt *pkt)
{
return pkt->context;
}
static inline void net_pkt_set_context(struct net_pkt *pkt,
struct net_context *ctx)
{
pkt->context = ctx;
}
static inline struct net_if *net_pkt_iface(struct net_pkt *pkt)
{
return pkt->iface;
}
static inline void net_pkt_set_iface(struct net_pkt *pkt, struct net_if *iface)
{
pkt->iface = iface;
/* If the network interface is set in pkt, then also set the type of
* the network address that is stored in pkt. This is done here so
* that the address type is properly set and is not forgotten.
*/
if (iface) {
pkt->lladdr_src.type = net_if_get_link_addr(iface)->type;
pkt->lladdr_dst.type = net_if_get_link_addr(iface)->type;
}
}
static inline struct net_if *net_pkt_orig_iface(struct net_pkt *pkt)
{
#if defined(CONFIG_NET_ROUTING) || defined(CONFIG_NET_ETHERNET_BRIDGE)
return pkt->orig_iface;
#else
return pkt->iface;
#endif
}
static inline void net_pkt_set_orig_iface(struct net_pkt *pkt,
struct net_if *iface)
{
#if defined(CONFIG_NET_ROUTING) || defined(CONFIG_NET_ETHERNET_BRIDGE)
pkt->orig_iface = iface;
#endif
}
static inline uint8_t net_pkt_family(struct net_pkt *pkt)
{
return pkt->family;
}
static inline void net_pkt_set_family(struct net_pkt *pkt, uint8_t family)
{
pkt->family = family;
}
static inline bool net_pkt_is_ptp(struct net_pkt *pkt)
{
return !!(pkt->ptp_pkt);
}
static inline void net_pkt_set_ptp(struct net_pkt *pkt, bool is_ptp)
{
pkt->ptp_pkt = is_ptp;
}
static inline bool net_pkt_is_captured(struct net_pkt *pkt)
{
return !!(pkt->captured);
}
static inline void net_pkt_set_captured(struct net_pkt *pkt, bool is_captured)
{
pkt->captured = is_captured;
}
static inline bool net_pkt_is_l2_bridged(struct net_pkt *pkt)
{
return IS_ENABLED(CONFIG_NET_ETHERNET_BRIDGE) ? !!(pkt->l2_bridged) : 0;
}
static inline void net_pkt_set_l2_bridged(struct net_pkt *pkt, bool is_l2_bridged)
{
if (IS_ENABLED(CONFIG_NET_ETHERNET_BRIDGE)) {
pkt->l2_bridged = is_l2_bridged;
}
}
static inline bool net_pkt_is_l2_processed(struct net_pkt *pkt)
{
return !!(pkt->l2_processed);
}
static inline void net_pkt_set_l2_processed(struct net_pkt *pkt,
bool is_l2_processed)
{
pkt->l2_processed = is_l2_processed;
}
static inline uint8_t net_pkt_ip_hdr_len(struct net_pkt *pkt)
{
#if defined(CONFIG_NET_IP)
return pkt->ip_hdr_len;
#else
return 0;
#endif
}
static inline void net_pkt_set_ip_hdr_len(struct net_pkt *pkt, uint8_t len)
{
#if defined(CONFIG_NET_IP)
pkt->ip_hdr_len = len;
#endif
}
static inline uint8_t net_pkt_sent(struct net_pkt *pkt)
{
return pkt->sent_or_eof;
}
static inline void net_pkt_set_sent(struct net_pkt *pkt, bool sent)
{
pkt->sent_or_eof = sent;
}
static inline uint8_t net_pkt_queued(struct net_pkt *pkt)
{
return pkt->pkt_queued;
}
static inline void net_pkt_set_queued(struct net_pkt *pkt, bool send)
{
pkt->pkt_queued = send;
}
static inline uint8_t net_pkt_tcp_1st_msg(struct net_pkt *pkt)
{
#if defined(CONFIG_NET_TCP)
return pkt->tcp_first_msg;
#else
return true;
#endif
}
static inline void net_pkt_set_tcp_1st_msg(struct net_pkt *pkt, bool is_1st)
{
#if defined(CONFIG_NET_TCP)
pkt->tcp_first_msg = is_1st;
#else
ARG_UNUSED(pkt);
ARG_UNUSED(is_1st);
#endif
}
#if defined(CONFIG_NET_SOCKETS)
static inline uint8_t net_pkt_eof(struct net_pkt *pkt)
{
return pkt->sent_or_eof;
}
static inline void net_pkt_set_eof(struct net_pkt *pkt, bool eof)
{
pkt->sent_or_eof = eof;
}
#endif
#if defined(CONFIG_NET_ROUTE)
static inline bool net_pkt_forwarding(struct net_pkt *pkt)
{
return pkt->forwarding;
}
static inline void net_pkt_set_forwarding(struct net_pkt *pkt, bool forward)
{
pkt->forwarding = forward;
}
#else
static inline bool net_pkt_forwarding(struct net_pkt *pkt)
{
return false;
}
#endif
#if defined(CONFIG_NET_IPV4)
static inline uint8_t net_pkt_ipv4_ttl(struct net_pkt *pkt)
{
return pkt->ipv4_ttl;
}
static inline void net_pkt_set_ipv4_ttl(struct net_pkt *pkt,
uint8_t ttl)
{
pkt->ipv4_ttl = ttl;
}
static inline uint8_t net_pkt_ipv4_opts_len(struct net_pkt *pkt)
{
return pkt->ipv4_opts_len;
}
static inline void net_pkt_set_ipv4_opts_len(struct net_pkt *pkt,
uint8_t opts_len)
{
pkt->ipv4_opts_len = opts_len;
}
#else
static inline uint8_t net_pkt_ipv4_ttl(struct net_pkt *pkt)
{
ARG_UNUSED(pkt);
return 0;
}
static inline void net_pkt_set_ipv4_ttl(struct net_pkt *pkt,
uint8_t ttl)
{
ARG_UNUSED(pkt);
ARG_UNUSED(ttl);
}
static inline uint8_t net_pkt_ipv4_opts_len(struct net_pkt *pkt)
{
ARG_UNUSED(pkt);
return 0;
}
static inline void net_pkt_set_ipv4_opts_len(struct net_pkt *pkt,
uint8_t opts_len)
{
ARG_UNUSED(pkt);
ARG_UNUSED(opts_len);
}
#endif
#if defined(CONFIG_NET_IPV6)
static inline uint8_t net_pkt_ipv6_ext_opt_len(struct net_pkt *pkt)
{
return pkt->ipv6_ext_opt_len;
}
static inline void net_pkt_set_ipv6_ext_opt_len(struct net_pkt *pkt,
uint8_t len)
{
pkt->ipv6_ext_opt_len = len;
}
static inline uint8_t net_pkt_ipv6_next_hdr(struct net_pkt *pkt)
{
return pkt->ipv6_next_hdr;
}
static inline void net_pkt_set_ipv6_next_hdr(struct net_pkt *pkt,
uint8_t next_hdr)
{
pkt->ipv6_next_hdr = next_hdr;
}
static inline uint16_t net_pkt_ipv6_ext_len(struct net_pkt *pkt)
{
return pkt->ipv6_ext_len;
}
static inline void net_pkt_set_ipv6_ext_len(struct net_pkt *pkt, uint16_t len)
{
pkt->ipv6_ext_len = len;
}
static inline uint16_t net_pkt_ipv6_hdr_prev(struct net_pkt *pkt)
{
return pkt->ipv6_prev_hdr_start;
}
static inline void net_pkt_set_ipv6_hdr_prev(struct net_pkt *pkt,
uint16_t offset)
{
pkt->ipv6_prev_hdr_start = offset;
}
static inline uint8_t net_pkt_ipv6_hop_limit(struct net_pkt *pkt)
{
return pkt->ipv6_hop_limit;
}
static inline void net_pkt_set_ipv6_hop_limit(struct net_pkt *pkt,
uint8_t hop_limit)
{
pkt->ipv6_hop_limit = hop_limit;
}
#else /* CONFIG_NET_IPV6 */
static inline uint8_t net_pkt_ipv6_ext_opt_len(struct net_pkt *pkt)
{
ARG_UNUSED(pkt);
return 0;
}
static inline void net_pkt_set_ipv6_ext_opt_len(struct net_pkt *pkt,
uint8_t len)
{
ARG_UNUSED(pkt);
ARG_UNUSED(len);
}
static inline uint8_t net_pkt_ipv6_next_hdr(struct net_pkt *pkt)
{
ARG_UNUSED(pkt);
return 0;
}
static inline void net_pkt_set_ipv6_next_hdr(struct net_pkt *pkt,
uint8_t next_hdr)
{
ARG_UNUSED(pkt);
ARG_UNUSED(next_hdr);
}
static inline uint16_t net_pkt_ipv6_ext_len(struct net_pkt *pkt)
{
ARG_UNUSED(pkt);
return 0;
}
static inline void net_pkt_set_ipv6_ext_len(struct net_pkt *pkt, uint16_t len)
{
ARG_UNUSED(pkt);
ARG_UNUSED(len);
}
static inline uint16_t net_pkt_ipv6_hdr_prev(struct net_pkt *pkt)
{
ARG_UNUSED(pkt);
return 0;
}
static inline void net_pkt_set_ipv6_hdr_prev(struct net_pkt *pkt,
uint16_t offset)
{
ARG_UNUSED(pkt);
ARG_UNUSED(offset);
}
static inline uint8_t net_pkt_ipv6_hop_limit(struct net_pkt *pkt)
{
ARG_UNUSED(pkt);
return 0;
}
static inline void net_pkt_set_ipv6_hop_limit(struct net_pkt *pkt,
uint8_t hop_limit)
{
ARG_UNUSED(pkt);
ARG_UNUSED(hop_limit);
}
#endif /* CONFIG_NET_IPV6 */
static inline uint16_t net_pkt_ip_opts_len(struct net_pkt *pkt)
{
#if defined(CONFIG_NET_IPV6)
return pkt->ipv6_ext_len;
#elif defined(CONFIG_NET_IPV4)
return pkt->ipv4_opts_len;
#else
ARG_UNUSED(pkt);
return 0;
#endif
}
#if defined(CONFIG_NET_IPV6_FRAGMENT)
static inline uint16_t net_pkt_ipv6_fragment_start(struct net_pkt *pkt)
{
return pkt->ipv6_frag_hdr_start;
}
static inline void net_pkt_set_ipv6_fragment_start(struct net_pkt *pkt,
uint16_t start)
{
pkt->ipv6_frag_hdr_start = start;
}
static inline uint16_t net_pkt_ipv6_fragment_offset(struct net_pkt *pkt)
{
return pkt->ipv6_fragment_flags & NET_IPV6_FRAGH_OFFSET_MASK;
}
static inline bool net_pkt_ipv6_fragment_more(struct net_pkt *pkt)
{
return (pkt->ipv6_fragment_flags & 0x01) != 0;
}
static inline void net_pkt_set_ipv6_fragment_flags(struct net_pkt *pkt,
uint16_t flags)
{
pkt->ipv6_fragment_flags = flags;
}
static inline uint32_t net_pkt_ipv6_fragment_id(struct net_pkt *pkt)
{
return pkt->ipv6_fragment_id;
}
static inline void net_pkt_set_ipv6_fragment_id(struct net_pkt *pkt,
uint32_t id)
{
pkt->ipv6_fragment_id = id;
}
#else /* CONFIG_NET_IPV6_FRAGMENT */
static inline uint16_t net_pkt_ipv6_fragment_start(struct net_pkt *pkt)
{
ARG_UNUSED(pkt);
return 0;
}
static inline void net_pkt_set_ipv6_fragment_start(struct net_pkt *pkt,
uint16_t start)
{
ARG_UNUSED(pkt);
ARG_UNUSED(start);
}
static inline uint16_t net_pkt_ipv6_fragment_offset(struct net_pkt *pkt)
{
ARG_UNUSED(pkt);
return 0;
}
static inline bool net_pkt_ipv6_fragment_more(struct net_pkt *pkt)
{
ARG_UNUSED(pkt);
return 0;
}
static inline void net_pkt_set_ipv6_fragment_flags(struct net_pkt *pkt,
uint16_t flags)
{
ARG_UNUSED(pkt);
ARG_UNUSED(flags);
}
static inline uint32_t net_pkt_ipv6_fragment_id(struct net_pkt *pkt)
{
ARG_UNUSED(pkt);
return 0;
}
static inline void net_pkt_set_ipv6_fragment_id(struct net_pkt *pkt,
uint32_t id)
{
ARG_UNUSED(pkt);
ARG_UNUSED(id);
}
#endif /* CONFIG_NET_IPV6_FRAGMENT */
static inline uint8_t net_pkt_priority(struct net_pkt *pkt)
{
return pkt->priority;
}
static inline void net_pkt_set_priority(struct net_pkt *pkt,
uint8_t priority)
{
pkt->priority = priority;
}
#if defined(CONFIG_NET_VLAN)
static inline uint16_t net_pkt_vlan_tag(struct net_pkt *pkt)
{
return net_eth_vlan_get_vid(pkt->vlan_tci);
}
static inline void net_pkt_set_vlan_tag(struct net_pkt *pkt, uint16_t tag)
{
pkt->vlan_tci = net_eth_vlan_set_vid(pkt->vlan_tci, tag);
}
static inline uint8_t net_pkt_vlan_priority(struct net_pkt *pkt)
{
return net_eth_vlan_get_pcp(pkt->vlan_tci);
}
static inline void net_pkt_set_vlan_priority(struct net_pkt *pkt,
uint8_t priority)
{
pkt->vlan_tci = net_eth_vlan_set_pcp(pkt->vlan_tci, priority);
}
static inline bool net_pkt_vlan_dei(struct net_pkt *pkt)
{
return net_eth_vlan_get_dei(pkt->vlan_tci);
}
static inline void net_pkt_set_vlan_dei(struct net_pkt *pkt, bool dei)
{
pkt->vlan_tci = net_eth_vlan_set_dei(pkt->vlan_tci, dei);
}
static inline void net_pkt_set_vlan_tci(struct net_pkt *pkt, uint16_t tci)
{
pkt->vlan_tci = tci;
}
static inline uint16_t net_pkt_vlan_tci(struct net_pkt *pkt)
{
return pkt->vlan_tci;
}
#else
static inline uint16_t net_pkt_vlan_tag(struct net_pkt *pkt)
{
return NET_VLAN_TAG_UNSPEC;
}
static inline void net_pkt_set_vlan_tag(struct net_pkt *pkt, uint16_t tag)
{
ARG_UNUSED(pkt);
ARG_UNUSED(tag);
}
static inline uint8_t net_pkt_vlan_priority(struct net_pkt *pkt)
{
ARG_UNUSED(pkt);
return 0;
}
static inline bool net_pkt_vlan_dei(struct net_pkt *pkt)
{
return false;
}
static inline void net_pkt_set_vlan_dei(struct net_pkt *pkt, bool dei)
{
ARG_UNUSED(pkt);
ARG_UNUSED(dei);
}
static inline uint16_t net_pkt_vlan_tci(struct net_pkt *pkt)
{
return NET_VLAN_TAG_UNSPEC; /* assumes priority is 0 */
}
static inline void net_pkt_set_vlan_tci(struct net_pkt *pkt, uint16_t tci)
{
ARG_UNUSED(pkt);
ARG_UNUSED(tci);
}
#endif
#if defined(CONFIG_NET_PKT_TIMESTAMP)
static inline struct net_ptp_time *net_pkt_timestamp(struct net_pkt *pkt)
{
return &pkt->timestamp;
}
static inline void net_pkt_set_timestamp(struct net_pkt *pkt,
struct net_ptp_time *timestamp)
{
pkt->timestamp.second = timestamp->second;
pkt->timestamp.nanosecond = timestamp->nanosecond;
}
#else
static inline struct net_ptp_time *net_pkt_timestamp(struct net_pkt *pkt)
{
ARG_UNUSED(pkt);
return NULL;
}
static inline void net_pkt_set_timestamp(struct net_pkt *pkt,
struct net_ptp_time *timestamp)
{
ARG_UNUSED(pkt);
ARG_UNUSED(timestamp);
}
#endif /* CONFIG_NET_PKT_TIMESTAMP */
#if defined(CONFIG_NET_PKT_RXTIME_STATS) || defined(CONFIG_NET_PKT_TXTIME_STATS)
static inline uint32_t net_pkt_create_time(struct net_pkt *pkt)
{
return pkt->create_time;
}
static inline void net_pkt_set_create_time(struct net_pkt *pkt,
uint32_t create_time)
{
pkt->create_time = create_time;
}
#else
static inline uint32_t net_pkt_create_time(struct net_pkt *pkt)
{
ARG_UNUSED(pkt);
return 0U;
}
static inline void net_pkt_set_create_time(struct net_pkt *pkt,
uint32_t create_time)
{
ARG_UNUSED(pkt);
ARG_UNUSED(create_time);
}
#endif /* CONFIG_NET_PKT_RXTIME_STATS || CONFIG_NET_PKT_TXTIME_STATS */
#if defined(CONFIG_NET_PKT_TXTIME)
static inline uint64_t net_pkt_txtime(struct net_pkt *pkt)
{
return pkt->txtime;
}
static inline void net_pkt_set_txtime(struct net_pkt *pkt, uint64_t txtime)
{
pkt->txtime = txtime;
}
#else
static inline uint64_t net_pkt_txtime(struct net_pkt *pkt)
{
ARG_UNUSED(pkt);
return 0;
}
static inline void net_pkt_set_txtime(struct net_pkt *pkt, uint64_t txtime)
{
ARG_UNUSED(pkt);
ARG_UNUSED(txtime);
}
#endif /* CONFIG_NET_PKT_TXTIME */
#if defined(CONFIG_NET_PKT_TXTIME_STATS_DETAIL) || \
defined(CONFIG_NET_PKT_RXTIME_STATS_DETAIL)
static inline uint32_t *net_pkt_stats_tick(struct net_pkt *pkt)
{
return pkt->detail.stat;
}
static inline int net_pkt_stats_tick_count(struct net_pkt *pkt)
{
return pkt->detail.count;
}
static inline void net_pkt_stats_tick_reset(struct net_pkt *pkt)
{
memset(&pkt->detail, 0, sizeof(pkt->detail));
}
static ALWAYS_INLINE void net_pkt_set_stats_tick(struct net_pkt *pkt,
uint32_t tick)
{
if (pkt->detail.count >= NET_PKT_DETAIL_STATS_COUNT) {
NET_ERR("Detail stats count overflow (%d >= %d)",
pkt->detail.count, NET_PKT_DETAIL_STATS_COUNT);
return;
}
pkt->detail.stat[pkt->detail.count++] = tick;
}
#define net_pkt_set_tx_stats_tick(pkt, tick) net_pkt_set_stats_tick(pkt, tick)
#define net_pkt_set_rx_stats_tick(pkt, tick) net_pkt_set_stats_tick(pkt, tick)
#else
static inline uint32_t *net_pkt_stats_tick(struct net_pkt *pkt)
{
ARG_UNUSED(pkt);
return NULL;
}
static inline int net_pkt_stats_tick_count(struct net_pkt *pkt)
{
ARG_UNUSED(pkt);
return 0;
}
static inline void net_pkt_stats_tick_reset(struct net_pkt *pkt)
{
ARG_UNUSED(pkt);
}
static inline void net_pkt_set_stats_tick(struct net_pkt *pkt, uint32_t tick)
{
ARG_UNUSED(pkt);
ARG_UNUSED(tick);
}
#define net_pkt_set_tx_stats_tick(pkt, tick)
#define net_pkt_set_rx_stats_tick(pkt, tick)
#endif /* CONFIG_NET_PKT_TXTIME_STATS_DETAIL ||
CONFIG_NET_PKT_RXTIME_STATS_DETAIL */
static inline size_t net_pkt_get_len(struct net_pkt *pkt)
{
return net_buf_frags_len(pkt->frags);
}
static inline uint8_t *net_pkt_data(struct net_pkt *pkt)
{
return pkt->frags->data;
}
static inline uint8_t *net_pkt_ip_data(struct net_pkt *pkt)
{
return pkt->frags->data;
}
static inline bool net_pkt_is_empty(struct net_pkt *pkt)
{
return !pkt->buffer || !net_pkt_data(pkt) || pkt->buffer->len == 0;
}
static inline struct net_linkaddr *net_pkt_lladdr_src(struct net_pkt *pkt)
{
return &pkt->lladdr_src;
}
static inline struct net_linkaddr *net_pkt_lladdr_dst(struct net_pkt *pkt)
{
return &pkt->lladdr_dst;
}
static inline void net_pkt_lladdr_swap(struct net_pkt *pkt)
{
uint8_t *addr = net_pkt_lladdr_src(pkt)->addr;
net_pkt_lladdr_src(pkt)->addr = net_pkt_lladdr_dst(pkt)->addr;
net_pkt_lladdr_dst(pkt)->addr = addr;
}
static inline void net_pkt_lladdr_clear(struct net_pkt *pkt)
{
net_pkt_lladdr_src(pkt)->addr = NULL;
net_pkt_lladdr_src(pkt)->len = 0U;
}
static inline uint16_t net_pkt_ll_proto_type(struct net_pkt *pkt)
{
return pkt->ll_proto_type;
}
static inline void net_pkt_set_ll_proto_type(struct net_pkt *pkt, uint16_t type)
{
pkt->ll_proto_type = type;
}
#if defined(CONFIG_IEEE802154) || defined(CONFIG_IEEE802154_RAW_MODE)
static inline uint8_t net_pkt_ieee802154_rssi(struct net_pkt *pkt)
{
return pkt->ieee802154_rssi;
}
static inline void net_pkt_set_ieee802154_rssi(struct net_pkt *pkt,
uint8_t rssi)
{
pkt->ieee802154_rssi = rssi;
}
static inline uint8_t net_pkt_ieee802154_lqi(struct net_pkt *pkt)
{
return pkt->ieee802154_lqi;
}
static inline void net_pkt_set_ieee802154_lqi(struct net_pkt *pkt,
uint8_t lqi)
{
pkt->ieee802154_lqi = lqi;
}
static inline bool net_pkt_ieee802154_arb(struct net_pkt *pkt)
{
return pkt->ieee802154_arb;
}
static inline void net_pkt_set_ieee802154_arb(struct net_pkt *pkt, bool arb)
{
pkt->ieee802154_arb = arb;
}
static inline bool net_pkt_ieee802154_ack_fpb(struct net_pkt *pkt)
{
return pkt->ieee802154_ack_fpb;
}
static inline void net_pkt_set_ieee802154_ack_fpb(struct net_pkt *pkt,
bool fpb)
{
pkt->ieee802154_ack_fpb = fpb;
}
static inline bool net_pkt_ieee802154_frame_secured(struct net_pkt *pkt)
{
return pkt->ieee802154_frame_secured;
}
static inline void net_pkt_set_ieee802154_frame_secured(struct net_pkt *pkt,
bool secured)
{
pkt->ieee802154_frame_secured = secured;
}
static inline bool net_pkt_ieee802154_mac_hdr_rdy(struct net_pkt *pkt)
{
return pkt->ieee802154_mac_hdr_rdy;
}
static inline void net_pkt_set_ieee802154_mac_hdr_rdy(struct net_pkt *pkt,
bool rdy)
{
pkt->ieee802154_mac_hdr_rdy = rdy;
}
#if defined(CONFIG_IEEE802154_2015)
static inline bool net_pkt_ieee802154_fv2015(struct net_pkt *pkt)
{
return pkt->ieee802154_fv2015;
}
static inline void net_pkt_set_ieee802154_fv2015(struct net_pkt *pkt, bool fv2015)
{
pkt->ieee802154_fv2015 = fv2015;
}
static inline bool net_pkt_ieee802154_ack_seb(struct net_pkt *pkt)
{
return pkt->ieee802154_ack_seb;
}
static inline void net_pkt_set_ieee802154_ack_seb(struct net_pkt *pkt, bool seb)
{
pkt->ieee802154_ack_seb = seb;
}
static inline uint32_t net_pkt_ieee802154_ack_fc(struct net_pkt *pkt)
{
return pkt->ieee802154_ack_fc;
}
static inline void net_pkt_set_ieee802154_ack_fc(struct net_pkt *pkt,
uint32_t fc)
{
pkt->ieee802154_ack_fc = fc;
}
static inline uint8_t net_pkt_ieee802154_ack_keyid(struct net_pkt *pkt)
{
return pkt->ieee802154_ack_keyid;
}
static inline void net_pkt_set_ieee802154_ack_keyid(struct net_pkt *pkt,
uint8_t keyid)
{
pkt->ieee802154_ack_keyid = keyid;
}
#endif /* CONFIG_IEEE802154_2015 */
#if defined(CONFIG_IEEE802154_SELECTIVE_TXPOWER)
static inline int8_t net_pkt_ieee802154_txpwr(struct net_pkt *pkt)
{
return pkt->ieee802154_txpwr;
}
static inline void net_pkt_set_ieee802154_txpwr(struct net_pkt *pkt,
int8_t txpwr)
{
pkt->ieee802154_txpwr = txpwr;
}
#endif /* CONFIG_IEEE802154_SELECTIVE_TXPOWER */
#endif /* CONFIG_IEEE802154 || CONFIG_IEEE802154_RAW_MODE */
#if defined(CONFIG_NET_IPV4_AUTO)
static inline bool net_pkt_ipv4_auto(struct net_pkt *pkt)
{
return pkt->ipv4_auto_arp_msg;
}
static inline void net_pkt_set_ipv4_auto(struct net_pkt *pkt,
bool is_auto_arp_msg)
{
pkt->ipv4_auto_arp_msg = is_auto_arp_msg;
}
#else /* CONFIG_NET_IPV4_AUTO */
static inline bool net_pkt_ipv4_auto(struct net_pkt *pkt)
{
ARG_UNUSED(pkt);
return false;
}
static inline void net_pkt_set_ipv4_auto(struct net_pkt *pkt,
bool is_auto_arp_msg)
{
ARG_UNUSED(pkt);
ARG_UNUSED(is_auto_arp_msg);
}
#endif /* CONFIG_NET_IPV4_AUTO */
#if defined(CONFIG_NET_LLDP)
static inline bool net_pkt_is_lldp(struct net_pkt *pkt)
{
return pkt->lldp_pkt;
}
static inline void net_pkt_set_lldp(struct net_pkt *pkt, bool is_lldp)
{
pkt->lldp_pkt = is_lldp;
}
#else
static inline bool net_pkt_is_lldp(struct net_pkt *pkt)
{
ARG_UNUSED(pkt);
return false;
}
static inline void net_pkt_set_lldp(struct net_pkt *pkt, bool is_lldp)
{
ARG_UNUSED(pkt);
ARG_UNUSED(is_lldp);
}
#endif /* CONFIG_NET_LLDP */
#if defined(CONFIG_NET_PPP)
static inline bool net_pkt_is_ppp(struct net_pkt *pkt)
{
return pkt->ppp_msg;
}
static inline void net_pkt_set_ppp(struct net_pkt *pkt,
bool is_ppp_msg)
{
pkt->ppp_msg = is_ppp_msg;
}
#else /* CONFIG_NET_PPP */
static inline bool net_pkt_is_ppp(struct net_pkt *pkt)
{
ARG_UNUSED(pkt);
return false;
}
static inline void net_pkt_set_ppp(struct net_pkt *pkt,
bool is_ppp_msg)
{
ARG_UNUSED(pkt);
ARG_UNUSED(is_ppp_msg);
}
#endif /* CONFIG_NET_PPP */
#define NET_IPV6_HDR(pkt) ((struct net_ipv6_hdr *)net_pkt_ip_data(pkt))
#define NET_IPV4_HDR(pkt) ((struct net_ipv4_hdr *)net_pkt_ip_data(pkt))
static inline void net_pkt_set_src_ipv6_addr(struct net_pkt *pkt)
{
net_if_ipv6_select_src_addr(net_context_get_iface(
net_pkt_context(pkt)),
(struct in6_addr *)NET_IPV6_HDR(pkt)->src);
}
static inline void net_pkt_set_overwrite(struct net_pkt *pkt, bool overwrite)
{
pkt->overwrite = overwrite;
}
static inline bool net_pkt_is_being_overwritten(struct net_pkt *pkt)
{
return pkt->overwrite;
}
#ifdef CONFIG_NET_PKT_FILTER
bool net_pkt_filter_send_ok(struct net_pkt *pkt);
bool net_pkt_filter_recv_ok(struct net_pkt *pkt);
#else
static inline bool net_pkt_filter_send_ok(struct net_pkt *pkt)
{
ARG_UNUSED(pkt);
return true;
}
static inline bool net_pkt_filter_recv_ok(struct net_pkt *pkt)
{
ARG_UNUSED(pkt);
return true;
}
#endif /* CONFIG_NET_PKT_FILTER */
/* @endcond */
/**
* @brief Create a net_pkt slab
*
* A net_pkt slab is used to store meta-information about
* network packets. It must be coupled with a data fragment pool
* (:c:macro:`NET_PKT_DATA_POOL_DEFINE`) used to store the actual
* packet data. The macro can be used by an application to define
* additional custom per-context TX packet slabs (see
* :c:func:`net_context_setup_pools`).
*
* @param name Name of the slab.
* @param count Number of net_pkt in this slab.
*/
#define NET_PKT_SLAB_DEFINE(name, count) \
K_MEM_SLAB_DEFINE(name, sizeof(struct net_pkt), count, 4)
/* Backward compatibility macro */
#define NET_PKT_TX_SLAB_DEFINE(name, count) NET_PKT_SLAB_DEFINE(name, count)
/**
* @brief Create a data fragment net_buf pool
*
* A net_buf pool is used to store actual data for
* network packets. It must be coupled with a net_pkt slab
* (:c:macro:`NET_PKT_SLAB_DEFINE`) used to store the packet
* meta-information. The macro can be used by an application to
* define additional custom per-context TX packet pools (see
* :c:func:`net_context_setup_pools`).
*
* @param name Name of the pool.
* @param count Number of net_buf in this pool.
*/
#define NET_PKT_DATA_POOL_DEFINE(name, count) \
NET_BUF_POOL_DEFINE(name, count, CONFIG_NET_BUF_DATA_SIZE, \
0, NULL)
/** @cond INTERNAL_HIDDEN */
#if defined(CONFIG_NET_DEBUG_NET_PKT_ALLOC) || \
(CONFIG_NET_PKT_LOG_LEVEL >= LOG_LEVEL_DBG)
#define NET_PKT_DEBUG_ENABLED
#endif
#if defined(NET_PKT_DEBUG_ENABLED)
/* Debug versions of the net_pkt functions that are used when tracking
* buffer usage.
*/
struct net_buf *net_pkt_get_reserve_data_debug(struct net_buf_pool *pool,
k_timeout_t timeout,
const char *caller,
int line);
#define net_pkt_get_reserve_data(pool, timeout) \
net_pkt_get_reserve_data_debug(pool, timeout, __func__, __LINE__)
struct net_buf *net_pkt_get_reserve_rx_data_debug(k_timeout_t timeout,
const char *caller,
int line);
#define net_pkt_get_reserve_rx_data(timeout) \
net_pkt_get_reserve_rx_data_debug(timeout, __func__, __LINE__)
struct net_buf *net_pkt_get_reserve_tx_data_debug(k_timeout_t timeout,
const char *caller,
int line);
#define net_pkt_get_reserve_tx_data(timeout) \
net_pkt_get_reserve_tx_data_debug(timeout, __func__, __LINE__)
struct net_buf *net_pkt_get_frag_debug(struct net_pkt *pkt,
k_timeout_t timeout,
const char *caller, int line);
#define net_pkt_get_frag(pkt, timeout) \
net_pkt_get_frag_debug(pkt, timeout, __func__, __LINE__)
void net_pkt_unref_debug(struct net_pkt *pkt, const char *caller, int line);
#define net_pkt_unref(pkt) net_pkt_unref_debug(pkt, __func__, __LINE__)
struct net_pkt *net_pkt_ref_debug(struct net_pkt *pkt, const char *caller,
int line);
#define net_pkt_ref(pkt) net_pkt_ref_debug(pkt, __func__, __LINE__)
struct net_buf *net_pkt_frag_ref_debug(struct net_buf *frag,
const char *caller, int line);
#define net_pkt_frag_ref(frag) net_pkt_frag_ref_debug(frag, __func__, __LINE__)
void net_pkt_frag_unref_debug(struct net_buf *frag,
const char *caller, int line);
#define net_pkt_frag_unref(frag) \
net_pkt_frag_unref_debug(frag, __func__, __LINE__)
struct net_buf *net_pkt_frag_del_debug(struct net_pkt *pkt,
struct net_buf *parent,
struct net_buf *frag,
const char *caller, int line);
#define net_pkt_frag_del(pkt, parent, frag) \
net_pkt_frag_del_debug(pkt, parent, frag, __func__, __LINE__)
void net_pkt_frag_add_debug(struct net_pkt *pkt, struct net_buf *frag,
const char *caller, int line);
#define net_pkt_frag_add(pkt, frag) \
net_pkt_frag_add_debug(pkt, frag, __func__, __LINE__)
void net_pkt_frag_insert_debug(struct net_pkt *pkt, struct net_buf *frag,
const char *caller, int line);
#define net_pkt_frag_insert(pkt, frag) \
net_pkt_frag_insert_debug(pkt, frag, __func__, __LINE__)
#endif /* CONFIG_NET_DEBUG_NET_PKT_ALLOC ||
* CONFIG_NET_PKT_LOG_LEVEL >= LOG_LEVEL_DBG
*/
/** @endcond */
/**
* @brief Print fragment list and the fragment sizes
*
* @details Only available if debugging is activated.
*
* @param pkt Network pkt.
*/
#if defined(NET_PKT_DEBUG_ENABLED)
void net_pkt_print_frags(struct net_pkt *pkt);
#else
#define net_pkt_print_frags(pkt)
#endif
/**
* @brief Get RX DATA buffer from pool.
* Normally you should use net_pkt_get_frag() instead.
*
* @details Normally this version is not useful for applications
* but is mainly used by network fragmentation code.
*
* @param timeout Affects the action taken should the net buf pool be empty.
* If K_NO_WAIT, then return immediately. If K_FOREVER, then
* wait as long as necessary. Otherwise, wait up to the specified time.
*
* @return Network buffer if successful, NULL otherwise.
*/
#if !defined(NET_PKT_DEBUG_ENABLED)
struct net_buf *net_pkt_get_reserve_rx_data(k_timeout_t timeout);
#endif
/**
* @brief Get TX DATA buffer from pool.
* Normally you should use net_pkt_get_frag() instead.
*
* @details Normally this version is not useful for applications
* but is mainly used by network fragmentation code.
*
* @param timeout Affects the action taken should the net buf pool be empty.
* If K_NO_WAIT, then return immediately. If K_FOREVER, then
* wait as long as necessary. Otherwise, wait up to the specified time.
*
* @return Network buffer if successful, NULL otherwise.
*/
#if !defined(NET_PKT_DEBUG_ENABLED)
struct net_buf *net_pkt_get_reserve_tx_data(k_timeout_t timeout);
#endif
/**
* @brief Get a data fragment that might be from user specific
* buffer pool or from global DATA pool.
*
* @param pkt Network packet.
* @param timeout Affects the action taken should the net buf pool be empty.
* If K_NO_WAIT, then return immediately. If K_FOREVER, then
* wait as long as necessary. Otherwise, wait up to the specified time.
*
* @return Network buffer if successful, NULL otherwise.
*/
#if !defined(NET_PKT_DEBUG_ENABLED)
struct net_buf *net_pkt_get_frag(struct net_pkt *pkt, k_timeout_t timeout);
#endif
/**
* @brief Place packet back into the available packets slab
*
* @details Releases the packet to other use. This needs to be
* called by application after it has finished with the packet.
*
* @param pkt Network packet to release.
*
*/
#if !defined(NET_PKT_DEBUG_ENABLED)
void net_pkt_unref(struct net_pkt *pkt);
#endif
/**
* @brief Increase the packet ref count
*
* @details Mark the packet to be used still.
*
* @param pkt Network packet to ref.
*
* @return Network packet if successful, NULL otherwise.
*/
#if !defined(NET_PKT_DEBUG_ENABLED)
struct net_pkt *net_pkt_ref(struct net_pkt *pkt);
#endif
/**
* @brief Increase the packet fragment ref count
*
* @details Mark the fragment to be used still.
*
* @param frag Network fragment to ref.
*
* @return a pointer on the referenced Network fragment.
*/
#if !defined(NET_PKT_DEBUG_ENABLED)
struct net_buf *net_pkt_frag_ref(struct net_buf *frag);
#endif
/**
* @brief Decrease the packet fragment ref count
*
* @param frag Network fragment to unref.
*/
#if !defined(NET_PKT_DEBUG_ENABLED)
void net_pkt_frag_unref(struct net_buf *frag);
#endif
/**
* @brief Delete existing fragment from a packet
*
* @param pkt Network packet from which frag belongs to.
* @param parent parent fragment of frag, or NULL if none.
* @param frag Fragment to delete.
*
* @return Pointer to the following fragment, or NULL if it had no
* further fragments.
*/
#if !defined(NET_PKT_DEBUG_ENABLED)
struct net_buf *net_pkt_frag_del(struct net_pkt *pkt,
struct net_buf *parent,
struct net_buf *frag);
#endif
/**
* @brief Add a fragment to a packet at the end of its fragment list
*
* @param pkt pkt Network packet where to add the fragment
* @param frag Fragment to add
*/
#if !defined(NET_PKT_DEBUG_ENABLED)
void net_pkt_frag_add(struct net_pkt *pkt, struct net_buf *frag);
#endif
/**
* @brief Insert a fragment to a packet at the beginning of its fragment list
*
* @param pkt pkt Network packet where to insert the fragment
* @param frag Fragment to insert
*/
#if !defined(NET_PKT_DEBUG_ENABLED)
void net_pkt_frag_insert(struct net_pkt *pkt, struct net_buf *frag);
#endif
/**
* @brief Compact the fragment list of a packet.
*
* @details After this there is no more any free space in individual fragments.
* @param pkt Network packet.
*/
void net_pkt_compact(struct net_pkt *pkt);
/**
* @brief Get information about predefined RX, TX and DATA pools.
*
* @param rx Pointer to RX pool is returned.
* @param tx Pointer to TX pool is returned.
* @param rx_data Pointer to RX DATA pool is returned.
* @param tx_data Pointer to TX DATA pool is returned.
*/
void net_pkt_get_info(struct k_mem_slab **rx,
struct k_mem_slab **tx,
struct net_buf_pool **rx_data,
struct net_buf_pool **tx_data);
/** @cond INTERNAL_HIDDEN */
#if defined(CONFIG_NET_DEBUG_NET_PKT_ALLOC)
/**
* @brief Debug helper to print out the buffer allocations
*/
void net_pkt_print(void);
typedef void (*net_pkt_allocs_cb_t)(struct net_pkt *pkt,
struct net_buf *buf,
const char *func_alloc,
int line_alloc,
const char *func_free,
int line_free,
bool in_use,
void *user_data);
void net_pkt_allocs_foreach(net_pkt_allocs_cb_t cb, void *user_data);
const char *net_pkt_slab2str(struct k_mem_slab *slab);
const char *net_pkt_pool2str(struct net_buf_pool *pool);
#else
#define net_pkt_print(...)
#endif /* CONFIG_NET_DEBUG_NET_PKT_ALLOC */
/* New allocator, and API are defined below.
* This will be simpler when time will come to get rid of former API above.
*/
#if defined(NET_PKT_DEBUG_ENABLED)
struct net_pkt *net_pkt_alloc_debug(k_timeout_t timeout,
const char *caller, int line);
#define net_pkt_alloc(_timeout) \
net_pkt_alloc_debug(_timeout, __func__, __LINE__)
struct net_pkt *net_pkt_alloc_from_slab_debug(struct k_mem_slab *slab,
k_timeout_t timeout,
const char *caller, int line);
#define net_pkt_alloc_from_slab(_slab, _timeout) \
net_pkt_alloc_from_slab_debug(_slab, _timeout, __func__, __LINE__)
struct net_pkt *net_pkt_rx_alloc_debug(k_timeout_t timeout,
const char *caller, int line);
#define net_pkt_rx_alloc(_timeout) \
net_pkt_rx_alloc_debug(_timeout, __func__, __LINE__)
struct net_pkt *net_pkt_alloc_on_iface_debug(struct net_if *iface,
k_timeout_t timeout,
const char *caller,
int line);
#define net_pkt_alloc_on_iface(_iface, _timeout) \
net_pkt_alloc_on_iface_debug(_iface, _timeout, __func__, __LINE__)
struct net_pkt *net_pkt_rx_alloc_on_iface_debug(struct net_if *iface,
k_timeout_t timeout,
const char *caller,
int line);
#define net_pkt_rx_alloc_on_iface(_iface, _timeout) \
net_pkt_rx_alloc_on_iface_debug(_iface, _timeout, \
__func__, __LINE__)
int net_pkt_alloc_buffer_debug(struct net_pkt *pkt,
size_t size,
enum net_ip_protocol proto,
k_timeout_t timeout,
const char *caller, int line);
#define net_pkt_alloc_buffer(_pkt, _size, _proto, _timeout) \
net_pkt_alloc_buffer_debug(_pkt, _size, _proto, _timeout, \
__func__, __LINE__)
struct net_pkt *net_pkt_alloc_with_buffer_debug(struct net_if *iface,
size_t size,
sa_family_t family,
enum net_ip_protocol proto,
k_timeout_t timeout,
const char *caller,
int line);
#define net_pkt_alloc_with_buffer(_iface, _size, _family, \
_proto, _timeout) \
net_pkt_alloc_with_buffer_debug(_iface, _size, _family, \
_proto, _timeout, \
__func__, __LINE__)
struct net_pkt *net_pkt_rx_alloc_with_buffer_debug(struct net_if *iface,
size_t size,
sa_family_t family,
enum net_ip_protocol proto,
k_timeout_t timeout,
const char *caller,
int line);
#define net_pkt_rx_alloc_with_buffer(_iface, _size, _family, \
_proto, _timeout) \
net_pkt_rx_alloc_with_buffer_debug(_iface, _size, _family, \
_proto, _timeout, \
__func__, __LINE__)
#endif /* NET_PKT_DEBUG_ENABLED */
/** @endcond */
/**
* @brief Allocate an initialized net_pkt
*
* @details for the time being, 2 pools are used. One for TX and one for RX.
* This allocator has to be used for TX.
*
* @param timeout Maximum time to wait for an allocation.
*
* @return a pointer to a newly allocated net_pkt on success, NULL otherwise.
*/
#if !defined(NET_PKT_DEBUG_ENABLED)
struct net_pkt *net_pkt_alloc(k_timeout_t timeout);
#endif
/**
* @brief Allocate an initialized net_pkt from a specific slab
*
* @details unlike net_pkt_alloc() which uses core slabs, this one will use
* an external slab (see NET_PKT_SLAB_DEFINE()).
* Do _not_ use it unless you know what you are doing. Basically, only
* net_context should be using this, in order to allocate packet and
* then buffer on its local slab/pool (if any).
*
* @param slab The slab to use for allocating the packet
* @param timeout Maximum time to wait for an allocation.
*
* @return a pointer to a newly allocated net_pkt on success, NULL otherwise.
*/
#if !defined(NET_PKT_DEBUG_ENABLED)
struct net_pkt *net_pkt_alloc_from_slab(struct k_mem_slab *slab,
k_timeout_t timeout);
#endif
/**
* @brief Allocate an initialized net_pkt for RX
*
* @details for the time being, 2 pools are used. One for TX and one for RX.
* This allocator has to be used for RX.
*
* @param timeout Maximum time to wait for an allocation.
*
* @return a pointer to a newly allocated net_pkt on success, NULL otherwise.
*/
#if !defined(NET_PKT_DEBUG_ENABLED)
struct net_pkt *net_pkt_rx_alloc(k_timeout_t timeout);
#endif
/**
* @brief Allocate a network packet for a specific network interface.
*
* @param iface The network interface the packet is supposed to go through.
* @param timeout Maximum time to wait for an allocation.
*
* @return a pointer to a newly allocated net_pkt on success, NULL otherwise.
*/
#if !defined(NET_PKT_DEBUG_ENABLED)
struct net_pkt *net_pkt_alloc_on_iface(struct net_if *iface,
k_timeout_t timeout);
/* Same as above but specifically for RX packet */
struct net_pkt *net_pkt_rx_alloc_on_iface(struct net_if *iface,
k_timeout_t timeout);
#endif
/**
* @brief Allocate buffer for a net_pkt
*
* @details: such allocator will take into account space necessary for headers,
* MTU, and existing buffer (if any). Beware that, due to all these
* criteria, the allocated size might be smaller/bigger than
* requested one.
*
* @param pkt The network packet requiring buffer to be allocated.
* @param size The size of buffer being requested.
* @param proto The IP protocol type (can be 0 for none).
* @param timeout Maximum time to wait for an allocation.
*
* @return 0 on success, negative errno code otherwise.
*/
#if !defined(NET_PKT_DEBUG_ENABLED)
int net_pkt_alloc_buffer(struct net_pkt *pkt,
size_t size,
enum net_ip_protocol proto,
k_timeout_t timeout);
#endif
/**
* @brief Allocate a network packet and buffer at once
*
* @param iface The network interface the packet is supposed to go through.
* @param size The size of buffer.
* @param family The family to which the packet belongs.
* @param proto The IP protocol type (can be 0 for none).
* @param timeout Maximum time to wait for an allocation.
*
* @return a pointer to a newly allocated net_pkt on success, NULL otherwise.
*/
#if !defined(NET_PKT_DEBUG_ENABLED)
struct net_pkt *net_pkt_alloc_with_buffer(struct net_if *iface,
size_t size,
sa_family_t family,
enum net_ip_protocol proto,
k_timeout_t timeout);
/* Same as above but specifically for RX packet */
struct net_pkt *net_pkt_rx_alloc_with_buffer(struct net_if *iface,
size_t size,
sa_family_t family,
enum net_ip_protocol proto,
k_timeout_t timeout);
#endif
/**
* @brief Append a buffer in packet
*
* @param pkt Network packet where to append the buffer
* @param buffer Buffer to append
*/
void net_pkt_append_buffer(struct net_pkt *pkt, struct net_buf *buffer);
/**
* @brief Get available buffer space from a pkt
*
* @note Reserved bytes (headroom) in any of the fragments are not considered to
* be available.
*
* @param pkt The net_pkt which buffer availability should be evaluated
*
* @return the amount of buffer available
*/
size_t net_pkt_available_buffer(struct net_pkt *pkt);
/**
* @brief Get available buffer space for payload from a pkt
*
* @note Reserved bytes (headroom) in any of the fragments are not considered to
* be available.
*
* @details Unlike net_pkt_available_buffer(), this will take into account
* the headers space.
*
* @param pkt The net_pkt which payload buffer availability should
* be evaluated
* @param proto The IP protocol type (can be 0 for none).
*
* @return the amount of buffer available for payload
*/
size_t net_pkt_available_payload_buffer(struct net_pkt *pkt,
enum net_ip_protocol proto);
/**
* @brief Trim net_pkt buffer
*
* @details This will basically check for unused buffers and deallocate
* them relevantly
*
* @param pkt The net_pkt which buffer will be trimmed
*/
void net_pkt_trim_buffer(struct net_pkt *pkt);
/**
* @brief Remove @a length bytes from tail of packet
*
* @details This function does not take packet cursor into account. It is a
* helper to remove unneeded bytes from tail of packet (like appended
* CRC). It takes care of buffer deallocation if removed bytes span
* whole buffer(s).
*
* @param pkt Network packet
* @param length Number of bytes to be removed
*
* @retval 0 On success.
* @retval -EINVAL If packet length is shorter than @a length.
*/
int net_pkt_remove_tail(struct net_pkt *pkt, size_t length);
/**
* @brief Initialize net_pkt cursor
*
* @details This will initialize the net_pkt cursor from its buffer.
*
* @param pkt The net_pkt whose cursor is going to be initialized
*/
void net_pkt_cursor_init(struct net_pkt *pkt);
/**
* @brief Backup net_pkt cursor
*
* @param pkt The net_pkt whose cursor is going to be backed up
* @param backup The cursor where to backup net_pkt cursor
*/
static inline void net_pkt_cursor_backup(struct net_pkt *pkt,
struct net_pkt_cursor *backup)
{
backup->buf = pkt->cursor.buf;
backup->pos = pkt->cursor.pos;
}
/**
* @brief Restore net_pkt cursor from a backup
*
* @param pkt The net_pkt whose cursor is going to be restored
* @param backup The cursor from where to restore net_pkt cursor
*/
static inline void net_pkt_cursor_restore(struct net_pkt *pkt,
struct net_pkt_cursor *backup)
{
pkt->cursor.buf = backup->buf;
pkt->cursor.pos = backup->pos;
}
/**
* @brief Returns current position of the cursor
*
* @param pkt The net_pkt whose cursor position is going to be returned
*
* @return cursor's position
*/
static inline void *net_pkt_cursor_get_pos(struct net_pkt *pkt)
{
return pkt->cursor.pos;
}
/**
* @brief Skip some data from a net_pkt
*
* @details net_pkt's cursor should be properly initialized
* Cursor position will be updated after the operation.
* Depending on the value of pkt->overwrite bit, this function
* will affect the buffer length or not. If it's true, it will
* advance the cursor to the requested length. If it's false,
* it will do the same but if the cursor was already also at the
* end of existing data, it will increment the buffer length.
* So in this case, its behavior is just like net_pkt_write or
* net_pkt_memset, difference being that it will not affect the
* buffer content itself (which may be just garbage then).
*
* @param pkt The net_pkt whose cursor will be updated to skip given
* amount of data from the buffer.
* @param length Amount of data to skip in the buffer
*
* @return 0 in success, negative errno code otherwise.
*/
int net_pkt_skip(struct net_pkt *pkt, size_t length);
/**
* @brief Memset some data in a net_pkt
*
* @details net_pkt's cursor should be properly initialized and,
* if needed, positioned using net_pkt_skip.
* Cursor position will be updated after the operation.
*
* @param pkt The net_pkt whose buffer to fill starting at the current
* cursor position.
* @param byte The byte to write in memory
* @param length Amount of data to memset with given byte
*
* @return 0 in success, negative errno code otherwise.
*/
int net_pkt_memset(struct net_pkt *pkt, int byte, size_t length);
/**
* @brief Copy data from a packet into another one.
*
* @details Both net_pkt cursors should be properly initialized and,
* if needed, positioned using net_pkt_skip.
* The cursors will be updated after the operation.
*
* @param pkt_dst Destination network packet.
* @param pkt_src Source network packet.
* @param length Length of data to be copied.
*
* @return 0 on success, negative errno code otherwise.
*/
int net_pkt_copy(struct net_pkt *pkt_dst,
struct net_pkt *pkt_src,
size_t length);
/**
* @brief Clone pkt and its buffer. The cloned packet will be allocated on
* the same pool as the original one.
*
* @param pkt Original pkt to be cloned
* @param timeout Timeout to wait for free buffer
*
* @return NULL if error, cloned packet otherwise.
*/
struct net_pkt *net_pkt_clone(struct net_pkt *pkt, k_timeout_t timeout);
/**
* @brief Clone pkt and its buffer. The cloned packet will be allocated on
* the RX packet poll.
*
* @param pkt Original pkt to be cloned
* @param timeout Timeout to wait for free buffer
*
* @return NULL if error, cloned packet otherwise.
*/
struct net_pkt *net_pkt_rx_clone(struct net_pkt *pkt, k_timeout_t timeout);
/**
* @brief Clone pkt and increase the refcount of its buffer.
*
* @param pkt Original pkt to be shallow cloned
* @param timeout Timeout to wait for free packet
*
* @return NULL if error, cloned packet otherwise.
*/
struct net_pkt *net_pkt_shallow_clone(struct net_pkt *pkt,
k_timeout_t timeout);
/**
* @brief Read some data from a net_pkt
*
* @details net_pkt's cursor should be properly initialized and,
* if needed, positioned using net_pkt_skip.
* Cursor position will be updated after the operation.
*
* @param pkt The network packet from where to read some data
* @param data The destination buffer where to copy the data
* @param length The amount of data to copy
*
* @return 0 on success, negative errno code otherwise.
*/
int net_pkt_read(struct net_pkt *pkt, void *data, size_t length);
/* Read uint8_t data data a net_pkt */
static inline int net_pkt_read_u8(struct net_pkt *pkt, uint8_t *data)
{
return net_pkt_read(pkt, data, 1);
}
/**
* @brief Read uint16_t big endian data from a net_pkt
*
* @details net_pkt's cursor should be properly initialized and,
* if needed, positioned using net_pkt_skip.
* Cursor position will be updated after the operation.
*
* @param pkt The network packet from where to read
* @param data The destination uint16_t where to copy the data
*
* @return 0 on success, negative errno code otherwise.
*/
int net_pkt_read_be16(struct net_pkt *pkt, uint16_t *data);
/**
* @brief Read uint16_t little endian data from a net_pkt
*
* @details net_pkt's cursor should be properly initialized and,
* if needed, positioned using net_pkt_skip.
* Cursor position will be updated after the operation.
*
* @param pkt The network packet from where to read
* @param data The destination uint16_t where to copy the data
*
* @return 0 on success, negative errno code otherwise.
*/
int net_pkt_read_le16(struct net_pkt *pkt, uint16_t *data);
/**
* @brief Read uint32_t big endian data from a net_pkt
*
* @details net_pkt's cursor should be properly initialized and,
* if needed, positioned using net_pkt_skip.
* Cursor position will be updated after the operation.
*
* @param pkt The network packet from where to read
* @param data The destination uint32_t where to copy the data
*
* @return 0 on success, negative errno code otherwise.
*/
int net_pkt_read_be32(struct net_pkt *pkt, uint32_t *data);
/**
* @brief Write data into a net_pkt
*
* @details net_pkt's cursor should be properly initialized and,
* if needed, positioned using net_pkt_skip.
* Cursor position will be updated after the operation.
*
* @param pkt The network packet where to write
* @param data Data to be written
* @param length Length of the data to be written
*
* @return 0 on success, negative errno code otherwise.
*/
int net_pkt_write(struct net_pkt *pkt, const void *data, size_t length);
/* Write uint8_t data into a net_pkt. */
static inline int net_pkt_write_u8(struct net_pkt *pkt, uint8_t data)
{
return net_pkt_write(pkt, &data, sizeof(uint8_t));
}
/* Write uint16_t big endian data into a net_pkt. */
static inline int net_pkt_write_be16(struct net_pkt *pkt, uint16_t data)
{
uint16_t data_be16 = htons(data);
return net_pkt_write(pkt, &data_be16, sizeof(uint16_t));
}
/* Write uint32_t big endian data into a net_pkt. */
static inline int net_pkt_write_be32(struct net_pkt *pkt, uint32_t data)
{
uint32_t data_be32 = htonl(data);
return net_pkt_write(pkt, &data_be32, sizeof(uint32_t));
}
/* Write uint32_t little endian data into a net_pkt. */
static inline int net_pkt_write_le32(struct net_pkt *pkt, uint32_t data)
{
uint32_t data_le32 = sys_cpu_to_le32(data);
return net_pkt_write(pkt, &data_le32, sizeof(uint32_t));
}
/* Write uint16_t little endian data into a net_pkt. */
static inline int net_pkt_write_le16(struct net_pkt *pkt, uint16_t data)
{
uint16_t data_le16 = sys_cpu_to_le16(data);
return net_pkt_write(pkt, &data_le16, sizeof(uint16_t));
}
/**
* @brief Get the amount of data which can be read from current cursor position
*
* @param pkt Network packet
*
* @return Amount of data which can be read from current pkt cursor
*/
size_t net_pkt_remaining_data(struct net_pkt *pkt);
/**
* @brief Update the overall length of a packet
*
* @details Unlike net_pkt_pull() below, this does not take packet cursor
* into account. It's mainly a helper dedicated for ipv4 and ipv6
* input functions. It shrinks the overall length by given parameter.
*
* @param pkt Network packet
* @param length The new length of the packet
*
* @return 0 on success, negative errno code otherwise.
*/
int net_pkt_update_length(struct net_pkt *pkt, size_t length);
/**
* @brief Remove data from the packet at current location
*
* @details net_pkt's cursor should be properly initialized and,
* eventually, properly positioned using net_pkt_skip/read/write.
* Note that net_pkt's cursor is reset by this function.
*
* @param pkt Network packet
* @param length Number of bytes to be removed
*
* @return 0 on success, negative errno code otherwise.
*/
int net_pkt_pull(struct net_pkt *pkt, size_t length);
/**
* @brief Get the actual offset in the packet from its cursor
*
* @param pkt Network packet.
*
* @return a valid offset on success, 0 otherwise as there is nothing that
* can be done to evaluate the offset.
*/
uint16_t net_pkt_get_current_offset(struct net_pkt *pkt);
/**
* @brief Check if a data size could fit contiguously
*
* @details net_pkt's cursor should be properly initialized and,
* if needed, positioned using net_pkt_skip.
*
* @param pkt Network packet.
* @param size The size to check for contiguity
*
* @return true if that is the case, false otherwise.
*/
bool net_pkt_is_contiguous(struct net_pkt *pkt, size_t size);
/**
* Get the contiguous buffer space
*
* @param pkt Network packet
*
* @return The available contiguous buffer space in bytes starting from the
* current cursor position. 0 in case of an error.
*/
size_t net_pkt_get_contiguous_len(struct net_pkt *pkt);
struct net_pkt_data_access {
#if !defined(CONFIG_NET_HEADERS_ALWAYS_CONTIGUOUS)
void *data;
#endif
const size_t size;
};
#if defined(CONFIG_NET_HEADERS_ALWAYS_CONTIGUOUS)
#define NET_PKT_DATA_ACCESS_DEFINE(_name, _type) \
struct net_pkt_data_access _name = { \
.size = sizeof(_type), \
}
#define NET_PKT_DATA_ACCESS_CONTIGUOUS_DEFINE(_name, _type) \
NET_PKT_DATA_ACCESS_DEFINE(_name, _type)
#else
#define NET_PKT_DATA_ACCESS_DEFINE(_name, _type) \
_type _hdr_##_name; \
struct net_pkt_data_access _name = { \
.data = &_hdr_##_name, \
.size = sizeof(_type), \
}
#define NET_PKT_DATA_ACCESS_CONTIGUOUS_DEFINE(_name, _type) \
struct net_pkt_data_access _name = { \
.data = NULL, \
.size = sizeof(_type), \
}
#endif /* CONFIG_NET_HEADERS_ALWAYS_CONTIGUOUS */
/**
* @brief Get data from a network packet in a contiguous way
*
* @details net_pkt's cursor should be properly initialized and,
* if needed, positioned using net_pkt_skip.
* Cursor position will be updated after the operation.
*
* @param pkt The network packet from where to get the data.
* @param access A pointer to a valid net_pkt_data_access describing the
* data to get in a contiguous way.
*
* @return a pointer to the requested contiguous data, NULL otherwise.
*/
void *net_pkt_get_data(struct net_pkt *pkt,
struct net_pkt_data_access *access);
/**
* @brief Set contiguous data into a network packet
*
* @details net_pkt's cursor should be properly initialized and,
* if needed, positioned using net_pkt_skip.
* Cursor position will be updated after the operation.
*
* @param pkt The network packet to where the data should be set.
* @param access A pointer to a valid net_pkt_data_access describing the
* data to set.
*
* @return 0 on success, a negative errno otherwise.
*/
int net_pkt_set_data(struct net_pkt *pkt,
struct net_pkt_data_access *access);
/**
* Acknowledge previously contiguous data taken from a network packet
* Packet needs to be set to overwrite mode.
*/
static inline int net_pkt_acknowledge_data(struct net_pkt *pkt,
struct net_pkt_data_access *access)
{
return net_pkt_skip(pkt, access->size);
}
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* ZEPHYR_INCLUDE_NET_NET_PKT_H_ */